metadata
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:7059200
- loss:MultipleNegativesRankingLoss
base_model: Shuu12121/CodeModernBERT-Owl-3.0
widget:
- source_sentence: >-
The maximum value of the slider. (default 0) <P>
@return Returns the value of the attribute, or 0, if it hasn't been set by
the JSF file.
sentences:
- |-
@Override
public UpdateSmsChannelResult updateSmsChannel(UpdateSmsChannelRequest request) {
request = beforeClientExecution(request);
return executeUpdateSmsChannel(request);
}
- |-
async function isValidOrigin(origin, sourceOrigin) {
// This will fetch the caches from https://cdn.ampproject.org/caches.json the first time it's
// called. Subsequent calls will receive a cached version.
const officialCacheList = await caches.list();
// Calculate the cache specific origin
const cacheSubdomain = `https://${await createCacheSubdomain(sourceOrigin)}.`;
// Check all caches listed on ampproject.org
for (const cache of officialCacheList) {
const cachedOrigin = cacheSubdomain + cache.cacheDomain;
if (origin === cachedOrigin) {
return true;
}
}
return false;
}
- "public java.lang.Object getMin() {\n\t\treturn (java.lang.Object) getStateHelper().eval(PropertyKeys.min, 0);\n\t}"
- source_sentence: >-
The Method from the Date.getMinutes is deprecated. This is a
helper-Method.
@param date
The Date-object to get the minutes.
@return The minutes from the Date-object.
sentences:
- "public static int getMinutes(final Date date)\n\t{\n\t\tfinal Calendar calendar = Calendar.getInstance();\n\t\tcalendar.setTime(date);\n\t\treturn calendar.get(Calendar.MINUTE);\n\t}"
- "func (opts BeeOptions) Bind(name string, dst interface{}) error {\n\tv := opts.Value(name)\n\tif v == nil {\n\t\treturn errors.New(\"Option with name \" + name + \" not found\")\n\t}\n\n\treturn ConvertValue(v, dst)\n}"
- >-
public function createFor(Customer $customer, array $options = [], array
$filters = [])
{
$this->parentId = $customer->id;
return parent::rest_create($options, $filters);
}
- source_sentence: |-
Return a list of all dates from 11/12/2015 to the present.
Args:
boo: if true, list contains Numbers (20151230); if false, list contains Strings ("2015-12-30")
Returns:
list of either Numbers or Strings
sentences:
- |-
def all_days(boo):
earliest = datetime.strptime(('2015-11-12').replace('-', ' '), '%Y %m %d')
latest = datetime.strptime(datetime.today().date().isoformat().replace('-', ' '), '%Y %m %d')
num_days = (latest - earliest).days + 1
all_days = [latest - timedelta(days=x) for x in range(num_days)]
all_days.reverse()
output = []
if boo:
# Return as Integer, yyyymmdd
for d in all_days:
output.append(int(str(d).replace('-', '')[:8]))
else:
# Return as String, yyyy-mm-dd
for d in all_days:
output.append(str(d)[:10])
return output
- "public void setColSize3(Integer newColSize3) {\n\t\tInteger oldColSize3 = colSize3;\n\t\tcolSize3 = newColSize3;\n\t\tif (eNotificationRequired())\n\t\t\teNotify(new ENotificationImpl(this, Notification.SET, AfplibPackage.COLOR_SPECIFICATION__COL_SIZE3, oldColSize3, colSize3));\n\t}"
