test-segformer-1 / README.md
JunyaoPu's picture
End of training
f026f07 verified
metadata
library_name: transformers
license: other
base_model: nvidia/mit-b0
tags:
  - generated_from_trainer
model-index:
  - name: test-segformer-1
    results: []

test-segformer-1

This model is a fine-tuned version of nvidia/mit-b0 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5184
  • Mean Iou: 0.5013
  • Mean Accuracy: 0.6080
  • Overall Accuracy: 0.8860
  • Accuracy Background: 0.9710
  • Accuracy Aeroplane: 0.7936
  • Accuracy Bicycle: 0.6422
  • Accuracy Bird: 0.6118
  • Accuracy Boat: 0.4959
  • Accuracy Bottle: 0.3990
  • Accuracy Bus: 0.7997
  • Accuracy Car: 0.7558
  • Accuracy Cat: 0.8353
  • Accuracy Chair: 0.3141
  • Accuracy Cow: 0.4212
  • Accuracy Diningtable: 0.2675
  • Accuracy Dog: 0.5355
  • Accuracy Horse: 0.5817
  • Accuracy Motorbike: 0.7442
  • Accuracy Person: 0.8677
  • Accuracy Pottedplant: 0.3351
  • Accuracy Sheep: 0.7845
  • Accuracy Sofa: 0.3684
  • Accuracy Train: 0.6319
  • Accuracy Tvmonitor: 0.6111
  • Iou Background: 0.9054
  • Iou Aeroplane: 0.7364
  • Iou Bicycle: 0.4610
  • Iou Bird: 0.4835
  • Iou Boat: 0.4281
  • Iou Bottle: 0.3470
  • Iou Bus: 0.7430
  • Iou Car: 0.6847
  • Iou Cat: 0.6004
  • Iou Chair: 0.2188
  • Iou Cow: 0.3697
  • Iou Diningtable: 0.2446
  • Iou Dog: 0.4173
  • Iou Horse: 0.3859
  • Iou Motorbike: 0.5811
  • Iou Person: 0.7178
  • Iou Pottedplant: 0.3016
  • Iou Sheep: 0.5628
  • Iou Sofa: 0.2973
  • Iou Train: 0.5734
  • Iou Tvmonitor: 0.4668

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 99

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Accuracy Background Accuracy Aeroplane Accuracy Bicycle Accuracy Bird Accuracy Boat Accuracy Bottle Accuracy Bus Accuracy Car Accuracy Cat Accuracy Chair Accuracy Cow Accuracy Diningtable Accuracy Dog Accuracy Horse Accuracy Motorbike Accuracy Person Accuracy Pottedplant Accuracy Sheep Accuracy Sofa Accuracy Train Accuracy Tvmonitor Iou Background Iou Aeroplane Iou Bicycle Iou Bird Iou Boat Iou Bottle Iou Bus Iou Car Iou Cat Iou Chair Iou Cow Iou Diningtable Iou Dog Iou Horse Iou Motorbike Iou Person Iou Pottedplant Iou Sheep Iou Sofa Iou Train Iou Tvmonitor
0.3686 21.7391 1000 0.5845 0.3211 0.4345 0.8352 0.9694 0.6936 0.5146 0.4319 0.4197 0.1345 0.3523 0.2277 0.6193 0.0743 0.3442 0.4724 0.5060 0.2571 0.5776 0.7439 0.2928 0.7685 0.2055 0.3511 0.1672 0.8669 0.5458 0.2152 0.3433 0.2435 0.1265 0.3481 0.1988 0.5060 0.0624 0.2761 0.3396 0.3731 0.2182 0.3127 0.6209 0.1716 0.3419 0.1634 0.3243 0.1455
0.2146 43.4783 2000 0.5172 0.4095 0.5204 0.8595 0.9684 0.6709 0.6059 0.4971 0.4196 0.2827 0.5828 0.3871 0.7104 0.2592 0.5440 0.2338 0.4815 0.3928 0.4747 0.8668 0.4723 0.7557 0.1945 0.5497 0.5785 0.8846 0.6450 0.3218 0.3542 0.3466 0.2658 0.4982 0.3832 0.5423 0.1800 0.4389 0.2254 0.3663 0.3070 0.3989 0.6469 0.2971 0.4598 0.1728 0.4736 0.3907
0.0919 65.2174 3000 0.5242 0.4735 0.5733 0.8780 0.9721 0.7582 0.5962 0.5413 0.4951 0.3764 0.8138 0.7061 0.8332 0.2066 0.2866 0.3386 0.5985 0.3335 0.6679 0.8557 0.4816 0.6698 0.2637 0.5505 0.6939 0.8981 0.7151 0.4401 0.4610 0.3947 0.3450 0.7176 0.6253 0.6174 0.1626 0.2620 0.2859 0.3921 0.2445 0.5372 0.7023 0.3574 0.5465 0.2268 0.5270 0.4854
0.0775 86.9565 4000 0.5184 0.5013 0.6080 0.8860 0.9710 0.7936 0.6422 0.6118 0.4959 0.3990 0.7997 0.7558 0.8353 0.3141 0.4212 0.2675 0.5355 0.5817 0.7442 0.8677 0.3351 0.7845 0.3684 0.6319 0.6111 0.9054 0.7364 0.4610 0.4835 0.4281 0.3470 0.7430 0.6847 0.6004 0.2188 0.3697 0.2446 0.4173 0.3859 0.5811 0.7178 0.3016 0.5628 0.2973 0.5734 0.4668

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.3.0
  • Datasets 3.0.0
  • Tokenizers 0.19.1