identifier
stringlengths
7
18
space
stringclasses
4 values
uid
stringlengths
1
6
arch_str
stringlengths
1
32
input
stringlengths
8.51k
461k
target_metric
stringclasses
1 value
val_accuracy
float64
0
95.1
flops
float64
31.1M
14.7B
params
float64
227k
50M
metadata
stringlengths
0
1.46k
metainformation
stringclasses
1 value
NASBench101_77429
NASBench101
77429
2eee37e737d096c3750ef1a2dea67472
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_797[FLOAT, 128x3x3x3] %onnx::Conv_798[FLOAT, 128] %onnx::Conv_800[FLOAT, 43x128x1x1] %onnx::Conv_801[FLOAT, 43] %onnx::Conv_803[FLOAT, 42x42x1x1] %onnx::Conv_804[FLOAT, 42] %onnx::Conv_806[FLOAT, 42x42x3x3] %onnx::Conv_809[FLOAT, 42x42x3x3] %onnx::Conv_812[FLOAT, 128x128x1x1] %onnx::Conv_815[FLOAT, 43x128x1x1] %onnx::Conv_818[FLOAT, 42x42x1x1] %onnx::Conv_821[FLOAT, 42x42x3x3] %onnx::Conv_824[FLOAT, 42x42x3x3] %onnx::Conv_827[FLOAT, 128x128x1x1] %onnx::Conv_830[FLOAT, 43x128x1x1] %onnx::Conv_833[FLOAT, 42x42x1x1] %onnx::Conv_836[FLOAT, 42x42x3x3] %onnx::Conv_839[FLOAT, 42x42x3x3] %onnx::Conv_842[FLOAT, 128x128x1x1] %onnx::Conv_845[FLOAT, 86x128x1x1] %onnx::Conv_846[FLOAT, 86] %onnx::Conv_848[FLOAT, 85x85x1x1] %onnx::Conv_849[FLOAT, 85] %onnx::Conv_851[FLOAT, 85x85x3x3] %onnx::Conv_854[FLOAT, 85x85x3x3] %onnx::Conv_857[FLOAT, 256x128x1x1] %onnx::Conv_858[FLOAT, 256] %onnx::Conv_860[FLOAT, 86x256x1x1] %onnx::Conv_863[FLOAT, 85x85x1x1] %onnx::Conv_866[FLOAT, 85x85x3x3] %onnx::Conv_869[FLOAT, 85x85x3x3] %onnx::Conv_872[FLOAT, 256x256x1x1] %onnx::Conv_875[FLOAT, 86x256x1x1] %onnx::Conv_878[FLOAT, 85x85x1x1] %onnx::Conv_881[FLOAT, 85x85x3x3] %onnx::Conv_884[FLOAT, 85x85x3x3] %onnx::Conv_887[FLOAT, 256x256x1x1] %onnx::Conv_890[FLOAT, 171x256x1x1] %onnx::Conv_891[FLOAT, 171] %onnx::Conv_893[FLOAT, 170x170x1x1] %onnx::Conv_894[FLOAT, 170] %onnx::Conv_896[FLOAT, 170x170x3x3] %onnx::Conv_899[FLOAT, 170x170x3x3] %onnx::Conv_902[FLOAT, 512x256x1x1] %onnx::Conv_903[FLOAT, 512] %onnx::Conv_905[FLOAT, 171x512x1x1] %onnx::Conv_908[FLOAT, 170x170x1x1] %onnx::Conv_911[FLOAT, 170x170x3x3] %onnx::Conv_914[FLOAT, 170x170x3x3] %onnx::Conv_917[FLOAT, 512x512x1x1] %onnx::Conv_920[FLOAT, 171x512x1x1] %onnx::Conv_923[FLOAT, 170x170x1x1] %onnx::Conv_926[FLOAT, 170x170x3x3] %onnx::Conv_929[FLOAT, 170x170x3x3] %onnx::Conv_932[FLOAT, 512x512x1x1] ) { %onnx::Conv_933 = Identity(%onnx::Conv_903) %onnx::Conv_930 = Identity(%onnx::Conv_894) %onnx::Conv_927 = Identity(%onnx::Conv_894) %onnx::Conv_924 = Identity(%onnx::Conv_894) %onnx::Conv_921 = Identity(%onnx::Conv_891) %onnx::Conv_918 = Identity(%onnx::Conv_903) %onnx::Conv_915 = Identity(%onnx::Conv_894) %onnx::Conv_912 = Identity(%onnx::Conv_894) %onnx::Conv_909 = Identity(%onnx::Conv_894) %onnx::Conv_906 = Identity(%onnx::Conv_891) %onnx::Conv_900 = Identity(%onnx::Conv_894) %onnx::Conv_897 = Identity(%onnx::Conv_894) %onnx::Conv_888 = Identity(%onnx::Conv_858) %onnx::Conv_885 = Identity(%onnx::Conv_849) %onnx::Conv_882 = Identity(%onnx::Conv_849) %onnx::Conv_879 = Identity(%onnx::Conv_849) %onnx::Conv_876 = Identity(%onnx::Conv_846) %onnx::Conv_873 = Identity(%onnx::Conv_858) %onnx::Conv_870 = Identity(%onnx::Conv_849) %onnx::Conv_867 = Identity(%onnx::Conv_849) %onnx::Conv_864 = Identity(%onnx::Conv_849) %onnx::Conv_861 = Identity(%onnx::Conv_846) %onnx::Conv_855 = Identity(%onnx::Conv_849) %onnx::Conv_852 = Identity(%onnx::Conv_849) %onnx::Conv_843 = Identity(%onnx::Conv_798) %onnx::Conv_840 = Identity(%onnx::Conv_804) %onnx::Conv_837 = Identity(%onnx::Conv_804) %onnx::Conv_834 = Identity(%onnx::Conv_804) %onnx::Conv_831 = Identity(%onnx::Conv_801) %onnx::Conv_828 = Identity(%onnx::Conv_798) %onnx::Conv_825 = Identity(%onnx::Conv_804) %onnx::Conv_822 = Identity(%onnx::Conv_804) %onnx::Conv_819 = Identity(%onnx::Conv_804) %onnx::Conv_816 = Identity(%onnx::Conv_801) %onnx::Conv_813 = Identity(%onnx::Conv_798) %onnx::Conv_810 = Identity(%onnx::Conv_804) %onnx::Conv_807 = Identity(%onnx::Conv_804) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_797, %onnx::Conv_798) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_800, %onnx::Conv_801) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0) %/layers.1/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/vertex_op.1/maxpool/MaxPool_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.1/Slice_output_0 = Slice(%/layers.1/vertex_op.1/maxpool/MaxPool_output_0, %/layers.1/Constant_2_output_0, %/layers.1/Constant_3_output_0, %/layers.1/Constant_1_output_0, %/layers.1/Constant_4_output_0) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Slice_output_0, %onnx::Conv_803, %onnx::Conv_804) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_5_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_5_output_0) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_806, %onnx::Conv_807) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_6_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_6_output_0) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_2_output_0, %onnx::Conv_809, %onnx::Conv_810) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.1/maxpool/MaxPool_output_0, %/layers.1/vertex_op.2/maxpool/MaxPool_output_0, %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_812, %onnx::Conv_813) %/layers.1/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Add_3_output_0 = Add(%/layers.1/Concat_output_0, %/layers.1/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_3_output_0, %onnx::Conv_815, %onnx::Conv_816) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0) %/layers.2/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/vertex_op.1/maxpool/MaxPool_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.2/Slice_output_0 = Slice(%/layers.2/vertex_op.1/maxpool/MaxPool_output_0, %/layers.2/Constant_2_output_0, %/layers.2/Constant_3_output_0, %/layers.2/Constant_1_output_0, %/layers.2/Constant_4_output_0) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Slice_output_0, %onnx::Conv_818, %onnx::Conv_819) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_5_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_5_output_0) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_821, %onnx::Conv_822) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_6_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_6_output_0) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_2_output_0, %onnx::Conv_824, %onnx::Conv_825) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.1/maxpool/MaxPool_output_0, %/layers.2/vertex_op.2/maxpool/MaxPool_output_0, %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_3_output_0, %onnx::Conv_827, %onnx::Conv_828) %/layers.2/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Add_3_output_0 = Add(%/layers.2/Concat_output_0, %/layers.2/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_3_output_0, %onnx::Conv_830, %onnx::Conv_831) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0) %/layers.3/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/vertex_op.1/maxpool/MaxPool_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.3/Slice_output_0 = Slice(%/layers.3/vertex_op.1/maxpool/MaxPool_output_0, %/layers.3/Constant_2_output_0, %/layers.3/Constant_3_output_0, %/layers.3/Constant_1_output_0, %/layers.3/Constant_4_output_0) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Slice_output_0, %onnx::Conv_833, %onnx::Conv_834) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_5_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_5_output_0) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_836, %onnx::Conv_837) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_6_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_6_output_0) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_2_output_0, %onnx::Conv_839, %onnx::Conv_840) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.1/maxpool/MaxPool_output_0, %/layers.3/vertex_op.2/maxpool/MaxPool_output_0, %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_3_output_0, %onnx::Conv_842, %onnx::Conv_843) %/layers.3/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Add_3_output_0 = Add(%/layers.3/Concat_output_0, %/layers.3/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Add_3_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_845, %onnx::Conv_846) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.5/Slice_output_0 = Slice(%/layers.5/vertex_op.1/maxpool/MaxPool_output_0, %/layers.5/Constant_2_output_0, %/layers.5/Constant_3_output_0, %/layers.5/Constant_1_output_0, %/layers.5/Constant_4_output_0) %/layers.5/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Slice_output_0) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Slice_output_0, %onnx::Conv_848, %onnx::Conv_849) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_5_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_5_output_0) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_851, %onnx::Conv_852) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_6_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_6_output_0) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_2_output_0, %onnx::Conv_854, %onnx::Conv_855) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.1/maxpool/MaxPool_output_0, %/layers.5/vertex_op.2/maxpool/MaxPool_output_0, %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_857, %onnx::Conv_858) %/layers.5/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Add_3_output_0 = Add(%/layers.5/Concat_output_0, %/layers.5/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_3_output_0, %onnx::Conv_860, %onnx::Conv_861) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.6/Slice_output_0 = Slice(%/layers.6/vertex_op.1/maxpool/MaxPool_output_0, %/layers.6/Constant_2_output_0, %/layers.6/Constant_3_output_0, %/layers.6/Constant_1_output_0, %/layers.6/Constant_4_output_0) %/layers.6/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Slice_output_0) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Slice_output_0, %onnx::Conv_863, %onnx::Conv_864) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_5_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_5_output_0) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_866, %onnx::Conv_867) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_6_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_6_output_0) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_2_output_0, %onnx::Conv_869, %onnx::Conv_870) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.1/maxpool/MaxPool_output_0, %/layers.6/vertex_op.2/maxpool/MaxPool_output_0, %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_3_output_0, %onnx::Conv_872, %onnx::Conv_873) %/layers.6/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Add_3_output_0 = Add(%/layers.6/Concat_output_0, %/layers.6/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_3_output_0, %onnx::Conv_875, %onnx::Conv_876) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.7/Slice_output_0 = Slice(%/layers.7/vertex_op.1/maxpool/MaxPool_output_0, %/layers.7/Constant_2_output_0, %/layers.7/Constant_3_output_0, %/layers.7/Constant_1_output_0, %/layers.7/Constant_4_output_0) %/layers.7/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Slice_output_0) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Slice_output_0, %onnx::Conv_878, %onnx::Conv_879) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_5_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_5_output_0) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_881, %onnx::Conv_882) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_6_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_6_output_0) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_2_output_0, %onnx::Conv_884, %onnx::Conv_885) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.1/maxpool/MaxPool_output_0, %/layers.7/vertex_op.2/maxpool/MaxPool_output_0, %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_3_output_0, %onnx::Conv_887, %onnx::Conv_888) %/layers.7/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Add_3_output_0 = Add(%/layers.7/Concat_output_0, %/layers.7/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Add_3_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_890, %onnx::Conv_891) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0) %/layers.9/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/vertex_op.1/maxpool/MaxPool_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.9/Slice_output_0 = Slice(%/layers.9/vertex_op.1/maxpool/MaxPool_output_0, %/layers.9/Constant_2_output_0, %/layers.9/Constant_3_output_0, %/layers.9/Constant_1_output_0, %/layers.9/Constant_4_output_0) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Slice_output_0, %onnx::Conv_893, %onnx::Conv_894) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_5_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_5_output_0) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_896, %onnx::Conv_897) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_6_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_6_output_0) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_2_output_0, %onnx::Conv_899, %onnx::Conv_900) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.1/maxpool/MaxPool_output_0, %/layers.9/vertex_op.2/maxpool/MaxPool_output_0, %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_902, %onnx::Conv_903) %/layers.9/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Add_3_output_0 = Add(%/layers.9/Concat_output_0, %/layers.9/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_3_output_0, %onnx::Conv_905, %onnx::Conv_906) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0) %/layers.10/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/vertex_op.1/maxpool/MaxPool_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.10/Slice_output_0 = Slice(%/layers.10/vertex_op.1/maxpool/MaxPool_output_0, %/layers.10/Constant_2_output_0, %/layers.10/Constant_3_output_0, %/layers.10/Constant_1_output_0, %/layers.10/Constant_4_output_0) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Slice_output_0, %onnx::Conv_908, %onnx::Conv_909) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_5_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_5_output_0) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_911, %onnx::Conv_912) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_6_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_6_output_0) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_2_output_0, %onnx::Conv_914, %onnx::Conv_915) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.1/maxpool/MaxPool_output_0, %/layers.10/vertex_op.2/maxpool/MaxPool_output_0, %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_3_output_0, %onnx::Conv_917, %onnx::Conv_918) %/layers.10/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Add_3_output_0 = Add(%/layers.10/Concat_output_0, %/layers.10/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_3_output_0, %onnx::Conv_920, %onnx::Conv_921) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0) %/layers.11/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/vertex_op.1/maxpool/MaxPool_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.11/Slice_output_0 = Slice(%/layers.11/vertex_op.1/maxpool/MaxPool_output_0, %/layers.11/Constant_2_output_0, %/layers.11/Constant_3_output_0, %/layers.11/Constant_1_output_0, %/layers.11/Constant_4_output_0) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Slice_output_0, %onnx::Conv_923, %onnx::Conv_924) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_5_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_5_output_0) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_926, %onnx::Conv_927) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_6_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_6_output_0) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_2_output_0, %onnx::Conv_929, %onnx::Conv_930) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.1/maxpool/MaxPool_output_0, %/layers.11/vertex_op.2/maxpool/MaxPool_output_0, %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_3_output_0, %onnx::Conv_932, %onnx::Conv_933) %/layers.11/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Add_3_output_0 = Add(%/layers.11/Concat_output_0, %/layers.11/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Add_3_output_0) %795 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %795 }
val_accuracy
91.826922
1,007,016,448
3,339,821
{'zcp_epe_nas': 103.34859583921813, 'zcp_fisher': 5.096617698669434, 'zcp_flops': 16112263168.0, 'zcp_grad_norm': 53.4918327331543, 'zcp_grasp': -9.94219970703125, 'zcp_jacov': -16.048594286406523, 'zcp_l2_norm': 760.519287109375, 'zcp_nwot': 220.53448672333153, 'zcp_params': 3339821.0, 'zcp_plain': 0.10788109898567201, 'zcp_snip': 290.23065185546875, 'zcp_synflow': 109.50032229240962, 'zcp_zen': 83.36442565917969, 'zcp_val_accuracy': 0.903145015239715}
NASBench101_225067
NASBench101
225067
885a0dc833a6c3313f2a289392707696
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_662[FLOAT, 128x3x3x3] %onnx::Conv_663[FLOAT, 128] %onnx::Conv_665[FLOAT, 64x128x1x1] %onnx::Conv_666[FLOAT, 64] %onnx::Conv_668[FLOAT, 64x64x3x3] %onnx::Conv_671[FLOAT, 64x64x1x1] %onnx::Conv_674[FLOAT, 64x64x3x3] %onnx::Conv_677[FLOAT, 64x128x1x1] %onnx::Conv_680[FLOAT, 64x64x3x3] %onnx::Conv_683[FLOAT, 64x64x1x1] %onnx::Conv_686[FLOAT, 64x64x3x3] %onnx::Conv_689[FLOAT, 64x128x1x1] %onnx::Conv_692[FLOAT, 64x64x3x3] %onnx::Conv_695[FLOAT, 64x64x1x1] %onnx::Conv_698[FLOAT, 64x64x3x3] %onnx::Conv_701[FLOAT, 128x128x1x1] %onnx::Conv_704[FLOAT, 128x128x3x3] %onnx::Conv_707[FLOAT, 128x128x1x1] %onnx::Conv_710[FLOAT, 128x128x3x3] %onnx::Conv_713[FLOAT, 128x256x1x1] %onnx::Conv_716[FLOAT, 128x128x3x3] %onnx::Conv_719[FLOAT, 128x128x1x1] %onnx::Conv_722[FLOAT, 128x128x3x3] %onnx::Conv_725[FLOAT, 128x256x1x1] %onnx::Conv_728[FLOAT, 128x128x3x3] %onnx::Conv_731[FLOAT, 128x128x1x1] %onnx::Conv_734[FLOAT, 128x128x3x3] %onnx::Conv_737[FLOAT, 256x256x1x1] %onnx::Conv_738[FLOAT, 256] %onnx::Conv_740[FLOAT, 256x256x3x3] %onnx::Conv_743[FLOAT, 256x256x1x1] %onnx::Conv_746[FLOAT, 256x256x3x3] %onnx::Conv_749[FLOAT, 256x512x1x1] %onnx::Conv_752[FLOAT, 256x256x3x3] %onnx::Conv_755[FLOAT, 256x256x1x1] %onnx::Conv_758[FLOAT, 256x256x3x3] %onnx::Conv_761[FLOAT, 256x512x1x1] %onnx::Conv_764[FLOAT, 256x256x3x3] %onnx::Conv_767[FLOAT, 256x256x1x1] %onnx::Conv_770[FLOAT, 256x256x3x3] ) { %onnx::Conv_771 = Identity(%onnx::Conv_738) %onnx::Conv_768 = Identity(%onnx::Conv_738) %onnx::Conv_765 = Identity(%onnx::Conv_738) %onnx::Conv_762 = Identity(%onnx::Conv_738) %onnx::Conv_759 = Identity(%onnx::Conv_738) %onnx::Conv_756 = Identity(%onnx::Conv_738) %onnx::Conv_753 = Identity(%onnx::Conv_738) %onnx::Conv_750 = Identity(%onnx::Conv_738) %onnx::Conv_747 = Identity(%onnx::Conv_738) %onnx::Conv_744 = Identity(%onnx::Conv_738) %onnx::Conv_741 = Identity(%onnx::Conv_738) %onnx::Conv_735 = Identity(%onnx::Conv_663) %onnx::Conv_732 = Identity(%onnx::Conv_663) %onnx::Conv_729 = Identity(%onnx::Conv_663) %onnx::Conv_726 = Identity(%onnx::Conv_663) %onnx::Conv_723 = Identity(%onnx::Conv_663) %onnx::Conv_720 = Identity(%onnx::Conv_663) %onnx::Conv_717 = Identity(%onnx::Conv_663) %onnx::Conv_714 = Identity(%onnx::Conv_663) %onnx::Conv_711 = Identity(%onnx::Conv_663) %onnx::Conv_708 = Identity(%onnx::Conv_663) %onnx::Conv_705 = Identity(%onnx::Conv_663) %onnx::Conv_702 = Identity(%onnx::Conv_663) %onnx::Conv_699 = Identity(%onnx::Conv_666) %onnx::Conv_696 = Identity(%onnx::Conv_666) %onnx::Conv_693 = Identity(%onnx::Conv_666) %onnx::Conv_690 = Identity(%onnx::Conv_666) %onnx::Conv_687 = Identity(%onnx::Conv_666) %onnx::Conv_684 = Identity(%onnx::Conv_666) %onnx::Conv_681 = Identity(%onnx::Conv_666) %onnx::Conv_678 = Identity(%onnx::Conv_666) %onnx::Conv_675 = Identity(%onnx::Conv_666) %onnx::Conv_672 = Identity(%onnx::Conv_666) %onnx::Conv_669 = Identity(%onnx::Conv_666) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_662, %onnx::Conv_663) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_665, %onnx::Conv_666) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_668, %onnx::Conv_669) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/maxpool/MaxPool_output_0, %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_671, %onnx::Conv_672) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_2_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_3_output_0 = Add(%/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/Add_4_output_0 = Add(%/layers.1/Add_3_output_0, %/layers.1/vertex_op.4/maxpool/MaxPool_output_0) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_4_output_0, %onnx::Conv_674, %onnx::Conv_675) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.4/maxpool/MaxPool_output_0, %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_677, %onnx::Conv_678) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_680, %onnx::Conv_681) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/maxpool/MaxPool_output_0, %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_683, %onnx::Conv_684) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_2_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_3_output_0 = Add(%/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/Add_4_output_0 = Add(%/layers.2/Add_3_output_0, %/layers.2/vertex_op.4/maxpool/MaxPool_output_0) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_4_output_0, %onnx::Conv_686, %onnx::Conv_687) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.4/maxpool/MaxPool_output_0, %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_689, %onnx::Conv_690) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_692, %onnx::Conv_693) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/maxpool/MaxPool_output_0, %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_695, %onnx::Conv_696) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_2_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_3_output_0 = Add(%/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/Add_4_output_0 = Add(%/layers.3/Add_3_output_0, %/layers.3/vertex_op.4/maxpool/MaxPool_output_0) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_4_output_0, %onnx::Conv_698, %onnx::Conv_699) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.4/maxpool/MaxPool_output_0, %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Concat_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_701, %onnx::Conv_702) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_704, %onnx::Conv_705) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.1/maxpool/MaxPool_output_0, %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_707, %onnx::Conv_708) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_2_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_3_output_0 = Add(%/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/Add_4_output_0 = Add(%/layers.5/Add_3_output_0, %/layers.5/vertex_op.4/maxpool/MaxPool_output_0) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_4_output_0, %onnx::Conv_710, %onnx::Conv_711) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.4/maxpool/MaxPool_output_0, %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_713, %onnx::Conv_714) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_716, %onnx::Conv_717) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.1/maxpool/MaxPool_output_0, %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_719, %onnx::Conv_720) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_2_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_3_output_0 = Add(%/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/Add_4_output_0 = Add(%/layers.6/Add_3_output_0, %/layers.6/vertex_op.4/maxpool/MaxPool_output_0) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_4_output_0, %onnx::Conv_722, %onnx::Conv_723) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.4/maxpool/MaxPool_output_0, %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_725, %onnx::Conv_726) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_728, %onnx::Conv_729) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.1/maxpool/MaxPool_output_0, %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_731, %onnx::Conv_732) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_2_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_3_output_0 = Add(%/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/Add_4_output_0 = Add(%/layers.7/Add_3_output_0, %/layers.7/vertex_op.4/maxpool/MaxPool_output_0) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_4_output_0, %onnx::Conv_734, %onnx::Conv_735) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.4/maxpool/MaxPool_output_0, %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Concat_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_737, %onnx::Conv_738) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_740, %onnx::Conv_741) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/maxpool/MaxPool_output_0, %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_743, %onnx::Conv_744) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_2_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_3_output_0 = Add(%/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/Add_4_output_0 = Add(%/layers.9/Add_3_output_0, %/layers.9/vertex_op.4/maxpool/MaxPool_output_0) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_4_output_0, %onnx::Conv_746, %onnx::Conv_747) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.4/maxpool/MaxPool_output_0, %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_749, %onnx::Conv_750) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_752, %onnx::Conv_753) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/maxpool/MaxPool_output_0, %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_755, %onnx::Conv_756) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_2_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_3_output_0 = Add(%/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/Add_4_output_0 = Add(%/layers.10/Add_3_output_0, %/layers.10/vertex_op.4/maxpool/MaxPool_output_0) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_4_output_0, %onnx::Conv_758, %onnx::Conv_759) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.4/maxpool/MaxPool_output_0, %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_761, %onnx::Conv_762) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_764, %onnx::Conv_765) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/maxpool/MaxPool_output_0, %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_767, %onnx::Conv_768) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_2_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_3_output_0 = Add(%/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/Add_4_output_0 = Add(%/layers.11/Add_3_output_0, %/layers.11/vertex_op.4/maxpool/MaxPool_output_0) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_4_output_0, %onnx::Conv_770, %onnx::Conv_771) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.4/maxpool/MaxPool_output_0, %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Concat_output_0) %660 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %660 }
val_accuracy
89.563304
1,587,816,448
5,356,682
{'zcp_epe_nas': 124.1756018065989, 'zcp_fisher': 49.88459014892578, 'zcp_flops': 25405063168.0, 'zcp_grad_norm': 118.24327087402344, 'zcp_grasp': 3.0196533203125, 'zcp_jacov': -16.054972279965884, 'zcp_l2_norm': 648.6845703125, 'zcp_nwot': 218.37369881354107, 'zcp_params': 5356682.0, 'zcp_plain': 0.010764690116047, 'zcp_snip': 742.453369140625, 'zcp_synflow': 123.64839222639657, 'zcp_zen': 82.97455596923828, 'zcp_val_accuracy': 0.9178686141967771}