- >-
public function
deleteCompanyBusinessUnitStoreAddress(CompanyBusinessUnitStoreAddressTransfer
$companyBusinessUnitStoreAddressTransfer): void
{
$this->getFactory()
->createFosCompanyBusinessUnitStoreAddressQuery()
->findOneByIdCompanyBusinessUnitStoreAddress($companyBusinessUnitStoreAddressTransfer->getIdCompanyBusinessUnitStoreAddress())
->delete();
}
- source_sentence: |-
Returns array of basket oxarticle objects
@return array
sentences:
- |-
public function visit(NodeVisitorInterface $visitor)
{
foreach ($this->children as $child)
{
$child->visit($visitor);
}
}
- "func GetColDefaultValue(ctx sessionctx.Context, col *model.ColumnInfo) (types.Datum, error) {\n\treturn getColDefaultValue(ctx, col, col.GetDefaultValue())\n}"
- |-
public function getBasketArticles()
{
$aBasketArticles = [];
/** @var \oxBasketItem $oBasketItem */
foreach ($this->_aBasketContents as $sItemKey => $oBasketItem) {
try {
$oProduct = $oBasketItem->getArticle(true);
if (\OxidEsales\Eshop\Core\Registry::getConfig()->getConfigParam('bl_perfLoadSelectLists')) {
// marking chosen select list
$aSelList = $oBasketItem->getSelList();
if (is_array($aSelList) && ($aSelectlist = $oProduct->getSelectLists($sItemKey))) {
reset($aSelList);
foreach ($aSelList as $conkey => $iSel) {
$aSelectlist[$conkey][$iSel]->selected = 1;
}
$oProduct->setSelectlist($aSelectlist);
}
}
} catch (\OxidEsales\Eshop\Core\Exception\NoArticleException $oEx) {
\OxidEsales\Eshop\Core\Registry::getUtilsView()->addErrorToDisplay($oEx);
$this->removeItem($sItemKey);
$this->calculateBasket(true);
continue;
} catch (\OxidEsales\Eshop\Core\Exception\ArticleInputException $oEx) {
\OxidEsales\Eshop\Core\Registry::getUtilsView()->addErrorToDisplay($oEx);
$this->removeItem($sItemKey);
$this->calculateBasket(true);
continue;
}
$aBasketArticles[$sItemKey] = $oProduct;
}
return $aBasketArticles;
}
- source_sentence: get test root
sentences:
- |-
@CheckReturnValue
@SchedulerSupport(SchedulerSupport.NONE)
public final Maybe<T> doOnDispose(Action onDispose) {
return RxJavaPlugins.onAssembly(new MaybePeek<T>(this,
Functions.emptyConsumer(), // onSubscribe
Functions.emptyConsumer(), // onSuccess
Functions.emptyConsumer(), // onError
Functions.EMPTY_ACTION, // onComplete
Functions.EMPTY_ACTION, // (onSuccess | onError | onComplete) after
ObjectHelper.requireNonNull(onDispose, "onDispose is null")
));
}
- >-
protected Object parseKeyElement(Element keyEle, BeanDefinition bd,
String defaultKeyTypeName) {
NodeList nl = keyEle.getChildNodes();
Element subElement = null;
for (int i = 0; i < nl.getLength(); i++) {
Node node = nl.item(i);
if (node instanceof Element) {
// Child element is what we're looking for.
if (subElement != null)
error("<key> element must not contain more than one value sub-element", keyEle);
else subElement = (Element) node;
}
}
return parsePropertySubElement(subElement, bd, defaultKeyTypeName);
}
- |-
function getRootPath(){
var rootPath = path.resolve('.');
while(rootPath){
if(fs.existsSync(rootPath + '/config.json')){
break;
}
