Improve model card: Add metadata and sample usage
#1
by
nielsr
HF Staff
- opened
README.md
CHANGED
|
@@ -1,5 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
# InternVLA-N1 Model Series
|
| 2 |
|
|
|
|
|
|
|
| 3 |

|
| 4 |

|
| 5 |

|
|
@@ -43,20 +54,68 @@ InternVLA-N1 is a state-of-the-art navigation foundation model built on a **mult
|
|
| 43 |
## Model Variants
|
| 44 |
|
| 45 |
| Model Variant | Description | Key Characteristics |
|
| 46 |
-
|
| 47 |
-
| [**InternVLA-N1 (S2)**](https://huggingface.co/InternRobotics/InternVLA-N1-System2) | Finetuned Qwen2.5-VL model for pixel-goal grounding | Strong System 2 module; compatible with decoupled System 1 controllers or joint optimization pipelines
|
| 48 |
-
| [**InternVLA-N1 (Dual System) _w/ NavDP\*_**](https://huggingface.co/InternRobotics/InternVLA-N1-w-NavDP) | Jointly tuned System 1 (NavDP
|
| 49 |
-
| [**InternVLA-N1 (Dual System) _DualVLN_**](https://huggingface.co/InternRobotics/InternVLA-N1-DualVLN) | Latest dual-system architecture | Optimized end-to-end performance and faster convergence; uses RGB observations
|
| 50 |
-
|
| 51 |
-
|
| 52 |
|
| 53 |
|
| 54 |
> The previously released version is now called [InternVLA-N1-wo-dagger](https://huggingface.co/InternRobotics/InternVLA-N1-wo-dagger). The lastest official release is recommended for best performance.
|
| 55 |
|
| 56 |
---
|
| 57 |
|
| 58 |
-
## Usage
|
| 59 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
|
| 61 |
---
|
| 62 |
|
|
@@ -85,5 +144,4 @@ If you find our work helpful, please consider starring this repository 🌟 and
|
|
| 85 |
primaryClass={cs.RO},
|
| 86 |
url={https://arxiv.org/abs/2512.08186},
|
| 87 |
}
|
| 88 |
-
|
| 89 |
-
|
|
|
|
| 1 |
+
---
|
| 2 |
+
pipeline_tag: robotics
|
| 3 |
+
library_name: transformers
|
| 4 |
+
license: cc-by-nc-sa-4.0
|
| 5 |
+
tags:
|
| 6 |
+
- vision-language-model
|
| 7 |
+
- navigation
|
| 8 |
+
---
|
| 9 |
+
|
| 10 |
# InternVLA-N1 Model Series
|
| 11 |
|
| 12 |
+
This model was presented in the paper [Ground Slow, Move Fast: A Dual-System Foundation Model for Generalizable Vision-and-Language Navigation](https://huggingface.co/papers/2512.08186).
|
| 13 |
+
|
| 14 |

