contemmcm's picture
End of training
af50a8c verified
metadata
library_name: transformers
license: mit
base_model: deepseek-ai/DeepSeek-R1-Distill-Qwen-7B
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - rouge
model-index:
  - name: 43bd7e74faf21e9f15deaaad494b15d5
    results: []

43bd7e74faf21e9f15deaaad494b15d5

This model is a fine-tuned version of deepseek-ai/DeepSeek-R1-Distill-Qwen-7B on the nyu-mll/glue [mrpc] dataset. It achieves the following results on the evaluation set:

  • Loss: 5.8488
  • Data Size: 1.0
  • Epoch Runtime: 120.6807
  • Accuracy: 0.7995
  • F1 Macro: 0.7842
  • Rouge1: 0.7995
  • Rouge2: 0.0
  • Rougel: 0.7989
  • Rougelsum: 0.7995

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • total_train_batch_size: 32
  • total_eval_batch_size: 32
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: constant
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Data Size Epoch Runtime Accuracy F1 Macro Rouge1 Rouge2 Rougel Rougelsum
No log 0 0 7.4657 0 5.7654 0.6604 0.4107 0.6616 0.0 0.6604 0.6604
No log 1 114 79.7619 0.0078 6.1570 0.3349 0.2509 0.3343 0.0 0.3355 0.3349
No log 2 228 37.1240 0.0156 18.8215 0.3349 0.2509 0.3343 0.0 0.3355 0.3349
No log 3 342 5.1122 0.0312 30.8926 0.6792 0.4787 0.6792 0.0 0.6787 0.6787
0.4304 4 456 3.2691 0.0625 39.4693 0.6462 0.6327 0.6462 0.0 0.6456 0.6468
0.4304 5 570 1.8845 0.125 48.9782 0.7983 0.7760 0.7983 0.0 0.7983 0.7983
0.4304 6 684 2.8282 0.25 60.8006 0.6291 0.6291 0.6285 0.0 0.6285 0.6279
0.5711 7 798 1.5321 0.5 75.4529 0.8296 0.8123 0.8296 0.0 0.8290 0.8296
1.0265 8.0 912 1.8242 1.0 119.6966 0.8031 0.7856 0.8031 0.0 0.8037 0.8025
0.4925 9.0 1026 3.1007 1.0 117.1617 0.7930 0.7325 0.7930 0.0 0.7933 0.7925
0.3132 10.0 1140 3.5572 1.0 129.2212 0.8308 0.8116 0.8308 0.0 0.8308 0.8302
0.3243 11.0 1254 5.8488 1.0 120.6807 0.7995 0.7842 0.7995 0.0 0.7989 0.7995

Framework versions

  • Transformers 4.57.0
  • Pytorch 2.8.0+cu128
  • Datasets 4.0.0
  • Tokenizers 0.22.1