rootPath = rootPath.substring(0, rootPath.lastIndexOf(path.sep));
}
return rootPath;
}
pipeline_tag: sentence-similarity
library_name: sentence-transformers
SentenceTransformer based on Shuu12121/CodeModernBERT-Owl-3.0
This is a sentence-transformers model finetuned from Shuu12121/CodeModernBERT-Owl-3.0. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: Shuu12121/CodeModernBERT-Owl-3.0
- Maximum Sequence Length: 1024 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 1024, 'do_lower_case': False}) with Transformer model: ModernBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'get test root',
"function getRootPath(){\n var rootPath = path.resolve('.');\n while(rootPath){\n if(fs.existsSync(rootPath + '/config.json')){\n break;\n }\n rootPath = rootPath.substring(0, rootPath.lastIndexOf(path.sep));\n }\n return rootPath;\n}",
'protected Object parseKeyElement(Element keyEle, BeanDefinition bd, String defaultKeyTypeName) {\n NodeList nl = keyEle.getChildNodes();\n Element subElement = null;\n for (int i = 0; i < nl.getLength(); i++) {\n Node node = nl.item(i);\n if (node instanceof Element) {\n // Child element is what we\'re looking for.\n if (subElement != null)\n error("<key> element must not contain more than one value sub-element", keyEle);\n else subElement = (Element) node;\n }\n }\n return parsePropertySubElement(subElement, bd, defaultKeyTypeName);\n }',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
Unnamed Dataset
- Size: 7,059,200 training samples
- Columns:
sentence_0,sentence_1, andlabel - Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 label type string string float details - min: 3 tokens
- mean: 51.42 tokens
- max: 974 tokens
- min: 29 tokens
- mean: 162.71 tokens
- max: 1024 tokens
- min: 1.0
- mean: 1.0
- max: 1.0
- Samples:
sentence_0 sentence_1 label // SetDefaultVersionId sets the DefaultVersionId field's value.func (s *Policy) SetDefaultVersionId(v string) *Policy {
s.DefaultVersionId = &v
return s
}1.0// SetNextPageToken sets the NextPageToken field's value.func (s *ListBudgetsForResourceOutput) SetNextPageToken(v string) *ListBudgetsForResourceOutput {
s.NextPageToken = &v
return s
}1.0// SetHealthyThresholdCount sets the HealthyThresholdCount field's value.func (s *TargetGroup) SetHealthyThresholdCount(v int64) *TargetGroup {
s.HealthyThresholdCount = &v
return s
}1.0 - Loss:
MultipleNegativesRankingLosswith these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size: 200per_device_eval_batch_size: 200fp16: Truemulti_dataset_batch_sampler: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: noprediction_loss_only: Trueper_device_train_batch_size: 200per_device_eval_batch_size: 200per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 5e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1num_train_epochs: 3max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.0warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Truefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: batch_samplermulti_dataset_batch_sampler: round_robin
Training Logs
Click to expand