NASBench101_266716
NASBench101
266716
a18356255e59729ce743f716ca83d446
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_869[FLOAT, 128x3x3x3] %onnx::Conv_870[FLOAT, 128] %onnx::Conv_872[FLOAT, 64x128x1x1] %onnx::Conv_873[FLOAT, 64] %onnx::Conv_875[FLOAT, 64x64x1x1] %onnx::Conv_878[FLOAT, 64x128x1x1] %onnx::Conv_881[FLOAT, 64x64x3x3] %onnx::Conv_884[FLOAT, 64x64x3x3] %onnx::Conv_887[FLOAT, 64x64x3x3] %onnx::Conv_890[FLOAT, 64x128x1x1] %onnx::Conv_893[FLOAT, 64x64x1x1] %onnx::Conv_896[FLOAT, 64x128x1x1] %onnx::Conv_899[FLOAT, 64x64x3x3] %onnx::Conv_902[FLOAT, 64x64x3x3] %onnx::Conv_905[FLOAT, 64x64x3x3] %onnx::Conv_908[FLOAT, 64x128x1x1] %onnx::Conv_911[FLOAT, 64x64x1x1] %onnx::Conv_914[FLOAT, 64x128x1x1] %onnx::Conv_917[FLOAT, 64x64x3x3] %onnx::Conv_920[FLOAT, 64x64x3x3] %onnx::Conv_923[FLOAT, 64x64x3x3] %onnx::Conv_926[FLOAT, 128x128x1x1] %onnx::Conv_929[FLOAT, 128x128x1x1] %onnx::Conv_932[FLOAT, 128x128x1x1] %onnx::Conv_935[FLOAT, 128x128x3x3] %onnx::Conv_938[FLOAT, 128x128x3x3] %onnx::Conv_941[FLOAT, 128x128x3x3] %onnx::Conv_944[FLOAT, 128x256x1x1] %onnx::Conv_947[FLOAT, 128x128x1x1] %onnx::Conv_950[FLOAT, 128x256x1x1] %onnx::Conv_953[FLOAT, 128x128x3x3] %onnx::Conv_956[FLOAT, 128x128x3x3] %onnx::Conv_959[FLOAT, 128x128x3x3] %onnx::Conv_962[FLOAT, 128x256x1x1] %onnx::Conv_965[FLOAT, 128x128x1x1] %onnx::Conv_968[FLOAT, 128x256x1x1] %onnx::Conv_971[FLOAT, 128x128x3x3] %onnx::Conv_974[FLOAT, 128x128x3x3] %onnx::Conv_977[FLOAT, 128x128x3x3] %onnx::Conv_980[FLOAT, 256x256x1x1] %onnx::Conv_981[FLOAT, 256] %onnx::Conv_983[FLOAT, 256x256x1x1] %onnx::Conv_986[FLOAT, 256x256x1x1] %onnx::Conv_989[FLOAT, 256x256x3x3] %onnx::Conv_992[FLOAT, 256x256x3x3] %onnx::Conv_995[FLOAT, 256x256x3x3] %onnx::Conv_998[FLOAT, 256x512x1x1] %onnx::Conv_1001[FLOAT, 256x256x1x1] %onnx::Conv_1004[FLOAT, 256x512x1x1] %onnx::Conv_1007[FLOAT, 256x256x3x3] %onnx::Conv_1010[FLOAT, 256x256x3x3] %onnx::Conv_1013[FLOAT, 256x256x3x3] %onnx::Conv_1016[FLOAT, 256x512x1x1] %onnx::Conv_1019[FLOAT, 256x256x1x1] %onnx::Conv_1022[FLOAT, 256x512x1x1] %onnx::Conv_1025[FLOAT, 256x256x3x3] %onnx::Conv_1028[FLOAT, 256x256x3x3] %onnx::Conv_1031[FLOAT, 256x256x3x3] ) { %onnx::Conv_1032 = Identity(%onnx::Conv_981) %onnx::Conv_1029 = Identity(%onnx::Conv_981) %onnx::Conv_1026 = Identity(%onnx::Conv_981) %onnx::Conv_1023 = Identity(%onnx::Conv_981) %onnx::Conv_1020 = Identity(%onnx::Conv_981) %onnx::Conv_1017 = Identity(%onnx::Conv_981) %onnx::Conv_1014 = Identity(%onnx::Conv_981) %onnx::Conv_1011 = Identity(%onnx::Conv_981) %onnx::Conv_1008 = Identity(%onnx::Conv_981) %onnx::Conv_1005 = Identity(%onnx::Conv_981) %onnx::Conv_1002 = Identity(%onnx::Conv_981) %onnx::Conv_999 = Identity(%onnx::Conv_981) %onnx::Conv_996 = Identity(%onnx::Conv_981) %onnx::Conv_993 = Identity(%onnx::Conv_981) %onnx::Conv_990 = Identity(%onnx::Conv_981) %onnx::Conv_987 = Identity(%onnx::Conv_981) %onnx::Conv_984 = Identity(%onnx::Conv_981) %onnx::Conv_978 = Identity(%onnx::Conv_870) %onnx::Conv_975 = Identity(%onnx::Conv_870) %onnx::Conv_972 = Identity(%onnx::Conv_870) %onnx::Conv_969 = Identity(%onnx::Conv_870) %onnx::Conv_966 = Identity(%onnx::Conv_870) %onnx::Conv_963 = Identity(%onnx::Conv_870) %onnx::Conv_960 = Identity(%onnx::Conv_870) %onnx::Conv_957 = Identity(%onnx::Conv_870) %onnx::Conv_954 = Identity(%onnx::Conv_870) %onnx::Conv_951 = Identity(%onnx::Conv_870) %onnx::Conv_948 = Identity(%onnx::Conv_870) %onnx::Conv_945 = Identity(%onnx::Conv_870) %onnx::Conv_942 = Identity(%onnx::Conv_870) %onnx::Conv_939 = Identity(%onnx::Conv_870) %onnx::Conv_936 = Identity(%onnx::Conv_870) %onnx::Conv_933 = Identity(%onnx::Conv_870) %onnx::Conv_930 = Identity(%onnx::Conv_870) %onnx::Conv_927 = Identity(%onnx::Conv_870) %onnx::Conv_924 = Identity(%onnx::Conv_873) %onnx::Conv_921 = Identity(%onnx::Conv_873) %onnx::Conv_918 = Identity(%onnx::Conv_873) %onnx::Conv_915 = Identity(%onnx::Conv_873) %onnx::Conv_912 = Identity(%onnx::Conv_873) %onnx::Conv_909 = Identity(%onnx::Conv_873) %onnx::Conv_906 = Identity(%onnx::Conv_873) %onnx::Conv_903 = Identity(%onnx::Conv_873) %onnx::Conv_900 = Identity(%onnx::Conv_873) %onnx::Conv_897 = Identity(%onnx::Conv_873) %onnx::Conv_894 = Identity(%onnx::Conv_873) %onnx::Conv_891 = Identity(%onnx::Conv_873) %onnx::Conv_888 = Identity(%onnx::Conv_873) %onnx::Conv_885 = Identity(%onnx::Conv_873) %onnx::Conv_882 = Identity(%onnx::Conv_873) %onnx::Conv_879 = Identity(%onnx::Conv_873) %onnx::Conv_876 = Identity(%onnx::Conv_873) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_869, %onnx::Conv_870) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_872, %onnx::Conv_873) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_875, %onnx::Conv_876) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_1_output_0) %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_878, %onnx::Conv_879) %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_2_output_0, %onnx::Conv_881, %onnx::Conv_882) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Add_3_output_0 = Add(%/layers.1/vertex_op.2/maxpool/MaxPool_output_0, %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_3_output_0, %onnx::Conv_884, %onnx::Conv_885) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_4_output_0 = Add(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_3_output_0) %/layers.1/Add_5_output_0 = Add(%/layers.1/Add_4_output_0, %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_5_output_0, %onnx::Conv_887, %onnx::Conv_888) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_890, %onnx::Conv_891) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_893, %onnx::Conv_894) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_1_output_0) %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_896, %onnx::Conv_897) %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_2_output_0, %onnx::Conv_899, %onnx::Conv_900) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Add_3_output_0 = Add(%/layers.2/vertex_op.2/maxpool/MaxPool_output_0, %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_3_output_0, %onnx::Conv_902, %onnx::Conv_903) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_4_output_0 = Add(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_3_output_0) %/layers.2/Add_5_output_0 = Add(%/layers.2/Add_4_output_0, %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_5_output_0, %onnx::Conv_905, %onnx::Conv_906) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_908, %onnx::Conv_909) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_911, %onnx::Conv_912) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_1_output_0) %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_914, %onnx::Conv_915) %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_2_output_0, %onnx::Conv_917, %onnx::Conv_918) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Add_3_output_0 = Add(%/layers.3/vertex_op.2/maxpool/MaxPool_output_0, %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_3_output_0, %onnx::Conv_920, %onnx::Conv_921) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_4_output_0 = Add(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_3_output_0) %/layers.3/Add_5_output_0 = Add(%/layers.3/Add_4_output_0, %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_5_output_0, %onnx::Conv_923, %onnx::Conv_924) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Concat_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_926, %onnx::Conv_927) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_929, %onnx::Conv_930) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_1_output_0) %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_932, %onnx::Conv_933) %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_2_output_0, %onnx::Conv_935, %onnx::Conv_936) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Add_3_output_0 = Add(%/layers.5/vertex_op.2/maxpool/MaxPool_output_0, %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_3_output_0, %onnx::Conv_938, %onnx::Conv_939) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_4_output_0 = Add(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_3_output_0) %/layers.5/Add_5_output_0 = Add(%/layers.5/Add_4_output_0, %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_5_output_0, %onnx::Conv_941, %onnx::Conv_942) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_944, %onnx::Conv_945) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_947, %onnx::Conv_948) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_1_output_0) %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_950, %onnx::Conv_951) %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_2_output_0, %onnx::Conv_953, %onnx::Conv_954) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Add_3_output_0 = Add(%/layers.6/vertex_op.2/maxpool/MaxPool_output_0, %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_3_output_0, %onnx::Conv_956, %onnx::Conv_957) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_4_output_0 = Add(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_3_output_0) %/layers.6/Add_5_output_0 = Add(%/layers.6/Add_4_output_0, %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_5_output_0, %onnx::Conv_959, %onnx::Conv_960) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_962, %onnx::Conv_963) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_965, %onnx::Conv_966) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_1_output_0) %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_968, %onnx::Conv_969) %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_2_output_0, %onnx::Conv_971, %onnx::Conv_972) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Add_3_output_0 = Add(%/layers.7/vertex_op.2/maxpool/MaxPool_output_0, %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_3_output_0, %onnx::Conv_974, %onnx::Conv_975) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_4_output_0 = Add(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_3_output_0) %/layers.7/Add_5_output_0 = Add(%/layers.7/Add_4_output_0, %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_5_output_0, %onnx::Conv_977, %onnx::Conv_978) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Concat_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_980, %onnx::Conv_981) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_983, %onnx::Conv_984) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_1_output_0) %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_986, %onnx::Conv_987) %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_2_output_0, %onnx::Conv_989, %onnx::Conv_990) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Add_3_output_0 = Add(%/layers.9/vertex_op.2/maxpool/MaxPool_output_0, %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_3_output_0, %onnx::Conv_992, %onnx::Conv_993) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_4_output_0 = Add(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_3_output_0) %/layers.9/Add_5_output_0 = Add(%/layers.9/Add_4_output_0, %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_5_output_0, %onnx::Conv_995, %onnx::Conv_996) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_998, %onnx::Conv_999) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_1001, %onnx::Conv_1002) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_1_output_0) %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_1004, %onnx::Conv_1005) %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_2_output_0, %onnx::Conv_1007, %onnx::Conv_1008) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Add_3_output_0 = Add(%/layers.10/vertex_op.2/maxpool/MaxPool_output_0, %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_3_output_0, %onnx::Conv_1010, %onnx::Conv_1011) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_4_output_0 = Add(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_3_output_0) %/layers.10/Add_5_output_0 = Add(%/layers.10/Add_4_output_0, %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_5_output_0, %onnx::Conv_1013, %onnx::Conv_1014) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_1016, %onnx::Conv_1017) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_1019, %onnx::Conv_1020) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_1_output_0) %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_1022, %onnx::Conv_1023) %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_2_output_0, %onnx::Conv_1025, %onnx::Conv_1026) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Add_3_output_0 = Add(%/layers.11/vertex_op.2/maxpool/MaxPool_output_0, %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_3_output_0, %onnx::Conv_1028, %onnx::Conv_1029) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_4_output_0 = Add(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_3_output_0) %/layers.11/Add_5_output_0 = Add(%/layers.11/Add_4_output_0, %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_5_output_0, %onnx::Conv_1031, %onnx::Conv_1032) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Concat_output_0) %867 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %867 }
val_accuracy
93.990386
2,407,016,448
8,118,666
{'zcp_epe_nas': 62.90603452331999, 'zcp_fisher': 8.648894309997559, 'zcp_flops': 38512263168.0, 'zcp_grad_norm': 63.5549430847168, 'zcp_grasp': 0.60638427734375, 'zcp_jacov': -16.055759822452124, 'zcp_l2_norm': 993.3631591796875, 'zcp_nwot': 224.32840828138146, 'zcp_params': 8118666.0, 'zcp_plain': 0.012438165023922, 'zcp_snip': 376.8867492675781, 'zcp_synflow': 128.99635914300706, 'zcp_zen': 107.50057983398438, 'zcp_val_accuracy': 0.9270833134651181}
NASBench101_342289
NASBench101
342289
cee9fb8dfe1f8406ba175b76dbb9606e
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_794[FLOAT, 128x3x3x3] %onnx::Conv_795[FLOAT, 128] %onnx::Conv_797[FLOAT, 43x128x1x1] %onnx::Conv_798[FLOAT, 43] %onnx::Conv_800[FLOAT, 43x43x3x3] %onnx::Conv_803[FLOAT, 43x43x3x3] %onnx::Conv_806[FLOAT, 42x128x1x1] %onnx::Conv_807[FLOAT, 42] %onnx::Conv_809[FLOAT, 42x128x1x1] %onnx::Conv_812[FLOAT, 43x128x1x1] %onnx::Conv_815[FLOAT, 43x43x3x3] %onnx::Conv_818[FLOAT, 43x43x3x3] %onnx::Conv_821[FLOAT, 42x128x1x1] %onnx::Conv_824[FLOAT, 42x128x1x1] %onnx::Conv_827[FLOAT, 43x128x1x1] %onnx::Conv_830[FLOAT, 43x43x3x3] %onnx::Conv_833[FLOAT, 43x43x3x3] %onnx::Conv_836[FLOAT, 42x128x1x1] %onnx::Conv_839[FLOAT, 42x128x1x1] %onnx::Conv_842[FLOAT, 86x128x1x1] %onnx::Conv_843[FLOAT, 86] %onnx::Conv_845[FLOAT, 86x86x3x3] %onnx::Conv_848[FLOAT, 85x85x3x3] %onnx::Conv_849[FLOAT, 85] %onnx::Conv_851[FLOAT, 85x128x1x1] %onnx::Conv_854[FLOAT, 85x128x1x1] %onnx::Conv_857[FLOAT, 86x256x1x1] %onnx::Conv_860[FLOAT, 86x86x3x3] %onnx::Conv_863[FLOAT, 85x85x3x3] %onnx::Conv_866[FLOAT, 85x256x1x1] %onnx::Conv_869[FLOAT, 85x256x1x1] %onnx::Conv_872[FLOAT, 86x256x1x1] %onnx::Conv_875[FLOAT, 86x86x3x3] %onnx::Conv_878[FLOAT, 85x85x3x3] %onnx::Conv_881[FLOAT, 85x256x1x1] %onnx::Conv_884[FLOAT, 85x256x1x1] %onnx::Conv_887[FLOAT, 171x256x1x1] %onnx::Conv_888[FLOAT, 171] %onnx::Conv_890[FLOAT, 171x171x3x3] %onnx::Conv_893[FLOAT, 171x171x3x3] %onnx::Conv_896[FLOAT, 170x256x1x1] %onnx::Conv_897[FLOAT, 170] %onnx::Conv_899[FLOAT, 170x256x1x1] %onnx::Conv_902[FLOAT, 171x512x1x1] %onnx::Conv_905[FLOAT, 171x171x3x3] %onnx::Conv_908[FLOAT, 171x171x3x3] %onnx::Conv_911[FLOAT, 170x512x1x1] %onnx::Conv_914[FLOAT, 170x512x1x1] %onnx::Conv_917[FLOAT, 171x512x1x1] %onnx::Conv_920[FLOAT, 171x171x3x3] %onnx::Conv_923[FLOAT, 171x171x3x3] %onnx::Conv_926[FLOAT, 170x512x1x1] %onnx::Conv_929[FLOAT, 170x512x1x1] ) { %onnx::Conv_930 = Identity(%onnx::Conv_897) %onnx::Conv_927 = Identity(%onnx::Conv_897) %onnx::Conv_924 = Identity(%onnx::Conv_888) %onnx::Conv_921 = Identity(%onnx::Conv_888) %onnx::Conv_918 = Identity(%onnx::Conv_888) %onnx::Conv_915 = Identity(%onnx::Conv_897) %onnx::Conv_912 = Identity(%onnx::Conv_897) %onnx::Conv_909 = Identity(%onnx::Conv_888) %onnx::Conv_906 = Identity(%onnx::Conv_888) %onnx::Conv_903 = Identity(%onnx::Conv_888) %onnx::Conv_900 = Identity(%onnx::Conv_897) %onnx::Conv_894 = Identity(%onnx::Conv_888) %onnx::Conv_891 = Identity(%onnx::Conv_888) %onnx::Conv_885 = Identity(%onnx::Conv_849) %onnx::Conv_882 = Identity(%onnx::Conv_849) %onnx::Conv_879 = Identity(%onnx::Conv_849) %onnx::Conv_876 = Identity(%onnx::Conv_843) %onnx::Conv_873 = Identity(%onnx::Conv_843) %onnx::Conv_870 = Identity(%onnx::Conv_849) %onnx::Conv_867 = Identity(%onnx::Conv_849) %onnx::Conv_864 = Identity(%onnx::Conv_849) %onnx::Conv_861 = Identity(%onnx::Conv_843) %onnx::Conv_858 = Identity(%onnx::Conv_843) %onnx::Conv_855 = Identity(%onnx::Conv_849) %onnx::Conv_852 = Identity(%onnx::Conv_849) %onnx::Conv_846 = Identity(%onnx::Conv_843) %onnx::Conv_840 = Identity(%onnx::Conv_807) %onnx::Conv_837 = Identity(%onnx::Conv_807) %onnx::Conv_834 = Identity(%onnx::Conv_798) %onnx::Conv_831 = Identity(%onnx::Conv_798) %onnx::Conv_828 = Identity(%onnx::Conv_798) %onnx::Conv_825 = Identity(%onnx::Conv_807) %onnx::Conv_822 = Identity(%onnx::Conv_807) %onnx::Conv_819 = Identity(%onnx::Conv_798) %onnx::Conv_816 = Identity(%onnx::Conv_798) %onnx::Conv_813 = Identity(%onnx::Conv_798) %onnx::Conv_810 = Identity(%onnx::Conv_807) %onnx::Conv_804 = Identity(%onnx::Conv_798) %onnx::Conv_801 = Identity(%onnx::Conv_798) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_794, %onnx::Conv_795) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_797, %onnx::Conv_798) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_800, %onnx::Conv_801) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_803, %onnx::Conv_804) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_806, %onnx::Conv_807) %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_2_output_0) %/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_809, %onnx::Conv_810) %/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_3_output_0 = Add(%/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_3_output_0) %/layers.1/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_3_output_0) %/layers.1/Add_4_output_0 = Add(%/layers.1/vertex_op.3/maxpool/MaxPool_output_0, %/layers.1/vertex_op.4/maxpool/MaxPool_output_0) %/layers.1/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_4_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.5/maxpool/MaxPool_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_812, %onnx::Conv_813) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_815, %onnx::Conv_816) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_818, %onnx::Conv_819) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_821, %onnx::Conv_822) %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_2_output_0) %/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_824, %onnx::Conv_825) %/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_3_output_0 = Add(%/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_3_output_0) %/layers.2/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_3_output_0) %/layers.2/Add_4_output_0 = Add(%/layers.2/vertex_op.3/maxpool/MaxPool_output_0, %/layers.2/vertex_op.4/maxpool/MaxPool_output_0) %/layers.2/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_4_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.5/maxpool/MaxPool_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_827, %onnx::Conv_828) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_830, %onnx::Conv_831) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_833, %onnx::Conv_834) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_836, %onnx::Conv_837) %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_2_output_0) %/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_839, %onnx::Conv_840) %/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_3_output_0 = Add(%/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_3_output_0) %/layers.3/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_3_output_0) %/layers.3/Add_4_output_0 = Add(%/layers.3/vertex_op.3/maxpool/MaxPool_output_0, %/layers.3/vertex_op.4/maxpool/MaxPool_output_0) %/layers.3/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_4_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.5/maxpool/MaxPool_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Concat_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_842, %onnx::Conv_843) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_845, %onnx::Conv_846) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.5/Slice_output_0 = Slice(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0, %/layers.5/Constant_3_output_0, %/layers.5/Constant_1_output_0, %/layers.5/Constant_4_output_0) %/layers.5/Constant_5_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/Slice_output_0, %/layers.5/Constant_5_output_0) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_848, %onnx::Conv_849) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_851, %onnx::Conv_852) %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_6_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_6_output_0) %/layers.5/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_2_output_0) %/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_854, %onnx::Conv_855) %/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_3_output_0 = Add(%/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_7_output_0) %/layers.5/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_3_output_0) %/layers.5/Add_4_output_0 = Add(%/layers.5/vertex_op.3/maxpool/MaxPool_output_0, %/layers.5/vertex_op.4/maxpool/MaxPool_output_0) %/layers.5/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_4_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.5/maxpool/MaxPool_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_857, %onnx::Conv_858) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_860, %onnx::Conv_861) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.6/Slice_output_0 = Slice(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0, %/layers.6/Constant_3_output_0, %/layers.6/Constant_1_output_0, %/layers.6/Constant_4_output_0) %/layers.6/Constant_5_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/Slice_output_0, %/layers.6/Constant_5_output_0) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_863, %onnx::Conv_864) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_866, %onnx::Conv_867) %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_6_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_6_output_0) %/layers.6/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_2_output_0) %/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_869, %onnx::Conv_870) %/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_3_output_0 = Add(%/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_7_output_0) %/layers.6/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_3_output_0) %/layers.6/Add_4_output_0 = Add(%/layers.6/vertex_op.3/maxpool/MaxPool_output_0, %/layers.6/vertex_op.4/maxpool/MaxPool_output_0) %/layers.6/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_4_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.5/maxpool/MaxPool_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_872, %onnx::Conv_873) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_875, %onnx::Conv_876) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.7/Slice_output_0 = Slice(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0, %/layers.7/Constant_3_output_0, %/layers.7/Constant_1_output_0, %/layers.7/Constant_4_output_0) %/layers.7/Constant_5_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/Slice_output_0, %/layers.7/Constant_5_output_0) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_878, %onnx::Conv_879) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_881, %onnx::Conv_882) %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_6_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_6_output_0) %/layers.7/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_2_output_0) %/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_884, %onnx::Conv_885) %/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_3_output_0 = Add(%/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_7_output_0) %/layers.7/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_3_output_0) %/layers.7/Add_4_output_0 = Add(%/layers.7/vertex_op.3/maxpool/MaxPool_output_0, %/layers.7/vertex_op.4/maxpool/MaxPool_output_0) %/layers.7/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_4_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.5/maxpool/MaxPool_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Concat_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_887, %onnx::Conv_888) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_890, %onnx::Conv_891) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_893, %onnx::Conv_894) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_896, %onnx::Conv_897) %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_2_output_0) %/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_899, %onnx::Conv_900) %/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_3_output_0 = Add(%/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_3_output_0) %/layers.9/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_3_output_0) %/layers.9/Add_4_output_0 = Add(%/layers.9/vertex_op.3/maxpool/MaxPool_output_0, %/layers.9/vertex_op.4/maxpool/MaxPool_output_0) %/layers.9/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_4_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.5/maxpool/MaxPool_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_902, %onnx::Conv_903) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_905, %onnx::Conv_906) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_908, %onnx::Conv_909) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_911, %onnx::Conv_912) %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_2_output_0) %/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_914, %onnx::Conv_915) %/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_3_output_0 = Add(%/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_3_output_0) %/layers.10/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_3_output_0) %/layers.10/Add_4_output_0 = Add(%/layers.10/vertex_op.3/maxpool/MaxPool_output_0, %/layers.10/vertex_op.4/maxpool/MaxPool_output_0) %/layers.10/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_4_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.5/maxpool/MaxPool_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_917, %onnx::Conv_918) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_920, %onnx::Conv_921) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_923, %onnx::Conv_924) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_926, %onnx::Conv_927) %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_2_output_0) %/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_929, %onnx::Conv_930) %/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_3_output_0 = Add(%/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_3_output_0) %/layers.11/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_3_output_0) %/layers.11/Add_4_output_0 = Add(%/layers.11/vertex_op.3/maxpool/MaxPool_output_0, %/layers.11/vertex_op.4/maxpool/MaxPool_output_0) %/layers.11/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_4_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.5/maxpool/MaxPool_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Concat_output_0) %792 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %792 }
val_accuracy
89.663464
893,509,376
2,958,115