|
| 15 |

|
| 16 |

|
|
|
|
| 54 |
## Model Variants
|
| 55 |
|
| 56 |
| Model Variant | Description | Key Characteristics |
|
| 57 |
+
|--------------|-------------|----------------------|\
|
| 58 |
+
| [**InternVLA-N1 (S2)**](https://huggingface.co/InternRobotics/InternVLA-N1-System2) | Finetuned Qwen2.5-VL model for pixel-goal grounding | Strong System 2 module; compatible with decoupled System 1 controllers or joint optimization pipelines |\
|
| 59 |
+
| [**InternVLA-N1 (Dual System) _w/ NavDP\*_**](https://huggingface.co/InternRobotics/InternVLA-N1-w-NavDP) | Jointly tuned System 1 (NavDP\*) and InternVLA-N1 (S2) | Optimized end-to-end performance; uses RGB-D observations |\
|
| 60 |
+
| [**InternVLA-N1 (Dual System) _DualVLN_**](https://huggingface.co/InternRobotics/InternVLA-N1-DualVLN) | Latest dual-system architecture | Optimized end-to-end performance and faster convergence; uses RGB observations |\
|
|
|
|
|
|
|
| 61 |
|
| 62 |
|
| 63 |
> The previously released version is now called [InternVLA-N1-wo-dagger](https://huggingface.co/InternRobotics/InternVLA-N1-wo-dagger). The lastest official release is recommended for best performance.
|
| 64 |
|
| 65 |
---
|
| 66 |
|
| 67 |
+
## Sample Usage
|
| 68 |
+
|
| 69 |
+
This model is compatible with the Hugging Face `transformers` library. The following code snippet demonstrates how to perform inference:
|
| 70 |
+
|
| 71 |
+
```python
|
| 72 |
+
import torch
|
| 73 |
+
from PIL import Image
|
| 74 |
+
from transformers import AutoProcessor, AutoModelForCausalLM
|
| 75 |
+
import requests
|
| 76 |
+
from io import BytesIO
|
| 77 |
+
|
| 78 |
+
# Load model and processor
|
| 79 |
+
hf_model_id = "InternRobotics/InternVLA-N1-DualVLN"
|
| 80 |
+
model = AutoModelForCausalLM.from_pretrained(hf_model_id, torch_dtype=torch.float16, trust_remote_code=True, device_map="cuda")
|
| 81 |
+
processor = AutoProcessor.from_pretrained(hf_model_id, trust_remote_code=True)
|
| 82 |
+
|
| 83 |
+
# Load a dummy image
|
| 84 |
+
# Replace with your actual image path or a URL to a relevant scene
|
| 85 |
+
image_url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/bird_image.jpg"
|
| 86 |
+
image = Image.open(BytesIO(requests.get(image_url).content)).convert("RGB")
|
| 87 |
+
|
| 88 |
+
# Define a question related to navigation or visual understanding
|
| 89 |
+
question = "What is the most direct path to the kitchen from here? Describe the first few steps."
|
| 90 |
+
|
| 91 |
+
messages = [
|
| 92 |
+
{"role": "user", "content": f"<|image_pad|>{question}"},
|
| 93 |
+
]
|
| 94 |
+
|
| 95 |
+
# Process inputs
|
| 96 |
+
inputs = processor.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt")
|
| 97 |
+
inputs = inputs.to(model.device)
|
| 98 |
+
pixel_values = processor.preprocess(images=image, return_tensors="pt")["pixel_values"]
|
| 99 |
+
pixel_values = pixel_values.to(model.device, dtype=torch.float16)
|
| 100 |
+
|
| 101 |
+
# Generate response
|
| 102 |
+
with torch.inference_mode():
|
| 103 |
+
outputs = model.generate(
|
| 104 |
+
**inputs,
|
| 105 |
+
pixel_values=pixel_values,
|
| 106 |
+
do_sample=True,
|
| 107 |
+
temperature=0.7,
|
| 108 |
+
max_new_tokens=1024,
|
| 109 |
+
eos_token_id=processor.tokenizer.eos_token_id,
|
| 110 |
+
repetition_penalty=1.05
|
| 111 |
+
)
|
| 112 |
+
|
| 113 |
+
response = processor.decode(outputs[0], skip_special_tokens=True)
|
| 114 |
+
print(f"User: {question}
|
| 115 |
+
Assistant: {response}")
|
| 116 |
+
```
|
| 117 |
+
|
| 118 |
+
For more detailed usage (inference, evaluation, and Gradio demo), please refer to the [InternNav repository](https://github.com/InternRobotics/InternNav).
|
| 119 |
|
| 120 |
---
|
| 121 |
|
|
|
|
| 144 |
primaryClass={cs.RO},
|
| 145 |
url={https://arxiv.org/abs/2512.08186},
|
| 146 |
}
|
| 147 |
+
```
|
|
|