|
|
--- |
|
|
library_name: transformers |
|
|
license: apache-2.0 |
|
|
base_model: bert-base-uncased |
|
|
tags: |
|
|
- generated_from_trainer |
|
|
datasets: |
|
|
- conll2003 |
|
|
metrics: |
|
|
- precision |
|
|
- recall |
|
|
- f1 |
|
|
- accuracy |
|
|
model-index: |
|
|
- name: bert-ner-conll2003 |
|
|
results: |
|
|
- task: |
|
|
type: token-classification |
|
|
name: Token Classification |
|
|
dataset: |
|
|
name: conll2003 |
|
|
type: conll2003 |
|
|
config: conll2003 |
|
|
split: validation |
|
|
args: conll2003 |
|
|
metrics: |
|
|
- type: precision |
|
|
value: 0.9414244508542268 |
|
|
name: Precision |
|
|
- type: recall |
|
|
value: 0.9493231905134802 |
|
|
name: Recall |
|
|
- type: f1 |
|
|
value: 0.9453573218960619 |
|
|
name: F1 |
|
|
- type: accuracy |
|
|
value: 0.9865601220074031 |
|
|
name: Accuracy |
|
|
--- |
|
|
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
|
|
# bert-ner-conll2003 |
|
|
|
|
|
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the conll2003 dataset. |
|
|
It achieves the following results on the evaluation set: |
|
|
- Loss: 0.0631 |
|
|
- Precision: 0.9414 |
|
|
- Recall: 0.9493 |
|
|
- F1: 0.9454 |
|
|
- Accuracy: 0.9866 |
|
|
|
|
|
## Model description |
|
|
|
|
|
```python |
|
|
from transformers import AutoTokenizer, AutoModelForTokenClassification |
|
|
from transformers import pipeline |
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") |
|
|
model = AutoModelForTokenClassification.from_pretrained("PassbyGrocer/bert-ner-conll2003") |
|
|
|
|
|
nlp = pipeline("ner", model=model, tokenizer=tokenizer) |
|
|
example = "My name is Wolfgang and I live in Berlin." |
|
|
|
|
|
ner_results = nlp(example) |
|
|
print(ner_results) |
|
|
|
|
|
``` |
|
|
|
|
|
## Intended uses & limitations |
|
|
|
|
|
More information needed |
|
|
|
|
|
## Training and evaluation data |
|
|
|
|
|
More information needed |
|
|
|
|
|
## Training procedure |
|
|
|
|
|
### Training hyperparameters |
|
|
|
|
|
The following hyperparameters were used during training: |
|
|
- learning_rate: 2e-05 |
|
|
- train_batch_size: 16 |
|
|
- eval_batch_size: 16 |
|
|
- seed: 42 |
|
|
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
|
- lr_scheduler_type: linear |
|
|
- num_epochs: 5 |
|
|
- mixed_precision_training: Native AMP |
|
|
|
|
|
### Training results |
|
|
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
|
| 0.0844 | 1.0 | 878 | 0.0693 | 0.9029 | 0.9201 | 0.9114 | 0.9806 | |
|
|
| 0.0216 | 2.0 | 1756 | 0.0559 | 0.9340 | 0.9444 | 0.9391 | 0.9854 | |
|
|
| 0.0206 | 3.0 | 2634 | 0.0569 | 0.9436 | 0.9447 | 0.9442 | 0.9863 | |
|
|
| 0.0141 | 4.0 | 3512 | 0.0634 | 0.9369 | 0.9488 | 0.9428 | 0.9860 | |
|
|
| 0.0176 | 5.0 | 4390 | 0.0631 | 0.9414 | 0.9493 | 0.9454 | 0.9866 | |
|
|
|
|
|
|
|
|
### Framework versions |
|
|
|
|
|
- Transformers 4.46.1 |
|
|
- Pytorch 1.13.1+cu116 |
|
|
- Datasets 3.1.0 |
|
|
- Tokenizers 0.20.1 |
|
|
|