{'zcp_epe_nas': 108.92770550071373, 'zcp_fisher': 5.861207008361816, 'zcp_flops': 14296150016.0, 'zcp_grad_norm': 51.30279541015625, 'zcp_grasp': 11.48236083984375, 'zcp_jacov': -16.04474100528158, 'zcp_l2_norm': 836.3369140625, 'zcp_nwot': 215.6667093414111, 'zcp_params': 2958115.0, 'zcp_plain': -0.13145200908184002, 'zcp_snip': 282.1534423828125, 'zcp_synflow': 88.22108540928902, 'zcp_zen': 85.33245849609375, 'zcp_val_accuracy': 0.8666867017745971}
NASBench101_127755
NASBench101
127755
4d31499915eb0edcb2f88e490fae5f4d
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_563[FLOAT, 128x3x3x3] %onnx::Conv_564[FLOAT, 128] %onnx::Conv_566[FLOAT, 64x128x1x1] %onnx::Conv_567[FLOAT, 64] %onnx::Conv_569[FLOAT, 64x128x1x1] %onnx::Conv_572[FLOAT, 64x64x1x1] %onnx::Conv_575[FLOAT, 64x128x1x1] %onnx::Conv_578[FLOAT, 64x128x1x1] %onnx::Conv_581[FLOAT, 64x64x1x1] %onnx::Conv_584[FLOAT, 64x128x1x1] %onnx::Conv_587[FLOAT, 64x128x1x1] %onnx::Conv_590[FLOAT, 64x64x1x1] %onnx::Conv_593[FLOAT, 128x128x1x1] %onnx::Conv_596[FLOAT, 128x128x1x1] %onnx::Conv_599[FLOAT, 128x128x1x1] %onnx::Conv_602[FLOAT, 128x256x1x1] %onnx::Conv_605[FLOAT, 128x256x1x1] %onnx::Conv_608[FLOAT, 128x128x1x1] %onnx::Conv_611[FLOAT, 128x256x1x1] %onnx::Conv_614[FLOAT, 128x256x1x1] %onnx::Conv_617[FLOAT, 128x128x1x1] %onnx::Conv_620[FLOAT, 256x256x1x1] %onnx::Conv_621[FLOAT, 256] %onnx::Conv_623[FLOAT, 256x256x1x1] %onnx::Conv_626[FLOAT, 256x256x1x1] %onnx::Conv_629[FLOAT, 256x512x1x1] %onnx::Conv_632[FLOAT, 256x512x1x1] %onnx::Conv_635[FLOAT, 256x256x1x1] %onnx::Conv_638[FLOAT, 256x512x1x1] %onnx::Conv_641[FLOAT, 256x512x1x1] %onnx::Conv_644[FLOAT, 256x256x1x1] ) { %onnx::Conv_645 = Identity(%onnx::Conv_621) %onnx::Conv_642 = Identity(%onnx::Conv_621) %onnx::Conv_639 = Identity(%onnx::Conv_621) %onnx::Conv_636 = Identity(%onnx::Conv_621) %onnx::Conv_633 = Identity(%onnx::Conv_621) %onnx::Conv_630 = Identity(%onnx::Conv_621) %onnx::Conv_627 = Identity(%onnx::Conv_621) %onnx::Conv_624 = Identity(%onnx::Conv_621) %onnx::Conv_618 = Identity(%onnx::Conv_564) %onnx::Conv_615 = Identity(%onnx::Conv_564) %onnx::Conv_612 = Identity(%onnx::Conv_564) %onnx::Conv_609 = Identity(%onnx::Conv_564) %onnx::Conv_606 = Identity(%onnx::Conv_564) %onnx::Conv_603 = Identity(%onnx::Conv_564) %onnx::Conv_600 = Identity(%onnx::Conv_564) %onnx::Conv_597 = Identity(%onnx::Conv_564) %onnx::Conv_594 = Identity(%onnx::Conv_564) %onnx::Conv_591 = Identity(%onnx::Conv_567) %onnx::Conv_588 = Identity(%onnx::Conv_567) %onnx::Conv_585 = Identity(%onnx::Conv_567) %onnx::Conv_582 = Identity(%onnx::Conv_567) %onnx::Conv_579 = Identity(%onnx::Conv_567) %onnx::Conv_576 = Identity(%onnx::Conv_567) %onnx::Conv_573 = Identity(%onnx::Conv_567) %onnx::Conv_570 = Identity(%onnx::Conv_567) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_563, %onnx::Conv_564) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_566, %onnx::Conv_567) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_569, %onnx::Conv_570) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/maxpool/MaxPool_output_0, %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_1_output_0) %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.1/maxpool/MaxPool_output_0, %/layers.1/vertex_op.2/maxpool/MaxPool_output_0) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_2_output_0, %onnx::Conv_572, %onnx::Conv_573) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_3_output_0 = Add(%/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_3_output_0) %/layers.1/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/vertex_op.4/maxpool/MaxPool_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.4/maxpool/MaxPool_output_0, %/layers.1/vertex_op.5/maxpool/MaxPool_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_575, %onnx::Conv_576) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_578, %onnx::Conv_579) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/maxpool/MaxPool_output_0, %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_1_output_0) %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.1/maxpool/MaxPool_output_0, %/layers.2/vertex_op.2/maxpool/MaxPool_output_0) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_2_output_0, %onnx::Conv_581, %onnx::Conv_582) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_3_output_0 = Add(%/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_3_output_0) %/layers.2/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/vertex_op.4/maxpool/MaxPool_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.4/maxpool/MaxPool_output_0, %/layers.2/vertex_op.5/maxpool/MaxPool_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_584, %onnx::Conv_585) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_587, %onnx::Conv_588) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/maxpool/MaxPool_output_0, %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_1_output_0) %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.1/maxpool/MaxPool_output_0, %/layers.3/vertex_op.2/maxpool/MaxPool_output_0) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_2_output_0, %onnx::Conv_590, %onnx::Conv_591) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_3_output_0 = Add(%/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_3_output_0) %/layers.3/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/vertex_op.4/maxpool/MaxPool_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.4/maxpool/MaxPool_output_0, %/layers.3/vertex_op.5/maxpool/MaxPool_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Concat_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_593, %onnx::Conv_594) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_596, %onnx::Conv_597) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.1/maxpool/MaxPool_output_0, %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_1_output_0) %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.1/maxpool/MaxPool_output_0, %/layers.5/vertex_op.2/maxpool/MaxPool_output_0) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_2_output_0, %onnx::Conv_599, %onnx::Conv_600) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_3_output_0 = Add(%/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_3_output_0) %/layers.5/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/vertex_op.4/maxpool/MaxPool_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.4/maxpool/MaxPool_output_0, %/layers.5/vertex_op.5/maxpool/MaxPool_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_602, %onnx::Conv_603) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_605, %onnx::Conv_606) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.1/maxpool/MaxPool_output_0, %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_1_output_0) %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.1/maxpool/MaxPool_output_0, %/layers.6/vertex_op.2/maxpool/MaxPool_output_0) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_2_output_0, %onnx::Conv_608, %onnx::Conv_609) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_3_output_0 = Add(%/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_3_output_0) %/layers.6/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/vertex_op.4/maxpool/MaxPool_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.4/maxpool/MaxPool_output_0, %/layers.6/vertex_op.5/maxpool/MaxPool_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_611, %onnx::Conv_612) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_614, %onnx::Conv_615) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.1/maxpool/MaxPool_output_0, %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_1_output_0) %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.1/maxpool/MaxPool_output_0, %/layers.7/vertex_op.2/maxpool/MaxPool_output_0) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_2_output_0, %onnx::Conv_617, %onnx::Conv_618) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_3_output_0 = Add(%/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_3_output_0) %/layers.7/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/vertex_op.4/maxpool/MaxPool_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.4/maxpool/MaxPool_output_0, %/layers.7/vertex_op.5/maxpool/MaxPool_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Concat_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_620, %onnx::Conv_621) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_623, %onnx::Conv_624) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/maxpool/MaxPool_output_0, %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_1_output_0) %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.1/maxpool/MaxPool_output_0, %/layers.9/vertex_op.2/maxpool/MaxPool_output_0) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_2_output_0, %onnx::Conv_626, %onnx::Conv_627) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_3_output_0 = Add(%/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_3_output_0) %/layers.9/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/vertex_op.4/maxpool/MaxPool_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.4/maxpool/MaxPool_output_0, %/layers.9/vertex_op.5/maxpool/MaxPool_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_629, %onnx::Conv_630) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_632, %onnx::Conv_633) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/maxpool/MaxPool_output_0, %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_1_output_0) %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.1/maxpool/MaxPool_output_0, %/layers.10/vertex_op.2/maxpool/MaxPool_output_0) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_2_output_0, %onnx::Conv_635, %onnx::Conv_636) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_3_output_0 = Add(%/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_3_output_0) %/layers.10/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/vertex_op.4/maxpool/MaxPool_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.4/maxpool/MaxPool_output_0, %/layers.10/vertex_op.5/maxpool/MaxPool_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_638, %onnx::Conv_639) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_641, %onnx::Conv_642) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/maxpool/MaxPool_output_0, %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_1_output_0) %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.1/maxpool/MaxPool_output_0, %/layers.11/vertex_op.2/maxpool/MaxPool_output_0) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_2_output_0, %onnx::Conv_644, %onnx::Conv_645) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_3_output_0 = Add(%/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_3_output_0) %/layers.11/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/vertex_op.4/maxpool/MaxPool_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.4/maxpool/MaxPool_output_0, %/layers.11/vertex_op.5/maxpool/MaxPool_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Concat_output_0) %561 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %561 }
val_accuracy
87.530047
360,327,168
1,143,306
{'zcp_epe_nas': 101.05851353004576, 'zcp_fisher': 10.770763397216797, 'zcp_flops': 5765234688.0, 'zcp_grad_norm': 53.883724212646484, 'zcp_grasp': -0.0582275390625, 'zcp_jacov': -16.051817117250142, 'zcp_l2_norm': 544.6126708984375, 'zcp_nwot': 214.52192672899, 'zcp_params': 1143306.0, 'zcp_plain': -0.057711578905582005, 'zcp_snip': 313.70159912109375, 'zcp_synflow': 67.21689450313815, 'zcp_zen': 53.1880989074707, 'zcp_val_accuracy': 0.9172676205635071}
NASBench101_301304
NASBench101
301304
b648a6cd88ae273c1f92e99880fdd584
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_812[FLOAT, 128x3x3x3] %onnx::Conv_813[FLOAT, 128] %onnx::Conv_815[FLOAT, 43x128x1x1] %onnx::Conv_816[FLOAT, 43] %onnx::Conv_818[FLOAT, 43x43x3x3] %onnx::Conv_821[FLOAT, 43x43x3x3] %onnx::Conv_824[FLOAT, 43x43x1x1] %onnx::Conv_827[FLOAT, 42x42x1x1] %onnx::Conv_828[FLOAT, 42] %onnx::Conv_830[FLOAT, 43x128x1x1] %onnx::Conv_833[FLOAT, 43x43x3x3] %onnx::Conv_836[FLOAT, 43x43x3x3] %onnx::Conv_839[FLOAT, 43x43x1x1] %onnx::Conv_842[FLOAT, 42x42x1x1] %onnx::Conv_845[FLOAT, 43x128x1x1] %onnx::Conv_848[FLOAT, 43x43x3x3] %onnx::Conv_851[FLOAT, 43x43x3x3] %onnx::Conv_854[FLOAT, 43x43x1x1] %onnx::Conv_857[FLOAT, 42x42x1x1] %onnx::Conv_860[FLOAT, 86x128x1x1] %onnx::Conv_861[FLOAT, 86] %onnx::Conv_863[FLOAT, 86x86x3x3] %onnx::Conv_866[FLOAT, 86x86x3x3] %onnx::Conv_869[FLOAT, 85x85x1x1] %onnx::Conv_870[FLOAT, 85] %onnx::Conv_872[FLOAT, 85x85x1x1] %onnx::Conv_875[FLOAT, 86x256x1x1] %onnx::Conv_878[FLOAT, 86x86x3x3] %onnx::Conv_881[FLOAT, 86x86x3x3] %onnx::Conv_884[FLOAT, 85x85x1x1] %onnx::Conv_887[FLOAT, 85x85x1x1] %onnx::Conv_890[FLOAT, 86x256x1x1] %onnx::Conv_893[FLOAT, 86x86x3x3] %onnx::Conv_896[FLOAT, 86x86x3x3] %onnx::Conv_899[FLOAT, 85x85x1x1] %onnx::Conv_902[FLOAT, 85x85x1x1] %onnx::Conv_905[FLOAT, 171x256x1x1] %onnx::Conv_906[FLOAT, 171] %onnx::Conv_908[FLOAT, 171x171x3x3] %onnx::Conv_911[FLOAT, 171x171x3x3] %onnx::Conv_914[FLOAT, 171x171x1x1] %onnx::Conv_917[FLOAT, 170x170x1x1] %onnx::Conv_918[FLOAT, 170] %onnx::Conv_920[FLOAT, 171x512x1x1] %onnx::Conv_923[FLOAT, 171x171x3x3] %onnx::Conv_926[FLOAT, 171x171x3x3] %onnx::Conv_929[FLOAT, 171x171x1x1] %onnx::Conv_932[FLOAT, 170x170x1x1] %onnx::Conv_935[FLOAT, 171x512x1x1] %onnx::Conv_938[FLOAT, 171x171x3x3] %onnx::Conv_941[FLOAT, 171x171x3x3] %onnx::Conv_944[FLOAT, 171x171x1x1] %onnx::Conv_947[FLOAT, 170x170x1x1] ) { %onnx::Conv_948 = Identity(%onnx::Conv_918) %onnx::Conv_945 = Identity(%onnx::Conv_906) %onnx::Conv_942 = Identity(%onnx::Conv_906) %onnx::Conv_939 = Identity(%onnx::Conv_906) %onnx::Conv_936 = Identity(%onnx::Conv_906) %onnx::Conv_933 = Identity(%onnx::Conv_918) %onnx::Conv_930 = Identity(%onnx::Conv_906) %onnx::Conv_927 = Identity(%onnx::Conv_906) %onnx::Conv_924 = Identity(%onnx::Conv_906) %onnx::Conv_921 = Identity(%onnx::Conv_906) %onnx::Conv_915 = Identity(%onnx::Conv_906) %onnx::Conv_912 = Identity(%onnx::Conv_906) %onnx::Conv_909 = Identity(%onnx::Conv_906) %onnx::Conv_903 = Identity(%onnx::Conv_870) %onnx::Conv_900 = Identity(%onnx::Conv_870) %onnx::Conv_897 = Identity(%onnx::Conv_861) %onnx::Conv_894 = Identity(%onnx::Conv_861) %onnx::Conv_891 = Identity(%onnx::Conv_861) %onnx::Conv_888 = Identity(%onnx::Conv_870) %onnx::Conv_885 = Identity(%onnx::Conv_870) %onnx::Conv_882 = Identity(%onnx::Conv_861) %onnx::Conv_879 = Identity(%onnx::Conv_861) %onnx::Conv_876 = Identity(%onnx::Conv_861) %onnx::Conv_873 = Identity(%onnx::Conv_870) %onnx::Conv_867 = Identity(%onnx::Conv_861) %onnx::Conv_864 = Identity(%onnx::Conv_861) %onnx::Conv_858 = Identity(%onnx::Conv_828) %onnx::Conv_855 = Identity(%onnx::Conv_816) %onnx::Conv_852 = Identity(%onnx::Conv_816) %onnx::Conv_849 = Identity(%onnx::Conv_816) %onnx::Conv_846 = Identity(%onnx::Conv_816) %onnx::Conv_843 = Identity(%onnx::Conv_828) %onnx::Conv_840 = Identity(%onnx::Conv_816) %onnx::Conv_837 = Identity(%onnx::Conv_816) %onnx::Conv_834 = Identity(%onnx::Conv_816) %onnx::Conv_831 = Identity(%onnx::Conv_816) %onnx::Conv_825 = Identity(%onnx::Conv_816) %onnx::Conv_822 = Identity(%onnx::Conv_816) %onnx::Conv_819 = Identity(%onnx::Conv_816) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_812, %onnx::Conv_813) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_815, %onnx::Conv_816) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_818, %onnx::Conv_819) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_821, %onnx::Conv_822) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_2_output_0, %onnx::Conv_824, %onnx::Conv_825) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.1/Slice_output_0 = Slice(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_4_output_0, %/layers.1/Constant_5_output_0, %/layers.1/Constant_3_output_0, %/layers.1/Constant_6_output_0) %/layers.1/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_3_output_0 = Add(%/layers.1/Slice_output_0, %/layers.1/Constant_7_output_0) %/layers.1/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_3_output_0) %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.4/maxpool/MaxPool_output_0, %onnx::Conv_827, %onnx::Conv_828) %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_830, %onnx::Conv_831) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_833, %onnx::Conv_834) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_836, %onnx::Conv_837) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_2_output_0, %onnx::Conv_839, %onnx::Conv_840) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.2/Slice_output_0 = Slice(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_4_output_0, %/layers.2/Constant_5_output_0, %/layers.2/Constant_3_output_0, %/layers.2/Constant_6_output_0) %/layers.2/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_3_output_0 = Add(%/layers.2/Slice_output_0, %/layers.2/Constant_7_output_0) %/layers.2/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_3_output_0) %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.4/maxpool/MaxPool_output_0, %onnx::Conv_842, %onnx::Conv_843) %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_845, %onnx::Conv_846) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_848, %onnx::Conv_849) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_851, %onnx::Conv_852) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_2_output_0, %onnx::Conv_854, %onnx::Conv_855) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.3/Slice_output_0 = Slice(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_4_output_0, %/layers.3/Constant_5_output_0, %/layers.3/Constant_3_output_0, %/layers.3/Constant_6_output_0) %/layers.3/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_3_output_0 = Add(%/layers.3/Slice_output_0, %/layers.3/Constant_7_output_0) %/layers.3/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_3_output_0) %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/vertex_op.4/maxpool/MaxPool_output_0, %onnx::Conv_857, %onnx::Conv_858) %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Concat_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_860, %onnx::Conv_861) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_863, %onnx::Conv_864) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_866, %onnx::Conv_867) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.5/Slice_output_0 = Slice(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_3_output_0, %/layers.5/Constant_4_output_0, %/layers.5/Constant_2_output_0, %/layers.5/Constant_5_output_0) %/layers.5/Constant_6_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/Slice_output_0, %/layers.5/Constant_6_output_0) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_2_output_0, %onnx::Conv_869, %onnx::Conv_870) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_8_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_9_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_10_output_0 = Constant[value = <Tensor>]() %/layers.5/Slice_1_output_0 = Slice(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_8_output_0, %/layers.5/Constant_9_output_0, %/layers.5/Constant_7_output_0, %/layers.5/Constant_10_output_0) %/layers.5/Constant_11_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_3_output_0 = Add(%/layers.5/Slice_1_output_0, %/layers.5/Constant_11_output_0) %/layers.5/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_3_output_0) %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.4/maxpool/MaxPool_output_0, %onnx::Conv_872, %onnx::Conv_873) %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_875, %onnx::Conv_876) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_878, %onnx::Conv_879) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_881, %onnx::Conv_882) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.6/Slice_output_0 = Slice(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_3_output_0, %/layers.6/Constant_4_output_0, %/layers.6/Constant_2_output_0, %/layers.6/Constant_5_output_0) %/layers.6/Constant_6_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/Slice_output_0, %/layers.6/Constant_6_output_0) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_2_output_0, %onnx::Conv_884, %onnx::Conv_885) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_8_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_9_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_10_output_0 = Constant[value = <Tensor>]() %/layers.6/Slice_1_output_0 = Slice(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_8_output_0, %/layers.6/Constant_9_output_0, %/layers.6/Constant_7_output_0, %/layers.6/Constant_10_output_0) %/layers.6/Constant_11_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_3_output_0 = Add(%/layers.6/Slice_1_output_0, %/layers.6/Constant_11_output_0) %/layers.6/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_3_output_0) %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.4/maxpool/MaxPool_output_0, %onnx::Conv_887, %onnx::Conv_888) %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_890, %onnx::Conv_891) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_893, %onnx::Conv_894) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_896, %onnx::Conv_897) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.7/Slice_output_0 = Slice(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_3_output_0, %/layers.7/Constant_4_output_0, %/layers.7/Constant_2_output_0, %/layers.7/Constant_5_output_0) %/layers.7/Constant_6_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/Slice_output_0, %/layers.7/Constant_6_output_0) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_2_output_0, %onnx::Conv_899, %onnx::Conv_900) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_8_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_9_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_10_output_0 = Constant[value = <Tensor>]() %/layers.7/Slice_1_output_0 = Slice(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_8_output_0, %/layers.7/Constant_9_output_0, %/layers.7/Constant_7_output_0, %/layers.7/Constant_10_output_0) %/layers.7/Constant_11_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_3_output_0 = Add(%/layers.7/Slice_1_output_0, %/layers.7/Constant_11_output_0) %/layers.7/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_3_output_0) %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/vertex_op.4/maxpool/MaxPool_output_0, %onnx::Conv_902, %onnx::Conv_903) %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Concat_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_905, %onnx::Conv_906) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_908, %onnx::Conv_909) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_911, %onnx::Conv_912) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_2_output_0, %onnx::Conv_914, %onnx::Conv_915) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.9/Slice_output_0 = Slice(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_4_output_0, %/layers.9/Constant_5_output_0, %/layers.9/Constant_3_output_0, %/layers.9/Constant_6_output_0) %/layers.9/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_3_output_0 = Add(%/layers.9/Slice_output_0, %/layers.9/Constant_7_output_0) %/layers.9/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_3_output_0) %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.4/maxpool/MaxPool_output_0, %onnx::Conv_917, %onnx::Conv_918) %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_920, %onnx::Conv_921) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_923, %onnx::Conv_924) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_926, %onnx::Conv_927) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_2_output_0, %onnx::Conv_929, %onnx::Conv_930) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.10/Slice_output_0 = Slice(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_4_output_0, %/layers.10/Constant_5_output_0, %/layers.10/Constant_3_output_0, %/layers.10/Constant_6_output_0) %/layers.10/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_3_output_0 = Add(%/layers.10/Slice_output_0, %/layers.10/Constant_7_output_0) %/layers.10/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_3_output_0) %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.4/maxpool/MaxPool_output_0, %onnx::Conv_932, %onnx::Conv_933) %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_935, %onnx::Conv_936) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_938, %onnx::Conv_939) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_941, %onnx::Conv_942) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_2_output_0, %onnx::Conv_944, %onnx::Conv_945) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.11/Slice_output_0 = Slice(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_4_output_0, %/layers.11/Constant_5_output_0, %/layers.11/Constant_3_output_0, %/layers.11/Constant_6_output_0) %/layers.11/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_3_output_0 = Add(%/layers.11/Slice_output_0, %/layers.11/Constant_7_output_0) %/layers.11/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_3_output_0) %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/vertex_op.4/maxpool/MaxPool_output_0, %onnx::Conv_947, %onnx::Conv_948) %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Concat_output_0) %810 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %810 }
val_accuracy
91.396236
785,153,664
2,615,106
{'zcp_epe_nas': 60.82664156481182, 'zcp_fisher': 136.2476806640625, 'zcp_flops': 12562458624.0, 'zcp_grad_norm': 209.2427978515625, 'zcp_grasp': -88.578125, 'zcp_jacov': -16.044784166633452, 'zcp_l2_norm': 688.881103515625, 'zcp_nwot': 215.99948598679097, 'zcp_params': 2615106.0, 'zcp_plain': 0.02109389193356, 'zcp_snip': 979.1283569335938, 'zcp_synflow': 110.91194258990835, 'zcp_zen': 73.1099853515625, 'zcp_val_accuracy': 0.9281851053237911}
NASBench101_390919
NASBench101
390919
ec491b5fabb5af95f6e910ea99bb1cd5
