contemmcm's picture
End of training
ff9d8a8 verified
metadata
library_name: transformers
license: gemma
base_model: google/gemma-2b
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - rouge
model-index:
  - name: fc1c884c2af6bdedbfe7ea88893ba8e9
    results: []

fc1c884c2af6bdedbfe7ea88893ba8e9

This model is a fine-tuned version of google/gemma-2b on the nyu-mll/glue [mrpc] dataset. It achieves the following results on the evaluation set:

  • Loss: 7.6709
  • Data Size: 1.0
  • Epoch Runtime: 28.3061
  • Accuracy: 0.7783
  • F1 Macro: 0.7153
  • Rouge1: 0.7783
  • Rouge2: 0.0
  • Rougel: 0.7777
  • Rougelsum: 0.7783

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • total_train_batch_size: 32
  • total_eval_batch_size: 32
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: constant
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Data Size Epoch Runtime Accuracy F1 Macro Rouge1 Rouge2 Rougel Rougelsum
No log 0 0 2.7643 0 3.3412 0.6126 0.5522 0.6132 0.0 0.6126 0.6120
No log 1 114 5.1579 0.0078 3.9321 0.6592 0.4637 0.6592 0.0 0.6586 0.6592
No log 2 228 3.6322 0.0156 8.1285 0.6692 0.4777 0.6692 0.0 0.6692 0.6692
No log 3 342 4.6142 0.0312 12.6551 0.6663 0.4032 0.6669 0.0 0.6660 0.6657
0.1148 4 456 3.1486 0.0625 15.1708 0.7028 0.5735 0.7028 0.0 0.7019 0.7034
0.1148 5 570 2.5100 0.125 19.7567 0.6686 0.4762 0.6692 0.0 0.6680 0.6686
0.1148 6 684 3.2711 0.25 21.6517 0.4593 0.4429 0.4587 0.0 0.4593 0.4599
0.6767 7 798 2.1242 0.5 28.5181 0.7529 0.7261 0.7524 0.0 0.7524 0.7535
1.7658 8.0 912 1.9603 1.0 41.3399 0.7647 0.6914 0.7647 0.0 0.7642 0.7647
1.0099 9.0 1026 3.0099 1.0 41.6100 0.7606 0.7253 0.7606 0.0 0.7606 0.7612
1.0121 10.0 1140 3.4193 1.0 41.8100 0.7677 0.7235 0.7677 0.0 0.7671 0.7671
0.6692 11.0 1254 3.5542 1.0 41.4199 0.7795 0.7605 0.7789 0.0 0.7789 0.7795
0.5981 12.0 1368 7.6709 1.0 28.3061 0.7783 0.7153 0.7783 0.0 0.7777 0.7783

Framework versions

  • Transformers 4.57.0
  • Pytorch 2.8.0+cu128
  • Datasets 4.3.0
  • Tokenizers 0.22.1