| Epoch | Step | Training Loss |
|---|---|---|
| 0.0142 | 500 | 1.1661 |
| 0.0283 | 1000 | 0.1176 |
| 0.0425 | 1500 | 0.1096 |
| 0.0567 | 2000 | 0.1013 |
| 0.0708 | 2500 | 0.0967 |
| 0.0850 | 3000 | 0.0912 |
| 0.0992 | 3500 | 0.0886 |
| 0.1133 | 4000 | 0.0799 |
| 0.1275 | 4500 | 0.0776 |
| 0.1417 | 5000 | 0.0757 |
| 0.1558 | 5500 | 0.0751 |
| 0.1700 | 6000 | 0.0714 |
| 0.1842 | 6500 | 0.0703 |
| 0.1983 | 7000 | 0.0667 |
| 0.2125 | 7500 | 0.0674 |
| 0.2267 | 8000 | 0.0625 |
| 0.2408 | 8500 | 0.0598 |
| 0.2550 | 9000 | 0.0597 |
| 0.2692 | 9500 | 0.0585 |
| 0.2833 | 10000 | 0.0568 |
| 0.2975 | 10500 | 0.055 |
| 0.3117 | 11000 | 0.0554 |
| 0.3258 | 11500 | 0.0529 |
| 0.3400 | 12000 | 0.0516 |
| 0.3541 | 12500 | 0.0506 |
| 0.3683 | 13000 | 0.05 |
| 0.3825 | 13500 | 0.0484 |
| 0.3966 | 14000 | 0.0472 |
| 0.4108 | 14500 | 0.0468 |
| 0.4250 | 15000 | 0.045 |
| 0.4391 | 15500 | 0.046 |
| 0.4533 | 16000 | 0.0452 |
| 0.4675 | 16500 | 0.0428 |
| 0.4816 | 17000 | 0.0424 |
| 0.4958 | 17500 | 0.04 |
| 0.5100 | 18000 | 0.0402 |
| 0.5241 | 18500 | 0.0391 |
| 0.5383 | 19000 | 0.0389 |
| 0.5525 | 19500 | 0.0385 |
| 0.5666 | 20000 | 0.0357 |
| 0.5808 | 20500 | 0.0362 |
| 0.5950 | 21000 | 0.0369 |
| 0.6091 | 21500 | 0.0372 |
| 0.6233 | 22000 | 0.0351 |
| 0.6375 | 22500 | 0.034 |
| 0.6516 | 23000 | 0.0364 |
| 0.6658 | 23500 | 0.033 |
| 0.6800 | 24000 | 0.0336 |
| 0.6941 | 24500 | 0.0302 |
| 0.7083 | 25000 | 0.0309 |
| 0.7225 | 25500 | 0.0306 |
| 0.7366 | 26000 | 0.0316 |
| 0.7508 | 26500 | 0.0306 |
| 0.7650 | 27000 | 0.0307 |
| 0.7791 | 27500 | 0.0303 |
| 0.7933 | 28000 | 0.028 |
| 0.8075 | 28500 | 0.0289 |
| 0.8216 | 29000 | 0.0297 |
| 0.8358 | 29500 | 0.0281 |
| 0.8500 | 30000 | 0.029 |
| 0.8641 | 30500 | 0.027 |
| 0.8783 | 31000 | 0.0282 |
| 0.8925 | 31500 | 0.0264 |
| 0.9066 | 32000 | 0.027 |
| 0.9208 | 32500 | 0.0259 |
| 0.9350 | 33000 | 0.0272 |
| 0.9491 | 33500 | 0.0275 |
| 0.9633 | 34000 | 0.0244 |
| 0.9774 | 34500 | 0.0254 |
| 0.9916 | 35000 | 0.0261 |
| 1.0058 | 35500 | 0.0189 |
| 1.0199 | 36000 | 0.0118 |
| 1.0341 | 36500 | 0.012 |
| 1.0483 | 37000 | 0.0118 |
| 1.0624 | 37500 | 0.0109 |
| 1.0766 | 38000 | 0.0123 |
| 1.0908 | 38500 | 0.0122 |
| 1.1049 | 39000 | 0.0122 |
| 1.1191 | 39500 | 0.0123 |
| 1.1333 | 40000 | 0.0117 |
| 1.1474 | 40500 | 0.0115 |
| 1.1616 | 41000 | 0.0122 |
| 1.1758 | 41500 | 0.0117 |
| 1.1899 | 42000 | 0.0119 |
| 1.2041 | 42500 | 0.0112 |
| 1.2183 | 43000 | 0.0122 |
| 1.2324 | 43500 | 0.0116 |
| 1.2466 | 44000 | 0.0107 |
| 1.2608 | 44500 | 0.0126 |
| 1.2749 | 45000 | 0.0114 |
| 1.2891 | 45500 | 0.011 |
| 1.3033 | 46000 | 0.0116 |
| 1.3174 | 46500 | 0.0114 |
| 1.3316 | 47000 | 0.0111 |
| 1.3458 | 47500 | 0.0112 |
| 1.3599 | 48000 | 0.0112 |
| 1.3741 | 48500 | 0.0115 |
| 1.3883 | 49000 | 0.0104 |
| 1.4024 | 49500 | 0.0109 |
| 1.4166 | 50000 | 0.0113 |
| 1.4308 | 50500 | 0.0115 |
| 1.4449 | 51000 | 0.0103 |
| 1.4591 | 51500 | 0.0114 |
| 1.4733 | 52000 | 0.0104 |
| 1.4874 | 52500 | 0.0106 |
| 1.5016 | 53000 | 0.0103 |
| 1.5158 | 53500 | 0.0102 |
| 1.5299 | 54000 | 0.0101 |
| 1.5441 | 54500 | 0.0104 |