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_428[FLOAT, 128x3x3x3] %onnx::Conv_429[FLOAT, 128] %onnx::Conv_431[FLOAT, 128x128x1x1] %onnx::Conv_434[FLOAT, 128x128x1x1] %onnx::Conv_437[FLOAT, 128x128x1x1] %onnx::Conv_440[FLOAT, 128x128x1x1] %onnx::Conv_443[FLOAT, 128x128x1x1] %onnx::Conv_446[FLOAT, 128x128x1x1] %onnx::Conv_449[FLOAT, 256x128x1x1] %onnx::Conv_450[FLOAT, 256] %onnx::Conv_452[FLOAT, 256x256x1x1] %onnx::Conv_455[FLOAT, 256x256x1x1] %onnx::Conv_458[FLOAT, 256x256x1x1] %onnx::Conv_461[FLOAT, 256x256x1x1] %onnx::Conv_464[FLOAT, 256x256x1x1] %onnx::Conv_467[FLOAT, 512x256x1x1] %onnx::Conv_468[FLOAT, 512] %onnx::Conv_470[FLOAT, 512x512x1x1] %onnx::Conv_473[FLOAT, 512x512x1x1] %onnx::Conv_476[FLOAT, 512x512x1x1] %onnx::Conv_479[FLOAT, 512x512x1x1] %onnx::Conv_482[FLOAT, 512x512x1x1] ) { %onnx::Conv_483 = Identity(%onnx::Conv_468) %onnx::Conv_480 = Identity(%onnx::Conv_468) %onnx::Conv_477 = Identity(%onnx::Conv_468) %onnx::Conv_474 = Identity(%onnx::Conv_468) %onnx::Conv_471 = Identity(%onnx::Conv_468) %onnx::Conv_465 = Identity(%onnx::Conv_450) %onnx::Conv_462 = Identity(%onnx::Conv_450) %onnx::Conv_459 = Identity(%onnx::Conv_450) %onnx::Conv_456 = Identity(%onnx::Conv_450) %onnx::Conv_453 = Identity(%onnx::Conv_450) %onnx::Conv_447 = Identity(%onnx::Conv_429) %onnx::Conv_444 = Identity(%onnx::Conv_429) %onnx::Conv_441 = Identity(%onnx::Conv_429) %onnx::Conv_438 = Identity(%onnx::Conv_429) %onnx::Conv_435 = Identity(%onnx::Conv_429) %onnx::Conv_432 = Identity(%onnx::Conv_429) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_428, %onnx::Conv_429) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_431, %onnx::Conv_432) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0) %/layers.1/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/vertex_op.1/maxpool/MaxPool_output_0) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_434, %onnx::Conv_435) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.2/maxpool/MaxPool_output_0, %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/Add_2_output_0 = Add(%/layers.1/Add_1_output_0, %/layers.1/vertex_op.2/maxpool/MaxPool_output_0) %/layers.1/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_2_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_437, %onnx::Conv_438) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0) %/layers.2/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/vertex_op.1/maxpool/MaxPool_output_0) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_440, %onnx::Conv_441) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.2/maxpool/MaxPool_output_0, %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/Add_2_output_0 = Add(%/layers.2/Add_1_output_0, %/layers.2/vertex_op.2/maxpool/MaxPool_output_0) %/layers.2/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_2_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_443, %onnx::Conv_444) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0) %/layers.3/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/vertex_op.1/maxpool/MaxPool_output_0) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_446, %onnx::Conv_447) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.2/maxpool/MaxPool_output_0, %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/Add_2_output_0 = Add(%/layers.3/Add_1_output_0, %/layers.3/vertex_op.2/maxpool/MaxPool_output_0) %/layers.3/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_2_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/vertex_op.5/maxpool/MaxPool_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_449, %onnx::Conv_450) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0) %/layers.5/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/vertex_op.1/maxpool/MaxPool_output_0) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_452, %onnx::Conv_453) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.2/maxpool/MaxPool_output_0, %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/Add_2_output_0 = Add(%/layers.5/Add_1_output_0, %/layers.5/vertex_op.2/maxpool/MaxPool_output_0) %/layers.5/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_2_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_455, %onnx::Conv_456) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0) %/layers.6/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/vertex_op.1/maxpool/MaxPool_output_0) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_458, %onnx::Conv_459) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.2/maxpool/MaxPool_output_0, %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/Add_2_output_0 = Add(%/layers.6/Add_1_output_0, %/layers.6/vertex_op.2/maxpool/MaxPool_output_0) %/layers.6/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_2_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_461, %onnx::Conv_462) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0) %/layers.7/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/vertex_op.1/maxpool/MaxPool_output_0) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_464, %onnx::Conv_465) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.2/maxpool/MaxPool_output_0, %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/Add_2_output_0 = Add(%/layers.7/Add_1_output_0, %/layers.7/vertex_op.2/maxpool/MaxPool_output_0) %/layers.7/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_2_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/vertex_op.5/maxpool/MaxPool_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_467, %onnx::Conv_468) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0) %/layers.9/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/vertex_op.1/maxpool/MaxPool_output_0) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_470, %onnx::Conv_471) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.2/maxpool/MaxPool_output_0, %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/Add_2_output_0 = Add(%/layers.9/Add_1_output_0, %/layers.9/vertex_op.2/maxpool/MaxPool_output_0) %/layers.9/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_2_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_473, %onnx::Conv_474) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0) %/layers.10/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/vertex_op.1/maxpool/MaxPool_output_0) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_476, %onnx::Conv_477) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.2/maxpool/MaxPool_output_0, %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/Add_2_output_0 = Add(%/layers.10/Add_1_output_0, %/layers.10/vertex_op.2/maxpool/MaxPool_output_0) %/layers.10/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_2_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_479, %onnx::Conv_480) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0) %/layers.11/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/vertex_op.1/maxpool/MaxPool_output_0) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_482, %onnx::Conv_483) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.2/maxpool/MaxPool_output_0, %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/Add_2_output_0 = Add(%/layers.11/Add_1_output_0, %/layers.11/vertex_op.2/maxpool/MaxPool_output_0) %/layers.11/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_2_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/vertex_op.5/maxpool/MaxPool_output_0) %426 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %426 }
val_accuracy
85.977566
589,572,096
1,920,138
{'zcp_epe_nas': 72.63606097439511, 'zcp_fisher': 18.316112518310547, 'zcp_flops': 9433153536.0, 'zcp_grad_norm': 71.7373046875, 'zcp_grasp': -26.66387939453125, 'zcp_jacov': -16.06020319273162, 'zcp_l2_norm': 411.09979248046875, 'zcp_nwot': 218.5232963766837, 'zcp_params': 1920138.0, 'zcp_plain': 0.18890105187892903, 'zcp_snip': 472.862060546875, 'zcp_synflow': 58.218443956740444, 'zcp_zen': 42.13650894165039, 'zcp_val_accuracy': 0.937299668788909}
NASBench101_154870
NASBench101
154870
5db895cc801b0fb612a02cfd5d7629cd
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_944[FLOAT, 128x3x3x3] %onnx::Conv_945[FLOAT, 128] %onnx::Conv_947[FLOAT, 43x128x1x1] %onnx::Conv_948[FLOAT, 43] %onnx::Conv_950[FLOAT, 43x43x3x3] %onnx::Conv_953[FLOAT, 43x43x3x3] %onnx::Conv_956[FLOAT, 43x43x1x1] %onnx::Conv_959[FLOAT, 43x43x3x3] %onnx::Conv_962[FLOAT, 42x42x1x1] %onnx::Conv_963[FLOAT, 42] %onnx::Conv_965[FLOAT, 43x128x1x1] %onnx::Conv_968[FLOAT, 43x43x3x3] %onnx::Conv_971[FLOAT, 43x43x3x3] %onnx::Conv_974[FLOAT, 43x43x1x1] %onnx::Conv_977[FLOAT, 43x43x3x3] %onnx::Conv_980[FLOAT, 42x42x1x1] %onnx::Conv_983[FLOAT, 43x128x1x1] %onnx::Conv_986[FLOAT, 43x43x3x3] %onnx::Conv_989[FLOAT, 43x43x3x3] %onnx::Conv_992[FLOAT, 43x43x1x1] %onnx::Conv_995[FLOAT, 43x43x3x3] %onnx::Conv_998[FLOAT, 42x42x1x1] %onnx::Conv_1001[FLOAT, 86x128x1x1] %onnx::Conv_1002[FLOAT, 86] %onnx::Conv_1004[FLOAT, 86x86x3x3] %onnx::Conv_1007[FLOAT, 86x86x3x3] %onnx::Conv_1010[FLOAT, 85x85x1x1] %onnx::Conv_1011[FLOAT, 85] %onnx::Conv_1013[FLOAT, 85x85x3x3] %onnx::Conv_1016[FLOAT, 85x85x1x1] %onnx::Conv_1019[FLOAT, 86x256x1x1] %onnx::Conv_1022[FLOAT, 86x86x3x3] %onnx::Conv_1025[FLOAT, 86x86x3x3] %onnx::Conv_1028[FLOAT, 85x85x1x1] %onnx::Conv_1031[FLOAT, 85x85x3x3] %onnx::Conv_1034[FLOAT, 85x85x1x1] %onnx::Conv_1037[FLOAT, 86x256x1x1] %onnx::Conv_1040[FLOAT, 86x86x3x3] %onnx::Conv_1043[FLOAT, 86x86x3x3] %onnx::Conv_1046[FLOAT, 85x85x1x1] %onnx::Conv_1049[FLOAT, 85x85x3x3] %onnx::Conv_1052[FLOAT, 85x85x1x1] %onnx::Conv_1055[FLOAT, 171x256x1x1] %onnx::Conv_1056[FLOAT, 171] %onnx::Conv_1058[FLOAT, 171x171x3x3] %onnx::Conv_1061[FLOAT, 171x171x3x3] %onnx::Conv_1064[FLOAT, 171x171x1x1] %onnx::Conv_1067[FLOAT, 171x171x3x3] %onnx::Conv_1070[FLOAT, 170x170x1x1] %onnx::Conv_1071[FLOAT, 170] %onnx::Conv_1073[FLOAT, 171x512x1x1] %onnx::Conv_1076[FLOAT, 171x171x3x3] %onnx::Conv_1079[FLOAT, 171x171x3x3] %onnx::Conv_1082[FLOAT, 171x171x1x1] %onnx::Conv_1085[FLOAT, 171x171x3x3] %onnx::Conv_1088[FLOAT, 170x170x1x1] %onnx::Conv_1091[FLOAT, 171x512x1x1] %onnx::Conv_1094[FLOAT, 171x171x3x3] %onnx::Conv_1097[FLOAT, 171x171x3x3] %onnx::Conv_1100[FLOAT, 171x171x1x1] %onnx::Conv_1103[FLOAT, 171x171x3x3] %onnx::Conv_1106[FLOAT, 170x170x1x1] ) { %onnx::Conv_1107 = Identity(%onnx::Conv_1071) %onnx::Conv_1104 = Identity(%onnx::Conv_1056) %onnx::Conv_1101 = Identity(%onnx::Conv_1056) %onnx::Conv_1098 = Identity(%onnx::Conv_1056) %onnx::Conv_1095 = Identity(%onnx::Conv_1056) %onnx::Conv_1092 = Identity(%onnx::Conv_1056) %onnx::Conv_1089 = Identity(%onnx::Conv_1071) %onnx::Conv_1086 = Identity(%onnx::Conv_1056) %onnx::Conv_1083 = Identity(%onnx::Conv_1056) %onnx::Conv_1080 = Identity(%onnx::Conv_1056) %onnx::Conv_1077 = Identity(%onnx::Conv_1056) %onnx::Conv_1074 = Identity(%onnx::Conv_1056) %onnx::Conv_1068 = Identity(%onnx::Conv_1056) %onnx::Conv_1065 = Identity(%onnx::Conv_1056) %onnx::Conv_1062 = Identity(%onnx::Conv_1056) %onnx::Conv_1059 = Identity(%onnx::Conv_1056) %onnx::Conv_1053 = Identity(%onnx::Conv_1011) %onnx::Conv_1050 = Identity(%onnx::Conv_1011) %onnx::Conv_1047 = Identity(%onnx::Conv_1011) %onnx::Conv_1044 = Identity(%onnx::Conv_1002) %onnx::Conv_1041 = Identity(%onnx::Conv_1002) %onnx::Conv_1038 = Identity(%onnx::Conv_1002) %onnx::Conv_1035 = Identity(%onnx::Conv_1011) %onnx::Conv_1032 = Identity(%onnx::Conv_1011) %onnx::Conv_1029 = Identity(%onnx::Conv_1011) %onnx::Conv_1026 = Identity(%onnx::Conv_1002) %onnx::Conv_1023 = Identity(%onnx::Conv_1002) %onnx::Conv_1020 = Identity(%onnx::Conv_1002) %onnx::Conv_1017 = Identity(%onnx::Conv_1011) %onnx::Conv_1014 = Identity(%onnx::Conv_1011) %onnx::Conv_1008 = Identity(%onnx::Conv_1002) %onnx::Conv_1005 = Identity(%onnx::Conv_1002) %onnx::Conv_999 = Identity(%onnx::Conv_963) %onnx::Conv_996 = Identity(%onnx::Conv_948) %onnx::Conv_993 = Identity(%onnx::Conv_948) %onnx::Conv_990 = Identity(%onnx::Conv_948) %onnx::Conv_987 = Identity(%onnx::Conv_948) %onnx::Conv_984 = Identity(%onnx::Conv_948) %onnx::Conv_981 = Identity(%onnx::Conv_963) %onnx::Conv_978 = Identity(%onnx::Conv_948) %onnx::Conv_975 = Identity(%onnx::Conv_948) %onnx::Conv_972 = Identity(%onnx::Conv_948) %onnx::Conv_969 = Identity(%onnx::Conv_948) %onnx::Conv_966 = Identity(%onnx::Conv_948) %onnx::Conv_960 = Identity(%onnx::Conv_948) %onnx::Conv_957 = Identity(%onnx::Conv_948) %onnx::Conv_954 = Identity(%onnx::Conv_948) %onnx::Conv_951 = Identity(%onnx::Conv_948) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_944, %onnx::Conv_945) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_947, %onnx::Conv_948) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_950, %onnx::Conv_951) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_953, %onnx::Conv_954) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_2_output_0, %onnx::Conv_956, %onnx::Conv_957) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_3_output_0 = Add(%/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_3_output_0) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_3_output_0, %onnx::Conv_959, %onnx::Conv_960) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.1/Slice_output_0 = Slice(%/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_5_output_0, %/layers.1/Constant_6_output_0, %/layers.1/Constant_4_output_0, %/layers.1/Constant_7_output_0) %/layers.1/Constant_8_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_9_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_10_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_11_output_0 = Constant[value = <Tensor>]() %/layers.1/Slice_1_output_0 = Slice(%/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_9_output_0, %/layers.1/Constant_10_output_0, %/layers.1/Constant_8_output_0, %/layers.1/Constant_11_output_0) %/layers.1/Constant_12_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_4_output_0 = Add(%/layers.1/Slice_output_0, %/layers.1/Constant_12_output_0) %/layers.1/Add_5_output_0 = Add(%/layers.1/Add_4_output_0, %/layers.1/Slice_1_output_0) %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_5_output_0, %onnx::Conv_962, %onnx::Conv_963) %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_965, %onnx::Conv_966) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_968, %onnx::Conv_969) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_971, %onnx::Conv_972) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_2_output_0, %onnx::Conv_974, %onnx::Conv_975) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_3_output_0 = Add(%/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_3_output_0) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_3_output_0, %onnx::Conv_977, %onnx::Conv_978) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.2/Slice_output_0 = Slice(%/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_5_output_0, %/layers.2/Constant_6_output_0, %/layers.2/Constant_4_output_0, %/layers.2/Constant_7_output_0) %/layers.2/Constant_8_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_9_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_10_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_11_output_0 = Constant[value = <Tensor>]() %/layers.2/Slice_1_output_0 = Slice(%/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_9_output_0, %/layers.2/Constant_10_output_0, %/layers.2/Constant_8_output_0, %/layers.2/Constant_11_output_0) %/layers.2/Constant_12_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_4_output_0 = Add(%/layers.2/Slice_output_0, %/layers.2/Constant_12_output_0) %/layers.2/Add_5_output_0 = Add(%/layers.2/Add_4_output_0, %/layers.2/Slice_1_output_0) %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_5_output_0, %onnx::Conv_980, %onnx::Conv_981) %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_983, %onnx::Conv_984) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_986, %onnx::Conv_987) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_989, %onnx::Conv_990) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_2_output_0, %onnx::Conv_992, %onnx::Conv_993) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_3_output_0 = Add(%/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_3_output_0) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_3_output_0, %onnx::Conv_995, %onnx::Conv_996) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.3/Slice_output_0 = Slice(%/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_5_output_0, %/layers.3/Constant_6_output_0, %/layers.3/Constant_4_output_0, %/layers.3/Constant_7_output_0) %/layers.3/Constant_8_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_9_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_10_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_11_output_0 = Constant[value = <Tensor>]() %/layers.3/Slice_1_output_0 = Slice(%/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_9_output_0, %/layers.3/Constant_10_output_0, %/layers.3/Constant_8_output_0, %/layers.3/Constant_11_output_0) %/layers.3/Constant_12_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_4_output_0 = Add(%/layers.3/Slice_output_0, %/layers.3/Constant_12_output_0) %/layers.3/Add_5_output_0 = Add(%/layers.3/Add_4_output_0, %/layers.3/Slice_1_output_0) %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_5_output_0, %onnx::Conv_998, %onnx::Conv_999) %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Concat_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_1001, %onnx::Conv_1002) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_1004, %onnx::Conv_1005) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_1007, %onnx::Conv_1008) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.5/Slice_output_0 = Slice(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_3_output_0, %/layers.5/Constant_4_output_0, %/layers.5/Constant_2_output_0, %/layers.5/Constant_5_output_0) %/layers.5/Constant_6_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/Slice_output_0, %/layers.5/Constant_6_output_0) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_2_output_0, %onnx::Conv_1010, %onnx::Conv_1011) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_3_output_0 = Add(%/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_7_output_0) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_3_output_0, %onnx::Conv_1013, %onnx::Conv_1014) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_8_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_4_output_0 = Add(%/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_8_output_0) %/layers.5/Add_5_output_0 = Add(%/layers.5/Add_4_output_0, %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_5_output_0, %onnx::Conv_1016, %onnx::Conv_1017) %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_1019, %onnx::Conv_1020) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_1022, %onnx::Conv_1023) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_1025, %onnx::Conv_1026) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.6/Slice_output_0 = Slice(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_3_output_0, %/layers.6/Constant_4_output_0, %/layers.6/Constant_2_output_0, %/layers.6/Constant_5_output_0) %/layers.6/Constant_6_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/Slice_output_0, %/layers.6/Constant_6_output_0) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_2_output_0, %onnx::Conv_1028, %onnx::Conv_1029) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_3_output_0 = Add(%/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_7_output_0) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_3_output_0, %onnx::Conv_1031, %onnx::Conv_1032) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_8_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_4_output_0 = Add(%/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_8_output_0) %/layers.6/Add_5_output_0 = Add(%/layers.6/Add_4_output_0, %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_5_output_0, %onnx::Conv_1034, %onnx::Conv_1035) %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_1037, %onnx::Conv_1038) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_1040, %onnx::Conv_1041) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_1043, %onnx::Conv_1044) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.7/Slice_output_0 = Slice(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_3_output_0, %/layers.7/Constant_4_output_0, %/layers.7/Constant_2_output_0, %/layers.7/Constant_5_output_0) %/layers.7/Constant_6_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/Slice_output_0, %/layers.7/Constant_6_output_0) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_2_output_0, %onnx::Conv_1046, %onnx::Conv_1047) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_3_output_0 = Add(%/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_7_output_0) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_3_output_0, %onnx::Conv_1049, %onnx::Conv_1050) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_8_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_4_output_0 = Add(%/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_8_output_0) %/layers.7/Add_5_output_0 = Add(%/layers.7/Add_4_output_0, %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_5_output_0, %onnx::Conv_1052, %onnx::Conv_1053) %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Concat_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1055, %onnx::Conv_1056) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_1058, %onnx::Conv_1059) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_1061, %onnx::Conv_1062) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_2_output_0, %onnx::Conv_1064, %onnx::Conv_1065) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_3_output_0 = Add(%/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_3_output_0) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_3_output_0, %onnx::Conv_1067, %onnx::Conv_1068) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.9/Slice_output_0 = Slice(%/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_5_output_0, %/layers.9/Constant_6_output_0, %/layers.9/Constant_4_output_0, %/layers.9/Constant_7_output_0) %/layers.9/Constant_8_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_9_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_10_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_11_output_0 = Constant[value = <Tensor>]() %/layers.9/Slice_1_output_0 = Slice(%/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_9_output_0, %/layers.9/Constant_10_output_0, %/layers.9/Constant_8_output_0, %/layers.9/Constant_11_output_0) %/layers.9/Constant_12_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_4_output_0 = Add(%/layers.9/Slice_output_0, %/layers.9/Constant_12_output_0) %/layers.9/Add_5_output_0 = Add(%/layers.9/Add_4_output_0, %/layers.9/Slice_1_output_0) %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_5_output_0, %onnx::Conv_1070, %onnx::Conv_1071) %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_1073, %onnx::Conv_1074) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_1076, %onnx::Conv_1077) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_1079, %onnx::Conv_1080) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_2_output_0, %onnx::Conv_1082, %onnx::Conv_1083) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_3_output_0 = Add(%/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_3_output_0) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_3_output_0, %onnx::Conv_1085, %onnx::Conv_1086) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.10/Slice_output_0 = Slice(%/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_5_output_0, %/layers.10/Constant_6_output_0, %/layers.10/Constant_4_output_0, %/layers.10/Constant_7_output_0) %/layers.10/Constant_8_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_9_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_10_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_11_output_0 = Constant[value = <Tensor>]() %/layers.10/Slice_1_output_0 = Slice(%/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_9_output_0, %/layers.10/Constant_10_output_0, %/layers.10/Constant_8_output_0, %/layers.10/Constant_11_output_0) %/layers.10/Constant_12_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_4_output_0 = Add(%/layers.10/Slice_output_0, %/layers.10/Constant_12_output_0) %/layers.10/Add_5_output_0 = Add(%/layers.10/Add_4_output_0, %/layers.10/Slice_1_output_0) %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_5_output_0, %onnx::Conv_1088, %onnx::Conv_1089) %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_1091, %onnx::Conv_1092) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_1094, %onnx::Conv_1095) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_1097, %onnx::Conv_1098) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_2_output_0, %onnx::Conv_1100, %onnx::Conv_1101) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_3_output_0 = Add(%/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_3_output_0) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_3_output_0, %onnx::Conv_1103, %onnx::Conv_1104) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.11/Slice_output_0 = Slice(%/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_5_output_0, %/layers.11/Constant_6_output_0, %/layers.11/Constant_4_output_0, %/layers.11/Constant_7_output_0) %/layers.11/Constant_8_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_9_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_10_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_11_output_0 = Constant[value = <Tensor>]() %/layers.11/Slice_1_output_0 = Slice(%/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_9_output_0, %/layers.11/Constant_10_output_0, %/layers.11/Constant_8_output_0, %/layers.11/Constant_11_output_0) %/layers.11/Constant_12_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_4_output_0 = Add(%/layers.11/Slice_output_0, %/layers.11/Constant_12_output_0) %/layers.11/Add_5_output_0 = Add(%/layers.11/Add_4_output_0, %/layers.11/Slice_1_output_0) %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_5_output_0, %onnx::Conv_1106, %onnx::Conv_1107) %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Concat_output_0) %942 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %942 }
val_accuracy
92.297679
1,090,172,928
3,651,405
{'zcp_epe_nas': 115.95996271122817, 'zcp_fisher': 72.4217758178711, 'zcp_flops': 17442766848.0, 'zcp_grad_norm': 168.614501953125, 'zcp_grasp': 182.986328125, 'zcp_jacov': -16.041061159833543, 'zcp_l2_norm': 809.9463500976562, 'zcp_nwot': 218.56317898364142, 'zcp_params': 3651405.0, 'zcp_plain': 0.015884684398770003, 'zcp_snip': 794.615966796875, 'zcp_synflow': 131.43649874542785, 'zcp_zen': 91.71202087402344, 'zcp_val_accuracy': 0.9354968070983881}
NASBench101_250010
NASBench101
250010
9759e7c046189960a95a4e0466ec8106
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_941[FLOAT, 128x3x3x3] %onnx::Conv_942[FLOAT, 128] %onnx::Conv_944[FLOAT, 64x128x1x1] %onnx::Conv_945[FLOAT, 64] %onnx::Conv_947[FLOAT, 64x64x1x1] %onnx::Conv_950[FLOAT, 64x128x1x1] %onnx::Conv_953[FLOAT, 64x64x1x1] %onnx::Conv_956[FLOAT, 64x64x1x1] %onnx::Conv_959[FLOAT, 64x64x1x1] %onnx::Conv_962[FLOAT, 128x128x1x1] %onnx::Conv_965[FLOAT, 64x128x1x1] %onnx::Conv_968[FLOAT, 64x64x1x1] %onnx::Conv_971[FLOAT, 64x128x1x1] %onnx::Conv_974[FLOAT, 64x64x1x1] %onnx::Conv_977[FLOAT, 64x64x1x1] %onnx::Conv_980[FLOAT, 64x64x1x1] %onnx::Conv_983[FLOAT, 128x128x1x1] %onnx::Conv_986[FLOAT, 64x128x1x1] %onnx::Conv_989[FLOAT, 64x64x1x1] %onnx::Conv_992[FLOAT, 64x128x1x1] %onnx::Conv_995[FLOAT, 64x64x1x1] %onnx::Conv_998[FLOAT, 64x64x1x1] %onnx::Conv_1001[FLOAT, 64x64x1x1] %onnx::Conv_1004[FLOAT, 128x128x1x1] %onnx::Conv_1007[FLOAT, 128x128x1x1] %onnx::Conv_1010[FLOAT, 128x128x1x1] %onnx::Conv_1013[FLOAT, 128x128x1x1] %onnx::Conv_1016[FLOAT, 128x128x1x1] %onnx::Conv_1019[FLOAT, 128x128x1x1] %onnx::Conv_1022[FLOAT, 128x128x1x1] %onnx::Conv_1025[FLOAT, 256x128x1x1] %onnx::Conv_1026[FLOAT, 256] %onnx::Conv_1028[FLOAT, 128x256x1x1] %onnx::Conv_1031[FLOAT, 128x128x1x1] %onnx::Conv_1034[FLOAT, 128x256x1x1] %onnx::Conv_1037[FLOAT, 128x128x1x1] %onnx::Conv_1040[FLOAT, 128x128x1x1] %onnx::Conv_1043[FLOAT, 128x128x1x1] %onnx::Conv_1046[FLOAT, 256x256x1x1] %onnx::Conv_1049[FLOAT, 128x256x1x1] %onnx::Conv_1052[FLOAT, 128x128x1x1] %onnx::Conv_1055[FLOAT, 128x256x1x1] %onnx::Conv_1058[FLOAT, 128x128x1x1] %onnx::Conv_1061[FLOAT, 128x128x1x1] %onnx::Conv_1064[FLOAT, 128x128x1x1] %onnx::Conv_1067[FLOAT, 256x256x1x1] %onnx::Conv_1070[FLOAT, 256x256x1x1] %onnx::Conv_1073[FLOAT, 256x256x1x1] %onnx::Conv_1076[FLOAT, 256x256x1x1] %onnx::Conv_1079[FLOAT, 256x256x1x1] %onnx::Conv_1082[FLOAT, 256x256x1x1] %onnx::Conv_1085[FLOAT, 256x256x1x1] %onnx::Conv_1088[FLOAT, 512x256x1x1] %onnx::Conv_1089[FLOAT, 512] %onnx::Conv_1091[FLOAT, 256x512x1x1] %onnx::Conv_1094[FLOAT, 256x256x1x1] %onnx::Conv_1097[FLOAT, 256x512x1x1] %onnx::Conv_1100[FLOAT, 256x256x1x1] %onnx::Conv_1103[FLOAT, 256x256x1x1] %onnx::Conv_1106[FLOAT, 256x256x1x1] %onnx::Conv_1109[FLOAT, 512x512x1x1] %onnx::Conv_1112[FLOAT, 256x512x1x1] %onnx::Conv_1115[FLOAT, 256x256x1x1] %onnx::Conv_1118[FLOAT, 256x512x1x1] %onnx::Conv_1121[FLOAT, 256x256x1x1] %onnx::Conv_1124[FLOAT, 256x256x1x1] %onnx::Conv_1127[FLOAT, 256x256x1x1] %onnx::Conv_1130[FLOAT, 512x512x1x1] ) { %onnx::Conv_1131 = Identity(%onnx::Conv_1089) %onnx::Conv_1128 = Identity(%onnx::Conv_1026) %onnx::Conv_1125 = Identity(%onnx::Conv_1026) %onnx::Conv_1122 = Identity(%onnx::Conv_1026) %onnx::Conv_1119 = Identity(%onnx::Conv_1026) %onnx::Conv_1116 = Identity(%onnx::Conv_1026) %onnx::Conv_1113 = Identity(%onnx::Conv_1026) %onnx::Conv_1110 = Identity(%onnx::Conv_1089) %onnx::Conv_1107 = Identity(%onnx::Conv_1026) %onnx::Conv_1104 = Identity(%onnx::Conv_1026) %onnx::Conv_1101 = Identity(%onnx::Conv_1026) %onnx::Conv_1098 = Identity(%onnx::Conv_1026) %onnx::Conv_1095 = Identity(%onnx::Conv_1026) %onnx::Conv_1092 = Identity(%onnx::Conv_1026) %onnx::Conv_1086 = Identity(%onnx::Conv_1026) %onnx::Conv_1083 = Identity(%onnx::Conv_1026) %onnx::Conv_1080 = Identity(%onnx::Conv_1026) %onnx::Conv_1077 = Identity(%onnx::Conv_1026) %onnx::Conv_1074 = Identity(%onnx::Conv_1026) %onnx::Conv_1071 = Identity(%onnx::Conv_1026) %onnx::Conv_1068 = Identity(%onnx::Conv_1026) %onnx::Conv_1065 = Identity(%onnx::Conv_942) %onnx::Conv_1062 = Identity(%onnx::Conv_942) %onnx::Conv_1059 = Identity(%onnx::Conv_942) %onnx::Conv_1056 = Identity(%onnx::Conv_942) %onnx::Conv_1053 = Identity(%onnx::Conv_942) %onnx::Conv_1050 = Identity(%onnx::Conv_942) %onnx::Conv_1047 = Identity(%onnx::Conv_1026) %onnx::Conv_1044 = Identity(%onnx::Conv_942) %onnx::Conv_1041 = Identity(%onnx::Conv_942) %onnx::Conv_1038 = Identity(%onnx::Conv_942) %onnx::Conv_1035 = Identity(%onnx::Conv_942) %onnx::Conv_1032 = Identity(%onnx::Conv_942) %onnx::Conv_1029 = Identity(%onnx::Conv_942) %onnx::Conv_1023 = Identity(%onnx::Conv_942) %onnx::Conv_1020 = Identity(%onnx::Conv_942) %onnx::Conv_1017 = Identity(%onnx::Conv_942) %onnx::Conv_1014 = Identity(%onnx::Conv_942) %onnx::Conv_1011 = Identity(%onnx::Conv_942) %onnx::Conv_1008 = Identity(%onnx::Conv_942) %onnx::Conv_1005 = Identity(%onnx::Conv_942) %onnx::Conv_1002 = Identity(%onnx::Conv_945) %onnx::Conv_999 = Identity(%onnx::Conv_945) %onnx::Conv_996 = Identity(%onnx::Conv_945) %onnx::Conv_993 = Identity(%onnx::Conv_945) %onnx::Conv_990 = Identity(%onnx::Conv_945) %onnx::Conv_987 = Identity(%onnx::Conv_945) %onnx::Conv_984 = Identity(%onnx::Conv_942) %onnx::Conv_981 = Identity(%onnx::Conv_945) %onnx::Conv_978 = Identity(%onnx::Conv_945) %onnx::Conv_975 = Identity(%onnx::Conv_945) %onnx::Conv_972 = Identity(%onnx::Conv_945) %onnx::Conv_969 = Identity(%onnx::Conv_945) %onnx::Conv_966 = Identity(%onnx::Conv_945) %onnx::Conv_963 = Identity(%onnx::Conv_942) %onnx::Conv_960 = Identity(%onnx::Conv_945) %onnx::Conv_957 = Identity(%onnx::Conv_945) %onnx::Conv_954 = Identity(%onnx::Conv_945) %onnx::Conv_951 = Identity(%onnx::Conv_945) %onnx::Conv_948 = Identity(%onnx::Conv_945) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_941, %onnx::Conv_942) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_944, %onnx::Conv_945) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_947, %onnx::Conv_948) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_950, %onnx::Conv_951) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_953, %onnx::Conv_954) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/Add_3_output_0 = Add(%/layers.1/Add_2_output_0, %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_3_output_0, %onnx::Conv_956, %onnx::Conv_957) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_4_output_0 = Add(%/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_3_output_0) %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_4_output_0, %onnx::Conv_959, %onnx::Conv_960) %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_962, %onnx::Conv_963) %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Add_5_output_0 = Add(%/layers.1/Concat_output_0, %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_5_output_0, %onnx::Conv_965, %onnx::Conv_966) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_968, %onnx::Conv_969) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_5_output_0, %onnx::Conv_971, %onnx::Conv_972) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_974, %onnx::Conv_975) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/Add_3_output_0 = Add(%/layers.2/Add_2_output_0, %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_3_output_0, %onnx::Conv_977, %onnx::Conv_978) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_4_output_0 = Add(%/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_3_output_0) %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_4_output_0, %onnx::Conv_980, %onnx::Conv_981) %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_5_output_0, %onnx::Conv_983, %onnx::Conv_984) %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Add_5_output_0 = Add(%/layers.2/Concat_output_0, %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_5_output_0, %onnx::Conv_986, %onnx::Conv_987) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_989, %onnx::Conv_990) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_5_output_0, %onnx::Conv_992, %onnx::Conv_993) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_995, %onnx::Conv_996) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/Add_3_output_0 = Add(%/layers.3/Add_2_output_0, %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_3_output_0, %onnx::Conv_998, %onnx::Conv_999) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_4_output_0 = Add(%/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_3_output_0) %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_4_output_0, %onnx::Conv_1001, %onnx::Conv_1002) %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_5_output_0, %onnx::Conv_1004, %onnx::Conv_1005) %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Add_5_output_0 = Add(%/layers.3/Concat_output_0, %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Add_5_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_1007, %onnx::Conv_1008) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_1010, %onnx::Conv_1011) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_1013, %onnx::Conv_1014) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_1016, %onnx::Conv_1017) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/Add_3_output_0 = Add(%/layers.5/Add_2_output_0, %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_3_output_0, %onnx::Conv_1019, %onnx::Conv_1020) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_4_output_0 = Add(%/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_3_output_0) %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_4_output_0, %onnx::Conv_1022, %onnx::Conv_1023) %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_1025, %onnx::Conv_1026) %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Add_5_output_0 = Add(%/layers.5/Concat_output_0, %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_5_output_0, %onnx::Conv_1028, %onnx::Conv_1029) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_1031, %onnx::Conv_1032) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_5_output_0, %onnx::Conv_1034, %onnx::Conv_1035) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_1037, %onnx::Conv_1038) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/Add_3_output_0 = Add(%/layers.6/Add_2_output_0, %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_3_output_0, %onnx::Conv_1040, %onnx::Conv_1041) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_4_output_0 = Add(%/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_3_output_0) %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_4_output_0, %onnx::Conv_1043, %onnx::Conv_1044) %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_5_output_0, %onnx::Conv_1046, %onnx::Conv_1047) %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Add_5_output_0 = Add(%/layers.6/Concat_output_0, %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_5_output_0, %onnx::Conv_1049, %onnx::Conv_1050) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_1052, %onnx::Conv_1053) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_5_output_0, %onnx::Conv_1055, %onnx::Conv_1056) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_1058, %onnx::Conv_1059) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/Add_3_output_0 = Add(%/layers.7/Add_2_output_0, %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_3_output_0, %onnx::Conv_1061, %onnx::Conv_1062) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_4_output_0 = Add(%/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_3_output_0) %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_4_output_0, %onnx::Conv_1064, %onnx::Conv_1065) %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_5_output_0, %onnx::Conv_1067, %onnx::Conv_1068) %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Add_5_output_0 = Add(%/layers.7/Concat_output_0, %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Add_5_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1070, %onnx::Conv_1071) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_1073, %onnx::Conv_1074) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1076, %onnx::Conv_1077) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_1079, %onnx::Conv_1080) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/Add_3_output_0 = Add(%/layers.9/Add_2_output_0, %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_3_output_0, %onnx::Conv_1082, %onnx::Conv_1083) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_4_output_0 = Add(%/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_3_output_0) %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_4_output_0, %onnx::Conv_1085, %onnx::Conv_1086) %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1088, %onnx::Conv_1089) %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Add_5_output_0 = Add(%/layers.9/Concat_output_0, %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_5_output_0, %onnx::Conv_1091, %onnx::Conv_1092) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_1094, %onnx::Conv_1095) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_5_output_0, %onnx::Conv_1097, %onnx::Conv_1098) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_1100, %onnx::Conv_1101) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/Add_3_output_0 = Add(%/layers.10/Add_2_output_0, %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_3_output_0, %onnx::Conv_1103, %onnx::Conv_1104) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_4_output_0 = Add(%/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_3_output_0) %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_4_output_0, %onnx::Conv_1106, %onnx::Conv_1107) %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_5_output_0, %onnx::Conv_1109, %onnx::Conv_1110) %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Add_5_output_0 = Add(%/layers.10/Concat_output_0, %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_5_output_0, %onnx::Conv_1112, %onnx::Conv_1113) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_1115, %onnx::Conv_1116) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_5_output_0, %onnx::Conv_1118, %onnx::Conv_1119) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_1121, %onnx::Conv_1122) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/Add_3_output_0 = Add(%/layers.11/Add_2_output_0, %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_3_output_0, %onnx::Conv_1124, %onnx::Conv_1125) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_4_output_0 = Add(%/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_3_output_0) %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_4_output_0, %onnx::Conv_1127, %onnx::Conv_1128) %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_5_output_0, %onnx::Conv_1130, %onnx::Conv_1131) %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Add_5_output_0 = Add(%/layers.11/Concat_output_0, %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Add_5_output_0) %939 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %939 }
val_accuracy
83.884215
869,017,600
2,799,242
{'zcp_epe_nas': 93.0960747088341, 'zcp_fisher': 1.130774140357971, 'zcp_flops': 13904281600.0, 'zcp_grad_norm': 30.472291946411133, 'zcp_grasp': -0.8040313720703121, 'zcp_jacov': -16.052918353134537, 'zcp_l2_norm': 1189.788330078125, 'zcp_nwot': 228.96503496252137, 'zcp_params': 2799242.0, 'zcp_plain': -0.016279468312859, 'zcp_snip': 183.76023864746094, 'zcp_synflow': 103.80299152785419, 'zcp_zen': 95.542724609375, 'zcp_val_accuracy': 0.922576129436492}
NASBench101_164874
NASBench101
164874
63d02386b7c0df833014de8cc1e408b9
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_869[FLOAT, 128x3x3x3] %onnx::Conv_870[FLOAT, 128] %onnx::Conv_872[FLOAT, 128x128x1x1] %onnx::Conv_875[FLOAT, 128x128x3x3] %onnx::Conv_878[FLOAT, 128x128x3x3] %onnx::Conv_881[FLOAT, 128x128x1x1] %onnx::Conv_884[FLOAT, 128x128x3x3] %onnx::Conv_887[FLOAT, 128x128x1x1] %onnx::Conv_890[FLOAT, 128x128x1x1] %onnx::Conv_893[FLOAT, 128x128x3x3] %onnx::Conv_896[FLOAT, 128x128x3x3] %onnx::Conv_899[FLOAT, 128x128x1x1] %onnx::Conv_902[FLOAT, 128x128x3x3] %onnx::Conv_905[FLOAT, 128x128x1x1] %onnx::Conv_908[FLOAT, 128x128x1x1] %onnx::Conv_911[FLOAT, 128x128x3x3] %onnx::Conv_914[FLOAT, 128x128x3x3] %onnx::Conv_917[FLOAT, 128x128x1x1] %onnx::Conv_920[FLOAT, 128x128x3x3] %onnx::Conv_923[FLOAT, 128x128x1x1] %onnx::Conv_926[FLOAT, 256x128x1x1] %onnx::Conv_927[FLOAT, 256] %onnx::Conv_929[FLOAT, 256x256x3x3] %onnx::Conv_932[FLOAT, 256x256x3x3] %onnx::Conv_935[FLOAT, 256x256x1x1] %onnx::Conv_938[FLOAT, 256x256x3x3] %onnx::Conv_941[FLOAT, 256x128x1x1] %onnx::Conv_944[FLOAT, 256x256x1x1] %onnx::Conv_947[FLOAT, 256x256x3x3] %onnx::Conv_950[FLOAT, 256x256x3x3] %onnx::Conv_953[FLOAT, 256x256x1x1] %onnx::Conv_956[FLOAT, 256x256x3x3] %onnx::Conv_959[FLOAT, 256x256x1x1] %onnx::Conv_962[FLOAT, 256x256x1x1] %onnx::Conv_965[FLOAT, 256x256x3x3] %onnx::Conv_968[FLOAT, 256x256x3x3] %onnx::Conv_971[FLOAT, 256x256x1x1] %onnx::Conv_974[FLOAT, 256x256x3x3] %onnx::Conv_977[FLOAT, 256x256x1x1] %onnx::Conv_980[FLOAT, 512x256x1x1] %onnx::Conv_981[FLOAT, 512] %onnx::Conv_983[FLOAT, 512x512x3x3] %onnx::Conv_986[FLOAT, 512x512x3x3] %onnx::Conv_989[FLOAT, 512x512x1x1] %onnx::Conv_992[FLOAT, 512x512x3x3] %onnx::Conv_995[FLOAT, 512x256x1x1] %onnx::Conv_998[FLOAT, 512x512x1x1] %onnx::Conv_1001[FLOAT, 512x512x3x3] %onnx::Conv_1004[FLOAT, 512x512x3x3] %onnx::Conv_1007[FLOAT, 512x512x1x1] %onnx::Conv_1010[FLOAT, 512x512x3x3] %onnx::Conv_1013[FLOAT, 512x512x1x1] %onnx::Conv_1016[FLOAT, 512x512x1x1] %onnx::Conv_1019[FLOAT, 512x512x3x3] %onnx::Conv_1022[FLOAT, 512x512x3x3] %onnx::Conv_1025[FLOAT, 512x512x1x1] %onnx::Conv_1028[FLOAT, 512x512x3x3] %onnx::Conv_1031[FLOAT, 512x512x1x1] ) { %onnx::Conv_1032 = Identity(%onnx::Conv_981) %onnx::Conv_1029 = Identity(%onnx::Conv_981) %onnx::Conv_1026 = Identity(%onnx::Conv_981) %onnx::Conv_1023 = Identity(%onnx::Conv_981) %onnx::Conv_1020 = Identity(%onnx::Conv_981) %onnx::Conv_1017 = Identity(%onnx::Conv_981) %onnx::Conv_1014 = Identity(%onnx::Conv_981) %onnx::Conv_1011 = Identity(%onnx::Conv_981) %onnx::Conv_1008 = Identity(%onnx::Conv_981) %onnx::Conv_1005 = Identity(%onnx::Conv_981) %onnx::Conv_1002 = Identity(%onnx::Conv_981) %onnx::Conv_999 = Identity(%onnx::Conv_981) %onnx::Conv_996 = Identity(%onnx::Conv_981) %onnx::Conv_993 = Identity(%onnx::Conv_981) %onnx::Conv_990 = Identity(%onnx::Conv_981) %onnx::Conv_987 = Identity(%onnx::Conv_981) %onnx::Conv_984 = Identity(%onnx::Conv_981) %onnx::Conv_978 = Identity(%onnx::Conv_927) %onnx::Conv_975 = Identity(%onnx::Conv_927) %onnx::Conv_972 = Identity(%onnx::Conv_927) %onnx::Conv_969 = Identity(%onnx::Conv_927) %onnx::Conv_966 = Identity(%onnx::Conv_927) %onnx::Conv_963 = Identity(%onnx::Conv_927) %onnx::Conv_960 = Identity(%onnx::Conv_927) %onnx::Conv_957 = Identity(%onnx::Conv_927) %onnx::Conv_954 = Identity(%onnx::Conv_927) %onnx::Conv_951 = Identity(%onnx::Conv_927) %onnx::Conv_948 = Identity(%onnx::Conv_927) %onnx::Conv_945 = Identity(%onnx::Conv_927) %onnx::Conv_942 = Identity(%onnx::Conv_927) %onnx::Conv_939 = Identity(%onnx::Conv_927) %onnx::Conv_936 = Identity(%onnx::Conv_927) %onnx::Conv_933 = Identity(%onnx::Conv_927) %onnx::Conv_930 = Identity(%onnx::Conv_927) %onnx::Conv_924 = Identity(%onnx::Conv_870) %onnx::Conv_921 = Identity(%onnx::Conv_870) %onnx::Conv_918 = Identity(%onnx::Conv_870) %onnx::Conv_915 = Identity(%onnx::Conv_870) %onnx::Conv_912 = Identity(%onnx::Conv_870) %onnx::Conv_909 = Identity(%onnx::Conv_870) %onnx::Conv_906 = Identity(%onnx::Conv_870) %onnx::Conv_903 = Identity(%onnx::Conv_870) %onnx::Conv_900 = Identity(%onnx::Conv_870) %onnx::Conv_897 = Identity(%onnx::Conv_870) %onnx::Conv_894 = Identity(%onnx::Conv_870) %onnx::Conv_891 = Identity(%onnx::Conv_870) %onnx::Conv_888 = Identity(%onnx::Conv_870) %onnx::Conv_885 = Identity(%onnx::Conv_870) %onnx::Conv_882 = Identity(%onnx::Conv_870) %onnx::Conv_879 = Identity(%onnx::Conv_870) %onnx::Conv_876 = Identity(%onnx::Conv_870) %onnx::Conv_873 = Identity(%onnx::Conv_870) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_869, %onnx::Conv_870) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_872, %onnx::Conv_873) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_875, %onnx::Conv_876) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_878, %onnx::Conv_879) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/Add_3_output_0 = Add(%/layers.1/Add_2_output_0, %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_3_output_0, %onnx::Conv_881, %onnx::Conv_882) %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_4_output_0 = Add(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_3_output_0) %/layers.1/Add_5_output_0 = Add(%/layers.1/Add_4_output_0, %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_5_output_0, %onnx::Conv_884, %onnx::Conv_885) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_887, %onnx::Conv_888) %/layers.1/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Add_6_output_0 = Add(%/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_6_output_0, %onnx::Conv_890, %onnx::Conv_891) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_893, %onnx::Conv_894) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_896, %onnx::Conv_897) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/Add_3_output_0 = Add(%/layers.2/Add_2_output_0, %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_3_output_0, %onnx::Conv_899, %onnx::Conv_900) %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_4_output_0 = Add(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_3_output_0) %/layers.2/Add_5_output_0 = Add(%/layers.2/Add_4_output_0, %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_5_output_0, %onnx::Conv_902, %onnx::Conv_903) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_6_output_0, %onnx::Conv_905, %onnx::Conv_906) %/layers.2/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Add_6_output_0 = Add(%/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_6_output_0, %onnx::Conv_908, %onnx::Conv_909) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_911, %onnx::Conv_912) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_914, %onnx::Conv_915) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/Add_3_output_0 = Add(%/layers.3/Add_2_output_0, %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_3_output_0, %onnx::Conv_917, %onnx::Conv_918) %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_4_output_0 = Add(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_3_output_0) %/layers.3/Add_5_output_0 = Add(%/layers.3/Add_4_output_0, %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_5_output_0, %onnx::Conv_920, %onnx::Conv_921) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_6_output_0, %onnx::Conv_923, %onnx::Conv_924) %/layers.3/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Add_6_output_0 = Add(%/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Add_6_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_926, %onnx::Conv_927) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_929, %onnx::Conv_930) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_932, %onnx::Conv_933) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/Add_3_output_0 = Add(%/layers.5/Add_2_output_0, %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_3_output_0, %onnx::Conv_935, %onnx::Conv_936) %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_4_output_0 = Add(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_3_output_0) %/layers.5/Add_5_output_0 = Add(%/layers.5/Add_4_output_0, %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_5_output_0, %onnx::Conv_938, %onnx::Conv_939) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_941, %onnx::Conv_942) %/layers.5/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Add_6_output_0 = Add(%/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_6_output_0, %onnx::Conv_944, %onnx::Conv_945) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_947, %onnx::Conv_948) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_950, %onnx::Conv_951) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/Add_3_output_0 = Add(%/layers.6/Add_2_output_0, %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_3_output_0, %onnx::Conv_953, %onnx::Conv_954) %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_4_output_0 = Add(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_3_output_0) %/layers.6/Add_5_output_0 = Add(%/layers.6/Add_4_output_0, %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_5_output_0, %onnx::Conv_956, %onnx::Conv_957) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_6_output_0, %onnx::Conv_959, %onnx::Conv_960) %/layers.6/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Add_6_output_0 = Add(%/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_6_output_0, %onnx::Conv_962, %onnx::Conv_963) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_965, %onnx::Conv_966) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_968, %onnx::Conv_969) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/Add_3_output_0 = Add(%/layers.7/Add_2_output_0, %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_3_output_0, %onnx::Conv_971, %onnx::Conv_972) %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_4_output_0 = Add(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_3_output_0) %/layers.7/Add_5_output_0 = Add(%/layers.7/Add_4_output_0, %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_5_output_0, %onnx::Conv_974, %onnx::Conv_975) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_6_output_0, %onnx::Conv_977, %onnx::Conv_978) %/layers.7/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Add_6_output_0 = Add(%/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Add_6_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_980, %onnx::Conv_981) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_983, %onnx::Conv_984) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_986, %onnx::Conv_987) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/Add_3_output_0 = Add(%/layers.9/Add_2_output_0, %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_3_output_0, %onnx::Conv_989, %onnx::Conv_990) %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_4_output_0 = Add(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_3_output_0) %/layers.9/Add_5_output_0 = Add(%/layers.9/Add_4_output_0, %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_5_output_0, %onnx::Conv_992, %onnx::Conv_993) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_995, %onnx::Conv_996) %/layers.9/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Add_6_output_0 = Add(%/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_6_output_0, %onnx::Conv_998, %onnx::Conv_999) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_1001, %onnx::Conv_1002) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_1004, %onnx::Conv_1005) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/Add_3_output_0 = Add(%/layers.10/Add_2_output_0, %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_3_output_0, %onnx::Conv_1007, %onnx::Conv_1008) %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_4_output_0 = Add(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_3_output_0) %/layers.10/Add_5_output_0 = Add(%/layers.10/Add_4_output_0, %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_5_output_0, %onnx::Conv_1010, %onnx::Conv_1011) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_6_output_0, %onnx::Conv_1013, %onnx::Conv_1014) %/layers.10/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Add_6_output_0 = Add(%/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_6_output_0, %onnx::Conv_1016, %onnx::Conv_1017) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_1019, %onnx::Conv_1020) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_1022, %onnx::Conv_1023) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/Add_3_output_0 = Add(%/layers.11/Add_2_output_0, %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_3_output_0, %onnx::Conv_1025, %onnx::Conv_1026) %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_4_output_0 = Add(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_3_output_0) %/layers.11/Add_5_output_0 = Add(%/layers.11/Add_4_output_0, %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_5_output_0, %onnx::Conv_1028, %onnx::Conv_1029) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_6_output_0, %onnx::Conv_1031, %onnx::Conv_1032) %/layers.11/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Add_6_output_0 = Add(%/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Add_6_output_0) %867 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %867 }
val_accuracy
93.209136
9,033,754,624
30,679,178
{'zcp_epe_nas': 87.04255579361018, 'zcp_fisher': 83.36302947998047, 'zcp_flops': 144540073984.0, 'zcp_grad_norm': 161.40838623046875, 'zcp_grasp': -16.2220458984375, 'zcp_jacov': -16.059961925269224, 'zcp_l2_norm': 1242.4169921875, 'zcp_nwot': 234.84969658594056, 'zcp_params': 30679178.0, 'zcp_plain': 0.041717559099197006, 'zcp_snip': 1430.53857421875, 'zcp_synflow': 165.60043279972288, 'zcp_zen': 125.9001235961914, 'zcp_val_accuracy': 0.9045472741127011}
NASBench101_286938
NASBench101
286938
adb40504957b5b6204653f2bd80aa5a2