| 1.5583 | 55000 | 0.011 |
| 1.5724 | 55500 | 0.0107 |
| 1.5866 | 56000 | 0.0097 |
| 1.6007 | 56500 | 0.0099 |
| 1.6149 | 57000 | 0.0102 |
| 1.6291 | 57500 | 0.0098 |
| 1.6432 | 58000 | 0.01 |
| 1.6574 | 58500 | 0.0096 |
| 1.6716 | 59000 | 0.0099 |
| 1.6857 | 59500 | 0.0103 |
| 1.6999 | 60000 | 0.0098 |
| 1.7141 | 60500 | 0.0097 |
| 1.7282 | 61000 | 0.0094 |
| 1.7424 | 61500 | 0.0093 |
| 1.7566 | 62000 | 0.0102 |
| 1.7707 | 62500 | 0.0099 |
| 1.7849 | 63000 | 0.0098 |
| 1.7991 | 63500 | 0.009 |
| 1.8132 | 64000 | 0.0097 |
| 1.8274 | 64500 | 0.009 |
| 1.8416 | 65000 | 0.0093 |
| 1.8557 | 65500 | 0.0092 |
| 1.8699 | 66000 | 0.0095 |
| 1.8841 | 66500 | 0.0093 |
| 1.8982 | 67000 | 0.0094 |
| 1.9124 | 67500 | 0.0089 |
| 1.9266 | 68000 | 0.0091 |
| 1.9407 | 68500 | 0.0089 |
| 1.9549 | 69000 | 0.0084 |
| 1.9691 | 69500 | 0.0087 |
| 1.9832 | 70000 | 0.0094 |
| 1.9974 | 70500 | 0.0085 |
| 2.0116 | 71000 | 0.0049 |
| 2.0257 | 71500 | 0.0041 |
| 2.0399 | 72000 | 0.0039 |
| 2.0541 | 72500 | 0.0038 |
| 2.0682 | 73000 | 0.004 |
| 2.0824 | 73500 | 0.0039 |
| 2.0966 | 74000 | 0.0038 |
| 2.1107 | 74500 | 0.0041 |
| 2.1249 | 75000 | 0.0037 |
| 2.1391 | 75500 | 0.0038 |
| 2.1532 | 76000 | 0.0041 |
| 2.1674 | 76500 | 0.0036 |
| 2.1816 | 77000 | 0.0039 |
| 2.1957 | 77500 | 0.0039 |
| 2.2099 | 78000 | 0.0038 |
| 2.2240 | 78500 | 0.0038 |
| 2.2382 | 79000 | 0.0037 |
| 2.2524 | 79500 | 0.0037 |
| 2.2665 | 80000 | 0.0036 |
| 2.2807 | 80500 | 0.0038 |
| 2.2949 | 81000 | 0.0037 |
| 2.3090 | 81500 | 0.0036 |
| 2.3232 | 82000 | 0.0036 |
| 2.3374 | 82500 | 0.0038 |
| 2.3515 | 83000 | 0.0037 |
| 2.3657 | 83500 | 0.0037 |
| 2.3799 | 84000 | 0.0038 |
| 2.3940 | 84500 | 0.0037 |
| 2.4082 | 85000 | 0.0036 |
| 2.4224 | 85500 | 0.0034 |
| 2.4365 | 86000 | 0.0035 |
| 2.4507 | 86500 | 0.0033 |
| 2.4649 | 87000 | 0.0036 |
| 2.4790 | 87500 | 0.0035 |
| 2.4932 | 88000 | 0.0034 |
| 2.5074 | 88500 | 0.0034 |
| 2.5215 | 89000 | 0.0034 |
| 2.5357 | 89500 | 0.0031 |
| 2.5499 | 90000 | 0.0033 |
| 2.5640 | 90500 | 0.0033 |
| 2.5782 | 91000 | 0.0035 |
| 2.5924 | 91500 | 0.0033 |
| 2.6065 | 92000 | 0.0032 |
| 2.6207 | 92500 | 0.0034 |
| 2.6349 | 93000 | 0.0031 |
| 2.6490 | 93500 | 0.0032 |
| 2.6632 | 94000 | 0.0032 |
| 2.6774 | 94500 | 0.0033 |
| 2.6915 | 95000 | 0.0032 |
| 2.7057 | 95500 | 0.003 |
| 2.7199 | 96000 | 0.0032 |
| 2.7340 | 96500 | 0.0032 |
| 2.7482 | 97000 | 0.003 |
| 2.7624 | 97500 | 0.0032 |
| 2.7765 | 98000 | 0.0033 |
| 2.7907 | 98500 | 0.003 |
| 2.8049 | 99000 | 0.003 |
| 2.8190 | 99500 | 0.0031 |
| 2.8332 | 100000 | 0.0031 |
| 2.8473 | 100500 | 0.003 |
| 2.8615 | 101000 | 0.003 |
| 2.8757 | 101500 | 0.003 |
| 2.8898 | 102000 | 0.003 |
| 2.9040 | 102500 | 0.003 |
| 2.9182 | 103000 | 0.003 |
| 2.9323 | 103500 | 0.003 |
| 2.9465 | 104000 | 0.0033 |
| 2.9607 | 104500 | 0.0029 |
| 2.9748 | 105000 | 0.003 |
| 2.9890 | 105500 | 0.0028 |
Framework Versions
- Python: 3.11.13
- Sentence Transformers: 4.1.0
- Transformers: 4.52.4
- PyTorch: 2.6.0+cu124
- Accelerate: 1.7.0
- Datasets: 3.6.0
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}