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_779[FLOAT, 128x3x3x3] %onnx::Conv_780[FLOAT, 128] %onnx::Conv_782[FLOAT, 64x128x1x1] %onnx::Conv_783[FLOAT, 64] %onnx::Conv_785[FLOAT, 64x64x3x3] %onnx::Conv_788[FLOAT, 64x64x1x1] %onnx::Conv_791[FLOAT, 64x64x1x1] %onnx::Conv_794[FLOAT, 128x128x1x1] %onnx::Conv_797[FLOAT, 64x128x1x1] %onnx::Conv_800[FLOAT, 64x64x3x3] %onnx::Conv_803[FLOAT, 64x64x1x1] %onnx::Conv_806[FLOAT, 64x64x1x1] %onnx::Conv_809[FLOAT, 128x128x1x1] %onnx::Conv_812[FLOAT, 64x128x1x1] %onnx::Conv_815[FLOAT, 64x64x3x3] %onnx::Conv_818[FLOAT, 64x64x1x1] %onnx::Conv_821[FLOAT, 64x64x1x1] %onnx::Conv_824[FLOAT, 128x128x1x1] %onnx::Conv_827[FLOAT, 128x128x1x1] %onnx::Conv_830[FLOAT, 128x128x3x3] %onnx::Conv_833[FLOAT, 128x128x1x1] %onnx::Conv_836[FLOAT, 128x128x1x1] %onnx::Conv_839[FLOAT, 256x128x1x1] %onnx::Conv_840[FLOAT, 256] %onnx::Conv_842[FLOAT, 128x256x1x1] %onnx::Conv_845[FLOAT, 128x128x3x3] %onnx::Conv_848[FLOAT, 128x128x1x1] %onnx::Conv_851[FLOAT, 128x128x1x1] %onnx::Conv_854[FLOAT, 256x256x1x1] %onnx::Conv_857[FLOAT, 128x256x1x1] %onnx::Conv_860[FLOAT, 128x128x3x3] %onnx::Conv_863[FLOAT, 128x128x1x1] %onnx::Conv_866[FLOAT, 128x128x1x1] %onnx::Conv_869[FLOAT, 256x256x1x1] %onnx::Conv_872[FLOAT, 256x256x1x1] %onnx::Conv_875[FLOAT, 256x256x3x3] %onnx::Conv_878[FLOAT, 256x256x1x1] %onnx::Conv_881[FLOAT, 256x256x1x1] %onnx::Conv_884[FLOAT, 512x256x1x1] %onnx::Conv_885[FLOAT, 512] %onnx::Conv_887[FLOAT, 256x512x1x1] %onnx::Conv_890[FLOAT, 256x256x3x3] %onnx::Conv_893[FLOAT, 256x256x1x1] %onnx::Conv_896[FLOAT, 256x256x1x1] %onnx::Conv_899[FLOAT, 512x512x1x1] %onnx::Conv_902[FLOAT, 256x512x1x1] %onnx::Conv_905[FLOAT, 256x256x3x3] %onnx::Conv_908[FLOAT, 256x256x1x1] %onnx::Conv_911[FLOAT, 256x256x1x1] %onnx::Conv_914[FLOAT, 512x512x1x1] ) { %onnx::Conv_915 = Identity(%onnx::Conv_885) %onnx::Conv_912 = Identity(%onnx::Conv_840) %onnx::Conv_909 = Identity(%onnx::Conv_840) %onnx::Conv_906 = Identity(%onnx::Conv_840) %onnx::Conv_903 = Identity(%onnx::Conv_840) %onnx::Conv_900 = Identity(%onnx::Conv_885) %onnx::Conv_897 = Identity(%onnx::Conv_840) %onnx::Conv_894 = Identity(%onnx::Conv_840) %onnx::Conv_891 = Identity(%onnx::Conv_840) %onnx::Conv_888 = Identity(%onnx::Conv_840) %onnx::Conv_882 = Identity(%onnx::Conv_840) %onnx::Conv_879 = Identity(%onnx::Conv_840) %onnx::Conv_876 = Identity(%onnx::Conv_840) %onnx::Conv_873 = Identity(%onnx::Conv_840) %onnx::Conv_870 = Identity(%onnx::Conv_840) %onnx::Conv_867 = Identity(%onnx::Conv_780) %onnx::Conv_864 = Identity(%onnx::Conv_780) %onnx::Conv_861 = Identity(%onnx::Conv_780) %onnx::Conv_858 = Identity(%onnx::Conv_780) %onnx::Conv_855 = Identity(%onnx::Conv_840) %onnx::Conv_852 = Identity(%onnx::Conv_780) %onnx::Conv_849 = Identity(%onnx::Conv_780) %onnx::Conv_846 = Identity(%onnx::Conv_780) %onnx::Conv_843 = Identity(%onnx::Conv_780) %onnx::Conv_837 = Identity(%onnx::Conv_780) %onnx::Conv_834 = Identity(%onnx::Conv_780) %onnx::Conv_831 = Identity(%onnx::Conv_780) %onnx::Conv_828 = Identity(%onnx::Conv_780) %onnx::Conv_825 = Identity(%onnx::Conv_780) %onnx::Conv_822 = Identity(%onnx::Conv_783) %onnx::Conv_819 = Identity(%onnx::Conv_783) %onnx::Conv_816 = Identity(%onnx::Conv_783) %onnx::Conv_813 = Identity(%onnx::Conv_783) %onnx::Conv_810 = Identity(%onnx::Conv_780) %onnx::Conv_807 = Identity(%onnx::Conv_783) %onnx::Conv_804 = Identity(%onnx::Conv_783) %onnx::Conv_801 = Identity(%onnx::Conv_783) %onnx::Conv_798 = Identity(%onnx::Conv_783) %onnx::Conv_795 = Identity(%onnx::Conv_780) %onnx::Conv_792 = Identity(%onnx::Conv_783) %onnx::Conv_789 = Identity(%onnx::Conv_783) %onnx::Conv_786 = Identity(%onnx::Conv_783) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_779, %onnx::Conv_780) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_782, %onnx::Conv_783) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_785, %onnx::Conv_786) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_1_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_2_output_0, %onnx::Conv_788, %onnx::Conv_789) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_3_output_0 = Add(%/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_3_output_0) %/layers.1/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_3_output_0) %/layers.1/Add_4_output_0 = Add(%/layers.1/vertex_op.2/maxpool/MaxPool_output_0, %/layers.1/vertex_op.4/maxpool/MaxPool_output_0) %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_4_output_0, %onnx::Conv_791, %onnx::Conv_792) %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_794, %onnx::Conv_795) %/layers.1/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Add_5_output_0 = Add(%/layers.1/Concat_output_0, %/layers.1/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_5_output_0, %onnx::Conv_797, %onnx::Conv_798) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_800, %onnx::Conv_801) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_1_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_2_output_0, %onnx::Conv_803, %onnx::Conv_804) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_3_output_0 = Add(%/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_3_output_0) %/layers.2/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_3_output_0) %/layers.2/Add_4_output_0 = Add(%/layers.2/vertex_op.2/maxpool/MaxPool_output_0, %/layers.2/vertex_op.4/maxpool/MaxPool_output_0) %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_4_output_0, %onnx::Conv_806, %onnx::Conv_807) %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_5_output_0, %onnx::Conv_809, %onnx::Conv_810) %/layers.2/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Add_5_output_0 = Add(%/layers.2/Concat_output_0, %/layers.2/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_5_output_0, %onnx::Conv_812, %onnx::Conv_813) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_815, %onnx::Conv_816) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_1_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_2_output_0, %onnx::Conv_818, %onnx::Conv_819) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_3_output_0 = Add(%/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_3_output_0) %/layers.3/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_3_output_0) %/layers.3/Add_4_output_0 = Add(%/layers.3/vertex_op.2/maxpool/MaxPool_output_0, %/layers.3/vertex_op.4/maxpool/MaxPool_output_0) %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_4_output_0, %onnx::Conv_821, %onnx::Conv_822) %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_5_output_0, %onnx::Conv_824, %onnx::Conv_825) %/layers.3/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Add_5_output_0 = Add(%/layers.3/Concat_output_0, %/layers.3/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Add_5_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_827, %onnx::Conv_828) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_830, %onnx::Conv_831) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_1_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_2_output_0, %onnx::Conv_833, %onnx::Conv_834) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_3_output_0 = Add(%/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_3_output_0) %/layers.5/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_3_output_0) %/layers.5/Add_4_output_0 = Add(%/layers.5/vertex_op.2/maxpool/MaxPool_output_0, %/layers.5/vertex_op.4/maxpool/MaxPool_output_0) %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_4_output_0, %onnx::Conv_836, %onnx::Conv_837) %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_839, %onnx::Conv_840) %/layers.5/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Add_5_output_0 = Add(%/layers.5/Concat_output_0, %/layers.5/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_5_output_0, %onnx::Conv_842, %onnx::Conv_843) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_845, %onnx::Conv_846) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_1_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_2_output_0, %onnx::Conv_848, %onnx::Conv_849) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_3_output_0 = Add(%/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_3_output_0) %/layers.6/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_3_output_0) %/layers.6/Add_4_output_0 = Add(%/layers.6/vertex_op.2/maxpool/MaxPool_output_0, %/layers.6/vertex_op.4/maxpool/MaxPool_output_0) %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_4_output_0, %onnx::Conv_851, %onnx::Conv_852) %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_5_output_0, %onnx::Conv_854, %onnx::Conv_855) %/layers.6/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Add_5_output_0 = Add(%/layers.6/Concat_output_0, %/layers.6/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_5_output_0, %onnx::Conv_857, %onnx::Conv_858) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_860, %onnx::Conv_861) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_1_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_2_output_0, %onnx::Conv_863, %onnx::Conv_864) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_3_output_0 = Add(%/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_3_output_0) %/layers.7/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_3_output_0) %/layers.7/Add_4_output_0 = Add(%/layers.7/vertex_op.2/maxpool/MaxPool_output_0, %/layers.7/vertex_op.4/maxpool/MaxPool_output_0) %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_4_output_0, %onnx::Conv_866, %onnx::Conv_867) %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_5_output_0, %onnx::Conv_869, %onnx::Conv_870) %/layers.7/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Add_5_output_0 = Add(%/layers.7/Concat_output_0, %/layers.7/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Add_5_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_872, %onnx::Conv_873) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_875, %onnx::Conv_876) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_1_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_2_output_0, %onnx::Conv_878, %onnx::Conv_879) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_3_output_0 = Add(%/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_3_output_0) %/layers.9/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_3_output_0) %/layers.9/Add_4_output_0 = Add(%/layers.9/vertex_op.2/maxpool/MaxPool_output_0, %/layers.9/vertex_op.4/maxpool/MaxPool_output_0) %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_4_output_0, %onnx::Conv_881, %onnx::Conv_882) %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_884, %onnx::Conv_885) %/layers.9/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Add_5_output_0 = Add(%/layers.9/Concat_output_0, %/layers.9/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_5_output_0, %onnx::Conv_887, %onnx::Conv_888) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_890, %onnx::Conv_891) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_1_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_2_output_0, %onnx::Conv_893, %onnx::Conv_894) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_3_output_0 = Add(%/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_3_output_0) %/layers.10/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_3_output_0) %/layers.10/Add_4_output_0 = Add(%/layers.10/vertex_op.2/maxpool/MaxPool_output_0, %/layers.10/vertex_op.4/maxpool/MaxPool_output_0) %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_4_output_0, %onnx::Conv_896, %onnx::Conv_897) %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_5_output_0, %onnx::Conv_899, %onnx::Conv_900) %/layers.10/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Add_5_output_0 = Add(%/layers.10/Concat_output_0, %/layers.10/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_5_output_0, %onnx::Conv_902, %onnx::Conv_903) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_905, %onnx::Conv_906) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_1_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_2_output_0, %onnx::Conv_908, %onnx::Conv_909) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_3_output_0 = Add(%/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_3_output_0) %/layers.11/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_3_output_0) %/layers.11/Add_4_output_0 = Add(%/layers.11/vertex_op.2/maxpool/MaxPool_output_0, %/layers.11/vertex_op.4/maxpool/MaxPool_output_0) %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_4_output_0, %onnx::Conv_911, %onnx::Conv_912) %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_5_output_0, %onnx::Conv_914, %onnx::Conv_915) %/layers.11/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Add_5_output_0 = Add(%/layers.11/Concat_output_0, %/layers.11/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Add_5_output_0) %777 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %777 }
val_accuracy
93.108976
1,257,777,152
4,166,026
{'zcp_epe_nas': 70.89921553127238, 'zcp_fisher': 3.076877355575561, 'zcp_flops': 20124434432.0, 'zcp_grad_norm': 44.839393615722656, 'zcp_grasp': -6.8167724609375, 'zcp_jacov': -16.060451180275415, 'zcp_l2_norm': 844.7592163085938, 'zcp_nwot': 224.31643498700808, 'zcp_params': 4166026.0, 'zcp_plain': 0.054812103509902003, 'zcp_snip': 258.83294677734375, 'zcp_synflow': 108.18567155261678, 'zcp_zen': 80.97566223144531, 'zcp_val_accuracy': 0.9017428159713741}
NASBench101_186613
NASBench101
186613
70cfec8c31938ef984f266d070a67a3b
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_734[FLOAT, 128x3x3x3] %onnx::Conv_735[FLOAT, 128] %onnx::Conv_737[FLOAT, 128x128x1x1] %onnx::Conv_740[FLOAT, 128x128x1x1] %onnx::Conv_743[FLOAT, 128x128x3x3] %onnx::Conv_746[FLOAT, 128x128x3x3] %onnx::Conv_749[FLOAT, 128x128x1x1] %onnx::Conv_752[FLOAT, 128x128x1x1] %onnx::Conv_755[FLOAT, 128x128x1x1] %onnx::Conv_758[FLOAT, 128x128x3x3] %onnx::Conv_761[FLOAT, 128x128x3x3] %onnx::Conv_764[FLOAT, 128x128x1x1] %onnx::Conv_767[FLOAT, 128x128x1x1] %onnx::Conv_770[FLOAT, 128x128x1x1] %onnx::Conv_773[FLOAT, 128x128x3x3] %onnx::Conv_776[FLOAT, 128x128x3x3] %onnx::Conv_779[FLOAT, 128x128x1x1] %onnx::Conv_782[FLOAT, 256x128x1x1] %onnx::Conv_783[FLOAT, 256] %onnx::Conv_785[FLOAT, 256x256x1x1] %onnx::Conv_788[FLOAT, 256x256x3x3] %onnx::Conv_791[FLOAT, 256x256x3x3] %onnx::Conv_794[FLOAT, 256x256x1x1] %onnx::Conv_797[FLOAT, 256x256x1x1] %onnx::Conv_800[FLOAT, 256x256x1x1] %onnx::Conv_803[FLOAT, 256x256x3x3] %onnx::Conv_806[FLOAT, 256x256x3x3] %onnx::Conv_809[FLOAT, 256x256x1x1] %onnx::Conv_812[FLOAT, 256x256x1x1] %onnx::Conv_815[FLOAT, 256x256x1x1] %onnx::Conv_818[FLOAT, 256x256x3x3] %onnx::Conv_821[FLOAT, 256x256x3x3] %onnx::Conv_824[FLOAT, 256x256x1x1] %onnx::Conv_827[FLOAT, 512x256x1x1] %onnx::Conv_828[FLOAT, 512] %onnx::Conv_830[FLOAT, 512x512x1x1] %onnx::Conv_833[FLOAT, 512x512x3x3] %onnx::Conv_836[FLOAT, 512x512x3x3] %onnx::Conv_839[FLOAT, 512x512x1x1] %onnx::Conv_842[FLOAT, 512x512x1x1] %onnx::Conv_845[FLOAT, 512x512x1x1] %onnx::Conv_848[FLOAT, 512x512x3x3] %onnx::Conv_851[FLOAT, 512x512x3x3] %onnx::Conv_854[FLOAT, 512x512x1x1] %onnx::Conv_857[FLOAT, 512x512x1x1] %onnx::Conv_860[FLOAT, 512x512x1x1] %onnx::Conv_863[FLOAT, 512x512x3x3] %onnx::Conv_866[FLOAT, 512x512x3x3] %onnx::Conv_869[FLOAT, 512x512x1x1] ) { %onnx::Conv_870 = Identity(%onnx::Conv_828) %onnx::Conv_867 = Identity(%onnx::Conv_828) %onnx::Conv_864 = Identity(%onnx::Conv_828) %onnx::Conv_861 = Identity(%onnx::Conv_828) %onnx::Conv_858 = Identity(%onnx::Conv_828) %onnx::Conv_855 = Identity(%onnx::Conv_828) %onnx::Conv_852 = Identity(%onnx::Conv_828) %onnx::Conv_849 = Identity(%onnx::Conv_828) %onnx::Conv_846 = Identity(%onnx::Conv_828) %onnx::Conv_843 = Identity(%onnx::Conv_828) %onnx::Conv_840 = Identity(%onnx::Conv_828) %onnx::Conv_837 = Identity(%onnx::Conv_828) %onnx::Conv_834 = Identity(%onnx::Conv_828) %onnx::Conv_831 = Identity(%onnx::Conv_828) %onnx::Conv_825 = Identity(%onnx::Conv_783) %onnx::Conv_822 = Identity(%onnx::Conv_783) %onnx::Conv_819 = Identity(%onnx::Conv_783) %onnx::Conv_816 = Identity(%onnx::Conv_783) %onnx::Conv_813 = Identity(%onnx::Conv_783) %onnx::Conv_810 = Identity(%onnx::Conv_783) %onnx::Conv_807 = Identity(%onnx::Conv_783) %onnx::Conv_804 = Identity(%onnx::Conv_783) %onnx::Conv_801 = Identity(%onnx::Conv_783) %onnx::Conv_798 = Identity(%onnx::Conv_783) %onnx::Conv_795 = Identity(%onnx::Conv_783) %onnx::Conv_792 = Identity(%onnx::Conv_783) %onnx::Conv_789 = Identity(%onnx::Conv_783) %onnx::Conv_786 = Identity(%onnx::Conv_783) %onnx::Conv_780 = Identity(%onnx::Conv_735) %onnx::Conv_777 = Identity(%onnx::Conv_735) %onnx::Conv_774 = Identity(%onnx::Conv_735) %onnx::Conv_771 = Identity(%onnx::Conv_735) %onnx::Conv_768 = Identity(%onnx::Conv_735) %onnx::Conv_765 = Identity(%onnx::Conv_735) %onnx::Conv_762 = Identity(%onnx::Conv_735) %onnx::Conv_759 = Identity(%onnx::Conv_735) %onnx::Conv_756 = Identity(%onnx::Conv_735) %onnx::Conv_753 = Identity(%onnx::Conv_735) %onnx::Conv_750 = Identity(%onnx::Conv_735) %onnx::Conv_747 = Identity(%onnx::Conv_735) %onnx::Conv_744 = Identity(%onnx::Conv_735) %onnx::Conv_741 = Identity(%onnx::Conv_735) %onnx::Conv_738 = Identity(%onnx::Conv_735) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_734, %onnx::Conv_735) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_737, %onnx::Conv_738) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_740, %onnx::Conv_741) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_1_output_0) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_743, %onnx::Conv_744) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_746, %onnx::Conv_747) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/Add_3_output_0 = Add(%/layers.1/Add_2_output_0, %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_3_output_0, %onnx::Conv_749, %onnx::Conv_750) %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_752, %onnx::Conv_753) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_755, %onnx::Conv_756) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_1_output_0) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_758, %onnx::Conv_759) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_761, %onnx::Conv_762) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/Add_3_output_0 = Add(%/layers.2/Add_2_output_0, %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_3_output_0, %onnx::Conv_764, %onnx::Conv_765) %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_767, %onnx::Conv_768) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_770, %onnx::Conv_771) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_1_output_0) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_773, %onnx::Conv_774) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_776, %onnx::Conv_777) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/Add_3_output_0 = Add(%/layers.3/Add_2_output_0, %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_3_output_0, %onnx::Conv_779, %onnx::Conv_780) %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_782, %onnx::Conv_783) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_785, %onnx::Conv_786) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_1_output_0) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_788, %onnx::Conv_789) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_791, %onnx::Conv_792) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/Add_3_output_0 = Add(%/layers.5/Add_2_output_0, %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_3_output_0, %onnx::Conv_794, %onnx::Conv_795) %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_797, %onnx::Conv_798) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_800, %onnx::Conv_801) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_1_output_0) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_803, %onnx::Conv_804) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_806, %onnx::Conv_807) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/Add_3_output_0 = Add(%/layers.6/Add_2_output_0, %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_3_output_0, %onnx::Conv_809, %onnx::Conv_810) %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_812, %onnx::Conv_813) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_815, %onnx::Conv_816) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_1_output_0) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_818, %onnx::Conv_819) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_821, %onnx::Conv_822) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/Add_3_output_0 = Add(%/layers.7/Add_2_output_0, %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_3_output_0, %onnx::Conv_824, %onnx::Conv_825) %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_827, %onnx::Conv_828) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_830, %onnx::Conv_831) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_1_output_0) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_833, %onnx::Conv_834) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_836, %onnx::Conv_837) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/Add_3_output_0 = Add(%/layers.9/Add_2_output_0, %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_3_output_0, %onnx::Conv_839, %onnx::Conv_840) %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_842, %onnx::Conv_843) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_845, %onnx::Conv_846) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_1_output_0) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_848, %onnx::Conv_849) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_851, %onnx::Conv_852) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/Add_3_output_0 = Add(%/layers.10/Add_2_output_0, %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_3_output_0, %onnx::Conv_854, %onnx::Conv_855) %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_857, %onnx::Conv_858) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_860, %onnx::Conv_861) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_1_output_0) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_863, %onnx::Conv_864) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_866, %onnx::Conv_867) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/Add_3_output_0 = Add(%/layers.11/Add_2_output_0, %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_3_output_0, %onnx::Conv_869, %onnx::Conv_870) %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %732 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %732 }
val_accuracy
89.993989
6,343,895,040
21,547,914
{'zcp_epe_nas': 79.37055833341486, 'zcp_fisher': 1126.33447265625, 'zcp_flops': 101502320640.0, 'zcp_grad_norm': 570.5613403320312, 'zcp_grasp': -976.12890625, 'zcp_jacov': -16.05540353877163, 'zcp_l2_norm': 1047.4832763671875, 'zcp_nwot': 231.79919977560346, 'zcp_params': 21547914.0, 'zcp_plain': 0.055777035653591, 'zcp_snip': 4224.97607421875, 'zcp_synflow': 126.01570445172203, 'zcp_zen': 98.93138885498047, 'zcp_val_accuracy': 0.9174679517745971}
NASBench101_329835
NASBench101
329835
c782372ed97e3d1c385a4bf8c983cc0a
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_887[FLOAT, 128x3x3x3] %onnx::Conv_888[FLOAT, 128] %onnx::Conv_890[FLOAT, 128x128x1x1] %onnx::Conv_893[FLOAT, 128x128x3x3] %onnx::Conv_896[FLOAT, 128x128x3x3] %onnx::Conv_899[FLOAT, 128x128x3x3] %onnx::Conv_902[FLOAT, 128x128x1x1] %onnx::Conv_905[FLOAT, 128x128x3x3] %onnx::Conv_908[FLOAT, 128x128x1x1] %onnx::Conv_911[FLOAT, 128x128x3x3] %onnx::Conv_914[FLOAT, 128x128x3x3] %onnx::Conv_917[FLOAT, 128x128x3x3] %onnx::Conv_920[FLOAT, 128x128x1x1] %onnx::Conv_923[FLOAT, 128x128x3x3] %onnx::Conv_926[FLOAT, 128x128x1x1] %onnx::Conv_929[FLOAT, 128x128x3x3] %onnx::Conv_932[FLOAT, 128x128x3x3] %onnx::Conv_935[FLOAT, 128x128x3x3] %onnx::Conv_938[FLOAT, 128x128x1x1] %onnx::Conv_941[FLOAT, 128x128x3x3] %onnx::Conv_944[FLOAT, 256x128x1x1] %onnx::Conv_945[FLOAT, 256] %onnx::Conv_947[FLOAT, 256x256x3x3] %onnx::Conv_950[FLOAT, 256x256x3x3] %onnx::Conv_953[FLOAT, 256x256x3x3] %onnx::Conv_956[FLOAT, 256x128x1x1] %onnx::Conv_959[FLOAT, 256x256x3x3] %onnx::Conv_962[FLOAT, 256x256x1x1] %onnx::Conv_965[FLOAT, 256x256x3x3] %onnx::Conv_968[FLOAT, 256x256x3x3] %onnx::Conv_971[FLOAT, 256x256x3x3] %onnx::Conv_974[FLOAT, 256x256x1x1] %onnx::Conv_977[FLOAT, 256x256x3x3] %onnx::Conv_980[FLOAT, 256x256x1x1] %onnx::Conv_983[FLOAT, 256x256x3x3] %onnx::Conv_986[FLOAT, 256x256x3x3] %onnx::Conv_989[FLOAT, 256x256x3x3] %onnx::Conv_992[FLOAT, 256x256x1x1] %onnx::Conv_995[FLOAT, 256x256x3x3] %onnx::Conv_998[FLOAT, 512x256x1x1] %onnx::Conv_999[FLOAT, 512] %onnx::Conv_1001[FLOAT, 512x512x3x3] %onnx::Conv_1004[FLOAT, 512x512x3x3] %onnx::Conv_1007[FLOAT, 512x512x3x3] %onnx::Conv_1010[FLOAT, 512x256x1x1] %onnx::Conv_1013[FLOAT, 512x512x3x3] %onnx::Conv_1016[FLOAT, 512x512x1x1] %onnx::Conv_1019[FLOAT, 512x512x3x3] %onnx::Conv_1022[FLOAT, 512x512x3x3] %onnx::Conv_1025[FLOAT, 512x512x3x3] %onnx::Conv_1028[FLOAT, 512x512x1x1] %onnx::Conv_1031[FLOAT, 512x512x3x3] %onnx::Conv_1034[FLOAT, 512x512x1x1] %onnx::Conv_1037[FLOAT, 512x512x3x3] %onnx::Conv_1040[FLOAT, 512x512x3x3] %onnx::Conv_1043[FLOAT, 512x512x3x3] %onnx::Conv_1046[FLOAT, 512x512x1x1] %onnx::Conv_1049[FLOAT, 512x512x3x3] ) { %onnx::Conv_1050 = Identity(%onnx::Conv_999) %onnx::Conv_1047 = Identity(%onnx::Conv_999) %onnx::Conv_1044 = Identity(%onnx::Conv_999) %onnx::Conv_1041 = Identity(%onnx::Conv_999) %onnx::Conv_1038 = Identity(%onnx::Conv_999) %onnx::Conv_1035 = Identity(%onnx::Conv_999) %onnx::Conv_1032 = Identity(%onnx::Conv_999) %onnx::Conv_1029 = Identity(%onnx::Conv_999) %onnx::Conv_1026 = Identity(%onnx::Conv_999) %onnx::Conv_1023 = Identity(%onnx::Conv_999) %onnx::Conv_1020 = Identity(%onnx::Conv_999) %onnx::Conv_1017 = Identity(%onnx::Conv_999) %onnx::Conv_1014 = Identity(%onnx::Conv_999) %onnx::Conv_1011 = Identity(%onnx::Conv_999) %onnx::Conv_1008 = Identity(%onnx::Conv_999) %onnx::Conv_1005 = Identity(%onnx::Conv_999) %onnx::Conv_1002 = Identity(%onnx::Conv_999) %onnx::Conv_996 = Identity(%onnx::Conv_945) %onnx::Conv_993 = Identity(%onnx::Conv_945) %onnx::Conv_990 = Identity(%onnx::Conv_945) %onnx::Conv_987 = Identity(%onnx::Conv_945) %onnx::Conv_984 = Identity(%onnx::Conv_945) %onnx::Conv_981 = Identity(%onnx::Conv_945) %onnx::Conv_978 = Identity(%onnx::Conv_945) %onnx::Conv_975 = Identity(%onnx::Conv_945) %onnx::Conv_972 = Identity(%onnx::Conv_945) %onnx::Conv_969 = Identity(%onnx::Conv_945) %onnx::Conv_966 = Identity(%onnx::Conv_945) %onnx::Conv_963 = Identity(%onnx::Conv_945) %onnx::Conv_960 = Identity(%onnx::Conv_945) %onnx::Conv_957 = Identity(%onnx::Conv_945) %onnx::Conv_954 = Identity(%onnx::Conv_945) %onnx::Conv_951 = Identity(%onnx::Conv_945) %onnx::Conv_948 = Identity(%onnx::Conv_945) %onnx::Conv_942 = Identity(%onnx::Conv_888) %onnx::Conv_939 = Identity(%onnx::Conv_888) %onnx::Conv_936 = Identity(%onnx::Conv_888) %onnx::Conv_933 = Identity(%onnx::Conv_888) %onnx::Conv_930 = Identity(%onnx::Conv_888) %onnx::Conv_927 = Identity(%onnx::Conv_888) %onnx::Conv_924 = Identity(%onnx::Conv_888) %onnx::Conv_921 = Identity(%onnx::Conv_888) %onnx::Conv_918 = Identity(%onnx::Conv_888) %onnx::Conv_915 = Identity(%onnx::Conv_888) %onnx::Conv_912 = Identity(%onnx::Conv_888) %onnx::Conv_909 = Identity(%onnx::Conv_888) %onnx::Conv_906 = Identity(%onnx::Conv_888) %onnx::Conv_903 = Identity(%onnx::Conv_888) %onnx::Conv_900 = Identity(%onnx::Conv_888) %onnx::Conv_897 = Identity(%onnx::Conv_888) %onnx::Conv_894 = Identity(%onnx::Conv_888) %onnx::Conv_891 = Identity(%onnx::Conv_888) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_887, %onnx::Conv_888) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_890, %onnx::Conv_891) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_893, %onnx::Conv_894) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_896, %onnx::Conv_897) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_2_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_3_output_0 = Add(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_3_output_0) %/layers.1/Add_4_output_0 = Add(%/layers.1/Add_3_output_0, %/layers.1/vertex_op.3/maxpool/MaxPool_output_0) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_4_output_0, %onnx::Conv_899, %onnx::Conv_900) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_902, %onnx::Conv_903) %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_5_output_0 = Add(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_4_output_0) %/layers.1/Add_6_output_0 = Add(%/layers.1/Add_5_output_0, %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/Add_7_output_0 = Add(%/layers.1/Add_6_output_0, %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_7_output_0, %onnx::Conv_905, %onnx::Conv_906) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_908, %onnx::Conv_909) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_911, %onnx::Conv_912) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_914, %onnx::Conv_915) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_2_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_3_output_0 = Add(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_3_output_0) %/layers.2/Add_4_output_0 = Add(%/layers.2/Add_3_output_0, %/layers.2/vertex_op.3/maxpool/MaxPool_output_0) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_4_output_0, %onnx::Conv_917, %onnx::Conv_918) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_920, %onnx::Conv_921) %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_5_output_0 = Add(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_4_output_0) %/layers.2/Add_6_output_0 = Add(%/layers.2/Add_5_output_0, %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/Add_7_output_0 = Add(%/layers.2/Add_6_output_0, %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_7_output_0, %onnx::Conv_923, %onnx::Conv_924) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_926, %onnx::Conv_927) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_929, %onnx::Conv_930) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_932, %onnx::Conv_933) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_2_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_3_output_0 = Add(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_3_output_0) %/layers.3/Add_4_output_0 = Add(%/layers.3/Add_3_output_0, %/layers.3/vertex_op.3/maxpool/MaxPool_output_0) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_4_output_0, %onnx::Conv_935, %onnx::Conv_936) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_938, %onnx::Conv_939) %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_5_output_0 = Add(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_4_output_0) %/layers.3/Add_6_output_0 = Add(%/layers.3/Add_5_output_0, %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/Add_7_output_0 = Add(%/layers.3/Add_6_output_0, %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_7_output_0, %onnx::Conv_941, %onnx::Conv_942) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_944, %onnx::Conv_945) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_947, %onnx::Conv_948) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_950, %onnx::Conv_951) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_2_output_0) %/layers.5/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_3_output_0 = Add(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_3_output_0) %/layers.5/Add_4_output_0 = Add(%/layers.5/Add_3_output_0, %/layers.5/vertex_op.3/maxpool/MaxPool_output_0) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_4_output_0, %onnx::Conv_953, %onnx::Conv_954) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_956, %onnx::Conv_957) %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_5_output_0 = Add(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_4_output_0) %/layers.5/Add_6_output_0 = Add(%/layers.5/Add_5_output_0, %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/Add_7_output_0 = Add(%/layers.5/Add_6_output_0, %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_7_output_0, %onnx::Conv_959, %onnx::Conv_960) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_962, %onnx::Conv_963) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_965, %onnx::Conv_966) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_968, %onnx::Conv_969) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_2_output_0) %/layers.6/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_3_output_0 = Add(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_3_output_0) %/layers.6/Add_4_output_0 = Add(%/layers.6/Add_3_output_0, %/layers.6/vertex_op.3/maxpool/MaxPool_output_0) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_4_output_0, %onnx::Conv_971, %onnx::Conv_972) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_974, %onnx::Conv_975) %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_5_output_0 = Add(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_4_output_0) %/layers.6/Add_6_output_0 = Add(%/layers.6/Add_5_output_0, %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/Add_7_output_0 = Add(%/layers.6/Add_6_output_0, %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_7_output_0, %onnx::Conv_977, %onnx::Conv_978) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_980, %onnx::Conv_981) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_983, %onnx::Conv_984) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_986, %onnx::Conv_987) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_2_output_0) %/layers.7/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_3_output_0 = Add(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_3_output_0) %/layers.7/Add_4_output_0 = Add(%/layers.7/Add_3_output_0, %/layers.7/vertex_op.3/maxpool/MaxPool_output_0) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_4_output_0, %onnx::Conv_989, %onnx::Conv_990) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_992, %onnx::Conv_993) %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_5_output_0 = Add(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_4_output_0) %/layers.7/Add_6_output_0 = Add(%/layers.7/Add_5_output_0, %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/Add_7_output_0 = Add(%/layers.7/Add_6_output_0, %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_7_output_0, %onnx::Conv_995, %onnx::Conv_996) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_998, %onnx::Conv_999) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_1001, %onnx::Conv_1002) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_1004, %onnx::Conv_1005) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_2_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_3_output_0 = Add(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_3_output_0) %/layers.9/Add_4_output_0 = Add(%/layers.9/Add_3_output_0, %/layers.9/vertex_op.3/maxpool/MaxPool_output_0) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_4_output_0, %onnx::Conv_1007, %onnx::Conv_1008) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1010, %onnx::Conv_1011) %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_5_output_0 = Add(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_4_output_0) %/layers.9/Add_6_output_0 = Add(%/layers.9/Add_5_output_0, %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/Add_7_output_0 = Add(%/layers.9/Add_6_output_0, %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_7_output_0, %onnx::Conv_1013, %onnx::Conv_1014) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1016, %onnx::Conv_1017) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_1019, %onnx::Conv_1020) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_1022, %onnx::Conv_1023) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_2_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_3_output_0 = Add(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_3_output_0) %/layers.10/Add_4_output_0 = Add(%/layers.10/Add_3_output_0, %/layers.10/vertex_op.3/maxpool/MaxPool_output_0) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_4_output_0, %onnx::Conv_1025, %onnx::Conv_1026) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1028, %onnx::Conv_1029) %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_5_output_0 = Add(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_4_output_0) %/layers.10/Add_6_output_0 = Add(%/layers.10/Add_5_output_0, %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/Add_7_output_0 = Add(%/layers.10/Add_6_output_0, %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_7_output_0, %onnx::Conv_1031, %onnx::Conv_1032) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1034, %onnx::Conv_1035) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_1037, %onnx::Conv_1038) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_1040, %onnx::Conv_1041) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_2_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_3_output_0 = Add(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_3_output_0) %/layers.11/Add_4_output_0 = Add(%/layers.11/Add_3_output_0, %/layers.11/vertex_op.3/maxpool/MaxPool_output_0) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_4_output_0, %onnx::Conv_1043, %onnx::Conv_1044) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1046, %onnx::Conv_1047) %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_5_output_0 = Add(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_4_output_0) %/layers.11/Add_6_output_0 = Add(%/layers.11/Add_5_output_0, %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/Add_7_output_0 = Add(%/layers.11/Add_6_output_0, %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_7_output_0, %onnx::Conv_1049, %onnx::Conv_1050) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %885 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %885 }
val_accuracy
92.798477
11,449,673,728
38,936,714
{'zcp_epe_nas': 99.28939959822205, 'zcp_fisher': 78.99939727783203, 'zcp_flops': 183194779648.0, 'zcp_grad_norm': 146.34188842773438, 'zcp_grasp': 11.991455078125, 'zcp_jacov': -16.064570880904665, 'zcp_l2_norm': 1242.3333740234375, 'zcp_nwot': 234.5241076802776, 'zcp_params': 38936714.0, 'zcp_plain': 0.023109147325158, 'zcp_snip': 1346.233154296875, 'zcp_synflow': 181.10048003405257, 'zcp_zen': 132.52410888671875, 'zcp_val_accuracy': 0.900140225887298}
NASBench101_248924
NASBench101
248924
96b0775c850686113e06c00de578d56c
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_878[FLOAT, 128x3x3x3] %onnx::Conv_879[FLOAT, 128] %onnx::Conv_881[FLOAT, 64x128x1x1] %onnx::Conv_882[FLOAT, 64] %onnx::Conv_884[FLOAT, 64x64x3x3] %onnx::Conv_887[FLOAT, 64x64x3x3] %onnx::Conv_890[FLOAT, 64x64x3x3] %onnx::Conv_893[FLOAT, 64x64x3x3] %onnx::Conv_896[FLOAT, 64x64x1x1] %onnx::Conv_899[FLOAT, 64x128x1x1] %onnx::Conv_902[FLOAT, 64x64x3x3] %onnx::Conv_905[FLOAT, 64x64x3x3] %onnx::Conv_908[FLOAT, 64x64x3x3] %onnx::Conv_911[FLOAT, 64x64x3x3] %onnx::Conv_914[FLOAT, 64x64x1x1] %onnx::Conv_917[FLOAT, 64x128x1x1] %onnx::Conv_920[FLOAT, 64x64x3x3] %onnx::Conv_923[FLOAT, 64x64x3x3] %onnx::Conv_926[FLOAT, 64x64x3x3] %onnx::Conv_929[FLOAT, 64x64x3x3] %onnx::Conv_932[FLOAT, 64x64x1x1] %onnx::Conv_935[FLOAT, 128x128x1x1] %onnx::Conv_938[FLOAT, 128x128x3x3] %onnx::Conv_941[FLOAT, 128x128x3x3] %onnx::Conv_944[FLOAT, 128x128x3x3] %onnx::Conv_947[FLOAT, 128x128x3x3] %onnx::Conv_950[FLOAT, 128x128x1x1] %onnx::Conv_953[FLOAT, 128x256x1x1] %onnx::Conv_956[FLOAT, 128x128x3x3] %onnx::Conv_959[FLOAT, 128x128x3x3] %onnx::Conv_962[FLOAT, 128x128x3x3] %onnx::Conv_965[FLOAT, 128x128x3x3] %onnx::Conv_968[FLOAT, 128x128x1x1] %onnx::Conv_971[FLOAT, 128x256x1x1] %onnx::Conv_974[FLOAT, 128x128x3x3] %onnx::Conv_977[FLOAT, 128x128x3x3] %onnx::Conv_980[FLOAT, 128x128x3x3] %onnx::Conv_983[FLOAT, 128x128x3x3] %onnx::Conv_986[FLOAT, 128x128x1x1] %onnx::Conv_989[FLOAT, 256x256x1x1] %onnx::Conv_990[FLOAT, 256] %onnx::Conv_992[FLOAT, 256x256x3x3] %onnx::Conv_995[FLOAT, 256x256x3x3] %onnx::Conv_998[FLOAT, 256x256x3x3] %onnx::Conv_1001[FLOAT, 256x256x3x3] %onnx::Conv_1004[FLOAT, 256x256x1x1] %onnx::Conv_1007[FLOAT, 256x512x1x1] %onnx::Conv_1010[FLOAT, 256x256x3x3] %onnx::Conv_1013[FLOAT, 256x256x3x3] %onnx::Conv_1016[FLOAT, 256x256x3x3] %onnx::Conv_1019[FLOAT, 256x256x3x3] %onnx::Conv_1022[FLOAT, 256x256x1x1] %onnx::Conv_1025[FLOAT, 256x512x1x1] %onnx::Conv_1028[FLOAT, 256x256x3x3] %onnx::Conv_1031[FLOAT, 256x256x3x3] %onnx::Conv_1034[FLOAT, 256x256x3x3] %onnx::Conv_1037[FLOAT, 256x256x3x3] %onnx::Conv_1040[FLOAT, 256x256x1x1] ) { %onnx::Conv_1041 = Identity(%onnx::Conv_990) %onnx::Conv_1038 = Identity(%onnx::Conv_990) %onnx::Conv_1035 = Identity(%onnx::Conv_990) %onnx::Conv_1032 = Identity(%onnx::Conv_990) %onnx::Conv_1029 = Identity(%onnx::Conv_990) %onnx::Conv_1026 = Identity(%onnx::Conv_990) %onnx::Conv_1023 = Identity(%onnx::Conv_990) %onnx::Conv_1020 = Identity(%onnx::Conv_990) %onnx::Conv_1017 = Identity(%onnx::Conv_990) %onnx::Conv_1014 = Identity(%onnx::Conv_990) %onnx::Conv_1011 = Identity(%onnx::Conv_990) %onnx::Conv_1008 = Identity(%onnx::Conv_990) %onnx::Conv_1005 = Identity(%onnx::Conv_990) %onnx::Conv_1002 = Identity(%onnx::Conv_990) %onnx::Conv_999 = Identity(%onnx::Conv_990) %onnx::Conv_996 = Identity(%onnx::Conv_990) %onnx::Conv_993 = Identity(%onnx::Conv_990) %onnx::Conv_987 = Identity(%onnx::Conv_879) %onnx::Conv_984 = Identity(%onnx::Conv_879) %onnx::Conv_981 = Identity(%onnx::Conv_879) %onnx::Conv_978 = Identity(%onnx::Conv_879) %onnx::Conv_975 = Identity(%onnx::Conv_879) %onnx::Conv_972 = Identity(%onnx::Conv_879) %onnx::Conv_969 = Identity(%onnx::Conv_879) %onnx::Conv_966 = Identity(%onnx::Conv_879) %onnx::Conv_963 = Identity(%onnx::Conv_879) %onnx::Conv_960 = Identity(%onnx::Conv_879) %onnx::Conv_957 = Identity(%onnx::Conv_879) %onnx::Conv_954 = Identity(%onnx::Conv_879) %onnx::Conv_951 = Identity(%onnx::Conv_879) %onnx::Conv_948 = Identity(%onnx::Conv_879) %onnx::Conv_945 = Identity(%onnx::Conv_879) %onnx::Conv_942 = Identity(%onnx::Conv_879) %onnx::Conv_939 = Identity(%onnx::Conv_879) %onnx::Conv_936 = Identity(%onnx::Conv_879) %onnx::Conv_933 = Identity(%onnx::Conv_882) %onnx::Conv_930 = Identity(%onnx::Conv_882) %onnx::Conv_927 = Identity(%onnx::Conv_882) %onnx::Conv_924 = Identity(%onnx::Conv_882) %onnx::Conv_921 = Identity(%onnx::Conv_882) %onnx::Conv_918 = Identity(%onnx::Conv_882) %onnx::Conv_915 = Identity(%onnx::Conv_882) %onnx::Conv_912 = Identity(%onnx::Conv_882) %onnx::Conv_909 = Identity(%onnx::Conv_882) %onnx::Conv_906 = Identity(%onnx::Conv_882) %onnx::Conv_903 = Identity(%onnx::Conv_882) %onnx::Conv_900 = Identity(%onnx::Conv_882) %onnx::Conv_897 = Identity(%onnx::Conv_882) %onnx::Conv_894 = Identity(%onnx::Conv_882) %onnx::Conv_891 = Identity(%onnx::Conv_882) %onnx::Conv_888 = Identity(%onnx::Conv_882) %onnx::Conv_885 = Identity(%onnx::Conv_882) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_878, %onnx::Conv_879) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_881, %onnx::Conv_882) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_884, %onnx::Conv_885) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_887, %onnx::Conv_888) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_2_output_0, %onnx::Conv_890, %onnx::Conv_891) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_3_output_0 = Add(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_3_output_0) %/layers.1/Add_4_output_0 = Add(%/layers.1/Add_3_output_0, %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_4_output_0, %onnx::Conv_893, %onnx::Conv_894) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_5_output_0 = Add(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_4_output_0) %/layers.1/Add_6_output_0 = Add(%/layers.1/Add_5_output_0, %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_6_output_0, %onnx::Conv_896, %onnx::Conv_897) %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_899, %onnx::Conv_900) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_902, %onnx::Conv_903) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_905, %onnx::Conv_906) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_2_output_0, %onnx::Conv_908, %onnx::Conv_909) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_3_output_0 = Add(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_3_output_0) %/layers.2/Add_4_output_0 = Add(%/layers.2/Add_3_output_0, %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_4_output_0, %onnx::Conv_911, %onnx::Conv_912) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_5_output_0 = Add(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_4_output_0) %/layers.2/Add_6_output_0 = Add(%/layers.2/Add_5_output_0, %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_6_output_0, %onnx::Conv_914, %onnx::Conv_915) %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_917, %onnx::Conv_918) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_920, %onnx::Conv_921) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_923, %onnx::Conv_924) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_2_output_0, %onnx::Conv_926, %onnx::Conv_927) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_3_output_0 = Add(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_3_output_0) %/layers.3/Add_4_output_0 = Add(%/layers.3/Add_3_output_0, %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_4_output_0, %onnx::Conv_929, %onnx::Conv_930) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_5_output_0 = Add(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_4_output_0) %/layers.3/Add_6_output_0 = Add(%/layers.3/Add_5_output_0, %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_6_output_0, %onnx::Conv_932, %onnx::Conv_933) %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Concat_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_935, %onnx::Conv_936) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_938, %onnx::Conv_939) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_941, %onnx::Conv_942) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_2_output_0, %onnx::Conv_944, %onnx::Conv_945) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_3_output_0 = Add(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_3_output_0) %/layers.5/Add_4_output_0 = Add(%/layers.5/Add_3_output_0, %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_4_output_0, %onnx::Conv_947, %onnx::Conv_948) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_5_output_0 = Add(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_4_output_0) %/layers.5/Add_6_output_0 = Add(%/layers.5/Add_5_output_0, %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_6_output_0, %onnx::Conv_950, %onnx::Conv_951) %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_953, %onnx::Conv_954) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_956, %onnx::Conv_957) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_959, %onnx::Conv_960) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_2_output_0, %onnx::Conv_962, %onnx::Conv_963) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_3_output_0 = Add(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_3_output_0) %/layers.6/Add_4_output_0 = Add(%/layers.6/Add_3_output_0, %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_4_output_0, %onnx::Conv_965, %onnx::Conv_966) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_5_output_0 = Add(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_4_output_0) %/layers.6/Add_6_output_0 = Add(%/layers.6/Add_5_output_0, %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_6_output_0, %onnx::Conv_968, %onnx::Conv_969) %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_971, %onnx::Conv_972) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_974, %onnx::Conv_975) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_977, %onnx::Conv_978) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_2_output_0, %onnx::Conv_980, %onnx::Conv_981) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_3_output_0 = Add(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_3_output_0) %/layers.7/Add_4_output_0 = Add(%/layers.7/Add_3_output_0, %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_4_output_0, %onnx::Conv_983, %onnx::Conv_984) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_5_output_0 = Add(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_4_output_0) %/layers.7/Add_6_output_0 = Add(%/layers.7/Add_5_output_0, %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_6_output_0, %onnx::Conv_986, %onnx::Conv_987) %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Concat_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_989, %onnx::Conv_990) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_992, %onnx::Conv_993) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_995, %onnx::Conv_996) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_2_output_0, %onnx::Conv_998, %onnx::Conv_999) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_3_output_0 = Add(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_3_output_0) %/layers.9/Add_4_output_0 = Add(%/layers.9/Add_3_output_0, %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_4_output_0, %onnx::Conv_1001, %onnx::Conv_1002) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_5_output_0 = Add(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_4_output_0) %/layers.9/Add_6_output_0 = Add(%/layers.9/Add_5_output_0, %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_6_output_0, %onnx::Conv_1004, %onnx::Conv_1005) %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_1007, %onnx::Conv_1008) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_1010, %onnx::Conv_1011) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_1013, %onnx::Conv_1014) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_2_output_0, %onnx::Conv_1016, %onnx::Conv_1017) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_3_output_0 = Add(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_3_output_0) %/layers.10/Add_4_output_0 = Add(%/layers.10/Add_3_output_0, %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_4_output_0, %onnx::Conv_1019, %onnx::Conv_1020) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_5_output_0 = Add(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_4_output_0) %/layers.10/Add_6_output_0 = Add(%/layers.10/Add_5_output_0, %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_6_output_0, %onnx::Conv_1022, %onnx::Conv_1023) %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_1025, %onnx::Conv_1026) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_1028, %onnx::Conv_1029) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_1031, %onnx::Conv_1032) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_2_output_0, %onnx::Conv_1034, %onnx::Conv_1035) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_3_output_0 = Add(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_3_output_0) %/layers.11/Add_4_output_0 = Add(%/layers.11/Add_3_output_0, %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_4_output_0, %onnx::Conv_1037, %onnx::Conv_1038) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_5_output_0 = Add(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_4_output_0) %/layers.11/Add_6_output_0 = Add(%/layers.11/Add_5_output_0, %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_6_output_0, %onnx::Conv_1040, %onnx::Conv_1041) %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Concat_output_0) %876 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %876 }
val_accuracy
90.835339
2,952,275,968
10,006,922
{'zcp_epe_nas': 61.156909113068686, 'zcp_fisher': 187.5903778076172, 'zcp_flops': 47236415488.0, 'zcp_grad_norm': 257.9898986816406, 'zcp_grasp': 220.859375, 'zcp_jacov': -16.05204077557932, 'zcp_l2_norm': 948.3306274414062, 'zcp_nwot': 224.45554307427085, 'zcp_params': 10006922.0, 'zcp_plain': 0.020021554082632002, 'zcp_snip': 1507.885498046875, 'zcp_synflow': 134.93829946137365, 'zcp_zen': 113.29298400878906, 'zcp_val_accuracy': 0.933293282985687}
NASBench101_294204
NASBench101
294204
b21ad7b1c28b2fa903dcf5d9821fda65
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_878[FLOAT, 128x3x3x3] %onnx::Conv_879[FLOAT, 128] %onnx::Conv_881[FLOAT, 128x128x1x1] %onnx::Conv_884[FLOAT, 128x128x1x1] %onnx::Conv_887[FLOAT, 128x128x3x3] %onnx::Conv_890[FLOAT, 128x128x3x3] %onnx::Conv_893[FLOAT, 128x128x1x1] %onnx::Conv_896[FLOAT, 128x128x1x1] %onnx::Conv_899[FLOAT, 128x128x1x1] %onnx::Conv_902[FLOAT, 128x128x1x1] %onnx::Conv_905[FLOAT, 128x128x3x3] %onnx::Conv_908[FLOAT, 128x128x3x3] %onnx::Conv_911[FLOAT, 128x128x1x1] %onnx::Conv_914[FLOAT, 128x128x1x1] %onnx::Conv_917[FLOAT, 128x128x1x1] %onnx::Conv_920[FLOAT, 128x128x1x1] %onnx::Conv_923[FLOAT, 128x128x3x3] %onnx::Conv_926[FLOAT, 128x128x3x3] %onnx::Conv_929[FLOAT, 128x128x1x1] %onnx::Conv_932[FLOAT, 128x128x1x1] %onnx::Conv_935[FLOAT, 256x128x1x1] %onnx::Conv_936[FLOAT, 256] %onnx::Conv_938[FLOAT, 256x256x1x1] %onnx::Conv_941[FLOAT, 256x256x3x3] %onnx::Conv_944[FLOAT, 256x256x3x3] %onnx::Conv_947[FLOAT, 256x256x1x1] %onnx::Conv_950[FLOAT, 256x128x1x1] %onnx::Conv_953[FLOAT, 256x256x1x1] %onnx::Conv_956[FLOAT, 256x256x1x1] %onnx::Conv_959[FLOAT, 256x256x3x3] %onnx::Conv_962[FLOAT, 256x256x3x3] %onnx::Conv_965[FLOAT, 256x256x1x1] %onnx::Conv_968[FLOAT, 256x256x1x1] %onnx::Conv_971[FLOAT, 256x256x1x1] %onnx::Conv_974[FLOAT, 256x256x1x1] %onnx::Conv_977[FLOAT, 256x256x3x3] %onnx::Conv_980[FLOAT, 256x256x3x3] %onnx::Conv_983[FLOAT, 256x256x1x1] %onnx::Conv_986[FLOAT, 256x256x1x1] %onnx::Conv_989[FLOAT, 512x256x1x1] %onnx::Conv_990[FLOAT, 512] %onnx::Conv_992[FLOAT, 512x512x1x1] %onnx::Conv_995[FLOAT, 512x512x3x3] %onnx::Conv_998[FLOAT, 512x512x3x3] %onnx::Conv_1001[FLOAT, 512x512x1x1] %onnx::Conv_1004[FLOAT, 512x256x1x1] %onnx::Conv_1007[FLOAT, 512x512x1x1] %onnx::Conv_1010[FLOAT, 512x512x1x1] %onnx::Conv_1013[FLOAT, 512x512x3x3] %onnx::Conv_1016[FLOAT, 512x512x3x3] %onnx::Conv_1019[FLOAT, 512x512x1x1] %onnx::Conv_1022[FLOAT, 512x512x1x1] %onnx::Conv_1025[FLOAT, 512x512x1x1] %onnx::Conv_1028[FLOAT, 512x512x1x1] %onnx::Conv_1031[FLOAT, 512x512x3x3] %onnx::Conv_1034[FLOAT, 512x512x3x3] %onnx::Conv_1037[FLOAT, 512x512x1x1] %onnx::Conv_1040[FLOAT, 512x512x1x1] ) { %onnx::Conv_1041 = Identity(%onnx::Conv_990) %onnx::Conv_1038 = Identity(%onnx::Conv_990) %onnx::Conv_1035 = Identity(%onnx::Conv_990) %onnx::Conv_1032 = Identity(%onnx::Conv_990) %onnx::Conv_1029 = Identity(%onnx::Conv_990) %onnx::Conv_1026 = Identity(%onnx::Conv_990) %onnx::Conv_1023 = Identity(%onnx::Conv_990) %onnx::Conv_1020 = Identity(%onnx::Conv_990) %onnx::Conv_1017 = Identity(%onnx::Conv_990) %onnx::Conv_1014 = Identity(%onnx::Conv_990) %onnx::Conv_1011 = Identity(%onnx::Conv_990) %onnx::Conv_1008 = Identity(%onnx::Conv_990) %onnx::Conv_1005 = Identity(%onnx::Conv_990) %onnx::Conv_1002 = Identity(%onnx::Conv_990) %onnx::Conv_999 = Identity(%onnx::Conv_990) %onnx::Conv_996 = Identity(%onnx::Conv_990) %onnx::Conv_993 = Identity(%onnx::Conv_990) %onnx::Conv_987 = Identity(%onnx::Conv_936) %onnx::Conv_984 = Identity(%onnx::Conv_936) %onnx::Conv_981 = Identity(%onnx::Conv_936) %onnx::Conv_978 = Identity(%onnx::Conv_936) %onnx::Conv_975 = Identity(%onnx::Conv_936) %onnx::Conv_972 = Identity(%onnx::Conv_936) %onnx::Conv_969 = Identity(%onnx::Conv_936) %onnx::Conv_966 = Identity(%onnx::Conv_936) %onnx::Conv_963 = Identity(%onnx::Conv_936) %onnx::Conv_960 = Identity(%onnx::Conv_936) %onnx::Conv_957 = Identity(%onnx::Conv_936) %onnx::Conv_954 = Identity(%onnx::Conv_936) %onnx::Conv_951 = Identity(%onnx::Conv_936) %onnx::Conv_948 = Identity(%onnx::Conv_936) %onnx::Conv_945 = Identity(%onnx::Conv_936) %onnx::Conv_942 = Identity(%onnx::Conv_936) %onnx::Conv_939 = Identity(%onnx::Conv_936) %onnx::Conv_933 = Identity(%onnx::Conv_879) %onnx::Conv_930 = Identity(%onnx::Conv_879) %onnx::Conv_927 = Identity(%onnx::Conv_879) %onnx::Conv_924 = Identity(%onnx::Conv_879) %onnx::Conv_921 = Identity(%onnx::Conv_879) %onnx::Conv_918 = Identity(%onnx::Conv_879) %onnx::Conv_915 = Identity(%onnx::Conv_879) %onnx::Conv_912 = Identity(%onnx::Conv_879) %onnx::Conv_909 = Identity(%onnx::Conv_879) %onnx::Conv_906 = Identity(%onnx::Conv_879) %onnx::Conv_903 = Identity(%onnx::Conv_879) %onnx::Conv_900 = Identity(%onnx::Conv_879) %onnx::Conv_897 = Identity(%onnx::Conv_879) %onnx::Conv_894 = Identity(%onnx::Conv_879) %onnx::Conv_891 = Identity(%onnx::Conv_879) %onnx::Conv_888 = Identity(%onnx::Conv_879) %onnx::Conv_885 = Identity(%onnx::Conv_879) %onnx::Conv_882 = Identity(%onnx::Conv_879) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_878, %onnx::Conv_879) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_881, %onnx::Conv_882) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_884, %onnx::Conv_885) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_887, %onnx::Conv_888) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_2_output_0, %onnx::Conv_890, %onnx::Conv_891) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_3_output_0 = Add(%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_3_output_0) %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_3_output_0, %onnx::Conv_893, %onnx::Conv_894) %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_896, %onnx::Conv_897) %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_4_output_0 = Add(%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_4_output_0) %/layers.1/Add_5_output_0 = Add(%/layers.1/Add_4_output_0, %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/Add_6_output_0 = Add(%/layers.1/Add_5_output_0, %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_6_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_899, %onnx::Conv_900) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_902, %onnx::Conv_903) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_905, %onnx::Conv_906) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_2_output_0, %onnx::Conv_908, %onnx::Conv_909) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_3_output_0 = Add(%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_3_output_0) %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_3_output_0, %onnx::Conv_911, %onnx::Conv_912) %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_914, %onnx::Conv_915) %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_4_output_0 = Add(%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_4_output_0) %/layers.2/Add_5_output_0 = Add(%/layers.2/Add_4_output_0, %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/Add_6_output_0 = Add(%/layers.2/Add_5_output_0, %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_6_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_917, %onnx::Conv_918) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_920, %onnx::Conv_921) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_923, %onnx::Conv_924) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_2_output_0, %onnx::Conv_926, %onnx::Conv_927) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_3_output_0 = Add(%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_3_output_0) %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_3_output_0, %onnx::Conv_929, %onnx::Conv_930) %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_932, %onnx::Conv_933) %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_4_output_0 = Add(%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_4_output_0) %/layers.3/Add_5_output_0 = Add(%/layers.3/Add_4_output_0, %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/Add_6_output_0 = Add(%/layers.3/Add_5_output_0, %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_6_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/vertex_op.5/maxpool/MaxPool_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_935, %onnx::Conv_936) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_938, %onnx::Conv_939) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_941, %onnx::Conv_942) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_2_output_0, %onnx::Conv_944, %onnx::Conv_945) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_3_output_0 = Add(%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_3_output_0) %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_3_output_0, %onnx::Conv_947, %onnx::Conv_948) %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_950, %onnx::Conv_951) %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_4_output_0 = Add(%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_4_output_0) %/layers.5/Add_5_output_0 = Add(%/layers.5/Add_4_output_0, %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/Add_6_output_0 = Add(%/layers.5/Add_5_output_0, %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_6_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_953, %onnx::Conv_954) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_956, %onnx::Conv_957) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_959, %onnx::Conv_960) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_2_output_0, %onnx::Conv_962, %onnx::Conv_963) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_3_output_0 = Add(%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_3_output_0) %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_3_output_0, %onnx::Conv_965, %onnx::Conv_966) %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_968, %onnx::Conv_969) %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_4_output_0 = Add(%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_4_output_0) %/layers.6/Add_5_output_0 = Add(%/layers.6/Add_4_output_0, %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/Add_6_output_0 = Add(%/layers.6/Add_5_output_0, %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_6_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_971, %onnx::Conv_972) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_974, %onnx::Conv_975) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_977, %onnx::Conv_978) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_2_output_0, %onnx::Conv_980, %onnx::Conv_981) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_3_output_0 = Add(%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_3_output_0) %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_3_output_0, %onnx::Conv_983, %onnx::Conv_984) %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_986, %onnx::Conv_987) %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_4_output_0 = Add(%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_4_output_0) %/layers.7/Add_5_output_0 = Add(%/layers.7/Add_4_output_0, %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/Add_6_output_0 = Add(%/layers.7/Add_5_output_0, %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_6_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/vertex_op.5/maxpool/MaxPool_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_989, %onnx::Conv_990) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_992, %onnx::Conv_993) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_995, %onnx::Conv_996) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_2_output_0, %onnx::Conv_998, %onnx::Conv_999) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_3_output_0 = Add(%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_3_output_0) %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_3_output_0, %onnx::Conv_1001, %onnx::Conv_1002) %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1004, %onnx::Conv_1005) %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_4_output_0 = Add(%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_4_output_0) %/layers.9/Add_5_output_0 = Add(%/layers.9/Add_4_output_0, %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/Add_6_output_0 = Add(%/layers.9/Add_5_output_0, %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_6_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_1007, %onnx::Conv_1008) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_1010, %onnx::Conv_1011) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_1013, %onnx::Conv_1014) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_2_output_0, %onnx::Conv_1016, %onnx::Conv_1017) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_3_output_0 = Add(%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_3_output_0) %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_3_output_0, %onnx::Conv_1019, %onnx::Conv_1020) %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_1022, %onnx::Conv_1023) %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_4_output_0 = Add(%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_4_output_0) %/layers.10/Add_5_output_0 = Add(%/layers.10/Add_4_output_0, %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/Add_6_output_0 = Add(%/layers.10/Add_5_output_0, %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_6_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_1025, %onnx::Conv_1026) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_1028, %onnx::Conv_1029) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_1031, %onnx::Conv_1032) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_2_output_0, %onnx::Conv_1034, %onnx::Conv_1035) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_3_output_0 = Add(%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_3_output_0) %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_3_output_0, %onnx::Conv_1037, %onnx::Conv_1038) %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_1040, %onnx::Conv_1041) %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_4_output_0 = Add(%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_4_output_0) %/layers.11/Add_5_output_0 = Add(%/layers.11/Add_4_output_0, %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/Add_6_output_0 = Add(%/layers.11/Add_5_output_0, %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_6_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/vertex_op.5/maxpool/MaxPool_output_0) %876 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %876 }
val_accuracy
86.217946
6,617,835,520
22,421,642
{'zcp_epe_nas': 123.04839488616666, 'zcp_fisher': 22460.72265625, 'zcp_flops': 105885368320.0, 'zcp_grad_norm': 2665.68505859375, 'zcp_grasp': -213128.375, 'zcp_jacov': -16.057850811801398, 'zcp_l2_norm': 1242.2930908203125, 'zcp_nwot': 235.07190568463892, 'zcp_params': 22421642.0, 'zcp_plain': 0.19172692298889102, 'zcp_snip': 20104.341796875, 'zcp_synflow': 156.46493725370388, 'zcp_zen': 115.32804870605469, 'zcp_val_accuracy': 0.9198718070983881}
NASBench101_188093
NASBench101
188093
71b9fc0883a015d906497800895583e8
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_887[FLOAT, 128x3x3x3] %onnx::Conv_888[FLOAT, 128] %onnx::Conv_890[FLOAT, 64x128x1x1] %onnx::Conv_891[FLOAT, 64] %onnx::Conv_893[FLOAT, 64x64x1x1] %onnx::Conv_896[FLOAT, 64x128x1x1] %onnx::Conv_899[FLOAT, 64x64x1x1] %onnx::Conv_902[FLOAT, 64x64x3x3] %onnx::Conv_905[FLOAT, 64x64x1x1] %onnx::Conv_908[FLOAT, 64x128x1x1] %onnx::Conv_911[FLOAT, 64x64x1x1] %onnx::Conv_914[FLOAT, 64x128x1x1] %onnx::Conv_917[FLOAT, 64x64x1x1] %onnx::Conv_920[FLOAT, 64x64x3x3] %onnx::Conv_923[FLOAT, 64x64x1x1] %onnx::Conv_926[FLOAT, 64x128x1x1] %onnx::Conv_929[FLOAT, 64x64x1x1] %onnx::Conv_932[FLOAT, 64x128x1x1] %onnx::Conv_935[FLOAT, 64x64x1x1] %onnx::Conv_938[FLOAT, 64x64x3x3] %onnx::Conv_941[FLOAT, 64x64x1x1] %onnx::Conv_944[FLOAT, 128x128x1x1] %onnx::Conv_947[FLOAT, 128x128x1x1] %onnx::Conv_950[FLOAT, 128x128x1x1] %onnx::Conv_953[FLOAT, 128x128x1x1] %onnx::Conv_956[FLOAT, 128x128x3x3] %onnx::Conv_959[FLOAT, 128x128x1x1] %onnx::Conv_962[FLOAT, 128x256x1x1] %onnx::Conv_965[FLOAT, 128x128x1x1] %onnx::Conv_968[FLOAT, 128x256x1x1] %onnx::Conv_971[FLOAT, 128x128x1x1] %onnx::Conv_974[FLOAT, 128x128x3x3] %onnx::Conv_977[FLOAT, 128x128x1x1] %onnx::Conv_980[FLOAT, 128x256x1x1] %onnx::Conv_983[FLOAT, 128x128x1x1] %onnx::Conv_986[FLOAT, 128x256x1x1] %onnx::Conv_989[FLOAT, 128x128x1x1] %onnx::Conv_992[FLOAT, 128x128x3x3] %onnx::Conv_995[FLOAT, 128x128x1x1] %onnx::Conv_998[FLOAT, 256x256x1x1] %onnx::Conv_999[FLOAT, 256] %onnx::Conv_1001[FLOAT, 256x256x1x1] %onnx::Conv_1004[FLOAT, 256x256x1x1] %onnx::Conv_1007[FLOAT, 256x256x1x1] %onnx::Conv_1010[FLOAT, 256x256x3x3] %onnx::Conv_1013[FLOAT, 256x256x1x1] %onnx::Conv_1016[FLOAT, 256x512x1x1] %onnx::Conv_1019[FLOAT, 256x256x1x1] %onnx::Conv_1022[FLOAT, 256x512x1x1] %onnx::Conv_1025[FLOAT, 256x256x1x1] %onnx::Conv_1028[FLOAT, 256x256x3x3] %onnx::Conv_1031[FLOAT, 256x256x1x1] %onnx::Conv_1034[FLOAT, 256x512x1x1] %onnx::Conv_1037[FLOAT, 256x256x1x1] %onnx::Conv_1040[FLOAT, 256x512x1x1] %onnx::Conv_1043[FLOAT, 256x256x1x1] %onnx::Conv_1046[FLOAT, 256x256x3x3] %onnx::Conv_1049[FLOAT, 256x256x1x1] ) { %onnx::Conv_1050 = Identity(%onnx::Conv_999) %onnx::Conv_1047 = Identity(%onnx::Conv_999) %onnx::Conv_1044 = Identity(%onnx::Conv_999) %onnx::Conv_1041 = Identity(%onnx::Conv_999) %onnx::Conv_1038 = Identity(%onnx::Conv_999) %onnx::Conv_1035 = Identity(%onnx::Conv_999) %onnx::Conv_1032 = Identity(%onnx::Conv_999) %onnx::Conv_1029 = Identity(%onnx::Conv_999) %onnx::Conv_1026 = Identity(%onnx::Conv_999) %onnx::Conv_1023 = Identity(%onnx::Conv_999) %onnx::Conv_1020 = Identity(%onnx::Conv_999) %onnx::Conv_1017 = Identity(%onnx::Conv_999) %onnx::Conv_1014 = Identity(%onnx::Conv_999) %onnx::Conv_1011 = Identity(%onnx::Conv_999) %onnx::Conv_1008 = Identity(%onnx::Conv_999) %onnx::Conv_1005 = Identity(%onnx::Conv_999) %onnx::Conv_1002 = Identity(%onnx::Conv_999) %onnx::Conv_996 = Identity(%onnx::Conv_888) %onnx::Conv_993 = Identity(%onnx::Conv_888) %onnx::Conv_990 = Identity(%onnx::Conv_888) %onnx::Conv_987 = Identity(%onnx::Conv_888) %onnx::Conv_984 = Identity(%onnx::Conv_888) %onnx::Conv_981 = Identity(%onnx::Conv_888) %onnx::Conv_978 = Identity(%onnx::Conv_888) %onnx::Conv_975 = Identity(%onnx::Conv_888) %onnx::Conv_972 = Identity(%onnx::Conv_888) %onnx::Conv_969 = Identity(%onnx::Conv_888) %onnx::Conv_966 = Identity(%onnx::Conv_888) %onnx::Conv_963 = Identity(%onnx::Conv_888) %onnx::Conv_960 = Identity(%onnx::Conv_888) %onnx::Conv_957 = Identity(%onnx::Conv_888) %onnx::Conv_954 = Identity(%onnx::Conv_888) %onnx::Conv_951 = Identity(%onnx::Conv_888) %onnx::Conv_948 = Identity(%onnx::Conv_888) %onnx::Conv_945 = Identity(%onnx::Conv_888) %onnx::Conv_942 = Identity(%onnx::Conv_891) %onnx::Conv_939 = Identity(%onnx::Conv_891) %onnx::Conv_936 = Identity(%onnx::Conv_891) %onnx::Conv_933 = Identity(%onnx::Conv_891) %onnx::Conv_930 = Identity(%onnx::Conv_891) %onnx::Conv_927 = Identity(%onnx::Conv_891) %onnx::Conv_924 = Identity(%onnx::Conv_891) %onnx::Conv_921 = Identity(%onnx::Conv_891) %onnx::Conv_918 = Identity(%onnx::Conv_891) %onnx::Conv_915 = Identity(%onnx::Conv_891) %onnx::Conv_912 = Identity(%onnx::Conv_891) %onnx::Conv_909 = Identity(%onnx::Conv_891) %onnx::Conv_906 = Identity(%onnx::Conv_891) %onnx::Conv_903 = Identity(%onnx::Conv_891) %onnx::Conv_900 = Identity(%onnx::Conv_891) %onnx::Conv_897 = Identity(%onnx::Conv_891) %onnx::Conv_894 = Identity(%onnx::Conv_891) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_887, %onnx::Conv_888) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_890, %onnx::Conv_891) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_893, %onnx::Conv_894) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_896, %onnx::Conv_897) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/Add_2_output_0 = Add(%/layers.1/Add_1_output_0, %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_2_output_0, %onnx::Conv_899, %onnx::Conv_900) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_3_output_0 = Add(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_3_output_0, %onnx::Conv_902, %onnx::Conv_903) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_4_output_0 = Add(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_3_output_0) %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_4_output_0, %onnx::Conv_905, %onnx::Conv_906) %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_5_output_0 = Add(%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_4_output_0) %/layers.1/Add_6_output_0 = Add(%/layers.1/Add_5_output_0, %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_6_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.5/maxpool/MaxPool_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_908, %onnx::Conv_909) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_911, %onnx::Conv_912) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_914, %onnx::Conv_915) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/Add_2_output_0 = Add(%/layers.2/Add_1_output_0, %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_2_output_0, %onnx::Conv_917, %onnx::Conv_918) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_3_output_0 = Add(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_3_output_0, %onnx::Conv_920, %onnx::Conv_921) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_4_output_0 = Add(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_3_output_0) %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_4_output_0, %onnx::Conv_923, %onnx::Conv_924) %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_5_output_0 = Add(%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_4_output_0) %/layers.2/Add_6_output_0 = Add(%/layers.2/Add_5_output_0, %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_6_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.5/maxpool/MaxPool_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_926, %onnx::Conv_927) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_929, %onnx::Conv_930) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_932, %onnx::Conv_933) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/Add_2_output_0 = Add(%/layers.3/Add_1_output_0, %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_2_output_0, %onnx::Conv_935, %onnx::Conv_936) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_3_output_0 = Add(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_3_output_0, %onnx::Conv_938, %onnx::Conv_939) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_4_output_0 = Add(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_3_output_0) %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_4_output_0, %onnx::Conv_941, %onnx::Conv_942) %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_5_output_0 = Add(%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_4_output_0) %/layers.3/Add_6_output_0 = Add(%/layers.3/Add_5_output_0, %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_6_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.5/maxpool/MaxPool_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Concat_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_944, %onnx::Conv_945) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_947, %onnx::Conv_948) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_950, %onnx::Conv_951) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/Add_2_output_0 = Add(%/layers.5/Add_1_output_0, %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_2_output_0, %onnx::Conv_953, %onnx::Conv_954) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_3_output_0 = Add(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_3_output_0, %onnx::Conv_956, %onnx::Conv_957) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_4_output_0 = Add(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_3_output_0) %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_4_output_0, %onnx::Conv_959, %onnx::Conv_960) %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_5_output_0 = Add(%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_4_output_0) %/layers.5/Add_6_output_0 = Add(%/layers.5/Add_5_output_0, %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_6_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.5/maxpool/MaxPool_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_962, %onnx::Conv_963) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_965, %onnx::Conv_966) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_968, %onnx::Conv_969) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/Add_2_output_0 = Add(%/layers.6/Add_1_output_0, %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_2_output_0, %onnx::Conv_971, %onnx::Conv_972) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_3_output_0 = Add(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_3_output_0, %onnx::Conv_974, %onnx::Conv_975) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_4_output_0 = Add(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_3_output_0) %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_4_output_0, %onnx::Conv_977, %onnx::Conv_978) %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_5_output_0 = Add(%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_4_output_0) %/layers.6/Add_6_output_0 = Add(%/layers.6/Add_5_output_0, %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_6_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.5/maxpool/MaxPool_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_980, %onnx::Conv_981) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_983, %onnx::Conv_984) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_986, %onnx::Conv_987) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/Add_2_output_0 = Add(%/layers.7/Add_1_output_0, %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_2_output_0, %onnx::Conv_989, %onnx::Conv_990) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_3_output_0 = Add(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_3_output_0, %onnx::Conv_992, %onnx::Conv_993) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_4_output_0 = Add(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_3_output_0) %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_4_output_0, %onnx::Conv_995, %onnx::Conv_996) %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_5_output_0 = Add(%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_4_output_0) %/layers.7/Add_6_output_0 = Add(%/layers.7/Add_5_output_0, %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_6_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.5/maxpool/MaxPool_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Concat_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_998, %onnx::Conv_999) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_1001, %onnx::Conv_1002) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1004, %onnx::Conv_1005) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/Add_2_output_0 = Add(%/layers.9/Add_1_output_0, %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_2_output_0, %onnx::Conv_1007, %onnx::Conv_1008) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_3_output_0 = Add(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_3_output_0, %onnx::Conv_1010, %onnx::Conv_1011) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_4_output_0 = Add(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_3_output_0) %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_4_output_0, %onnx::Conv_1013, %onnx::Conv_1014) %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_5_output_0 = Add(%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_4_output_0) %/layers.9/Add_6_output_0 = Add(%/layers.9/Add_5_output_0, %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_6_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.5/maxpool/MaxPool_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_1016, %onnx::Conv_1017) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_1019, %onnx::Conv_1020) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_1022, %onnx::Conv_1023) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/Add_2_output_0 = Add(%/layers.10/Add_1_output_0, %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_2_output_0, %onnx::Conv_1025, %onnx::Conv_1026) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_3_output_0 = Add(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_3_output_0, %onnx::Conv_1028, %onnx::Conv_1029) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_4_output_0 = Add(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_3_output_0) %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_4_output_0, %onnx::Conv_1031, %onnx::Conv_1032) %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_5_output_0 = Add(%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_4_output_0) %/layers.10/Add_6_output_0 = Add(%/layers.10/Add_5_output_0, %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_6_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.5/maxpool/MaxPool_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_1034, %onnx::Conv_1035) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_1037, %onnx::Conv_1038) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_1040, %onnx::Conv_1041) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/Add_2_output_0 = Add(%/layers.11/Add_1_output_0, %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_2_output_0, %onnx::Conv_1043, %onnx::Conv_1044) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_3_output_0 = Add(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_3_output_0, %onnx::Conv_1046, %onnx::Conv_1047) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_4_output_0 = Add(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_3_output_0) %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_4_output_0, %onnx::Conv_1049, %onnx::Conv_1050) %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_5_output_0 = Add(%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_4_output_0) %/layers.11/Add_6_output_0 = Add(%/layers.11/Add_5_output_0, %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_6_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.5/maxpool/MaxPool_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Concat_output_0) %885 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %885 }
val_accuracy
87.540066
1,199,056,896
3,989,898
{'zcp_epe_nas': 85.14634662700868, 'zcp_fisher': 663.6156616210938, 'zcp_flops': 19184910336.0, 'zcp_grad_norm': 520.2518920898438, 'zcp_grasp': 2064.23046875, 'zcp_jacov': -16.06456684419075, 'zcp_l2_norm': 993.8214721679688, 'zcp_nwot': 224.82877578058134, 'zcp_params': 3989898.0, 'zcp_plain': 0.061729848384857004, 'zcp_snip': 2663.369873046875, 'zcp_synflow': 110.82370975987669, 'zcp_zen': 91.52723693847656, 'zcp_val_accuracy': 0.8954327106475831}
NASBench101_156382
NASBench101
156382
5ea478a50d2539a2eea56bf57736436e
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_896[FLOAT, 128x3x3x3] %onnx::Conv_897[FLOAT, 128] %onnx::Conv_899[FLOAT, 128x128x1x1] %onnx::Conv_902[FLOAT, 128x128x3x3] %onnx::Conv_905[FLOAT, 128x128x1x1] %onnx::Conv_908[FLOAT, 128x128x1x1] %onnx::Conv_911[FLOAT, 128x128x1x1] %onnx::Conv_914[FLOAT, 128x128x1x1] %onnx::Conv_917[FLOAT, 128x128x1x1] %onnx::Conv_920[FLOAT, 128x128x3x3] %onnx::Conv_923[FLOAT, 128x128x1x1] %onnx::Conv_926[FLOAT, 128x128x1x1] %onnx::Conv_929[FLOAT, 128x128x1x1] %onnx::Conv_932[FLOAT, 128x128x1x1] %onnx::Conv_935[FLOAT, 128x128x1x1] %onnx::Conv_938[FLOAT, 128x128x3x3] %onnx::Conv_941[FLOAT, 128x128x1x1] %onnx::Conv_944[FLOAT, 128x128x1x1] %onnx::Conv_947[FLOAT, 128x128x1x1] %onnx::Conv_950[FLOAT, 128x128x1x1] %onnx::Conv_953[FLOAT, 256x128x1x1] %onnx::Conv_954[FLOAT, 256] %onnx::Conv_956[FLOAT, 256x256x3x3] %onnx::Conv_959[FLOAT, 256x128x1x1] %onnx::Conv_962[FLOAT, 256x256x1x1] %onnx::Conv_965[FLOAT, 256x256x1x1] %onnx::Conv_968[FLOAT, 256x128x1x1] %onnx::Conv_971[FLOAT, 256x256x1x1] %onnx::Conv_974[FLOAT, 256x256x3x3] %onnx::Conv_977[FLOAT, 256x256x1x1] %onnx::Conv_980[FLOAT, 256x256x1x1] %onnx::Conv_983[FLOAT, 256x256x1x1] %onnx::Conv_986[FLOAT, 256x256x1x1] %onnx::Conv_989[FLOAT, 256x256x1x1] %onnx::Conv_992[FLOAT, 256x256x3x3] %onnx::Conv_995[FLOAT, 256x256x1x1] %onnx::Conv_998[FLOAT, 256x256x1x1] %onnx::Conv_1001[FLOAT, 256x256x1x1] %onnx::Conv_1004[FLOAT, 256x256x1x1] %onnx::Conv_1007[FLOAT, 512x256x1x1] %onnx::Conv_1008[FLOAT, 512] %onnx::Conv_1010[FLOAT, 512x512x3x3] %onnx::Conv_1013[FLOAT, 512x256x1x1] %onnx::Conv_1016[FLOAT, 512x512x1x1] %onnx::Conv_1019[FLOAT, 512x512x1x1] %onnx::Conv_1022[FLOAT, 512x256x1x1] %onnx::Conv_1025[FLOAT, 512x512x1x1] %onnx::Conv_1028[FLOAT, 512x512x3x3] %onnx::Conv_1031[FLOAT, 512x512x1x1] %onnx::Conv_1034[FLOAT, 512x512x1x1] %onnx::Conv_1037[FLOAT, 512x512x1x1] %onnx::Conv_1040[FLOAT, 512x512x1x1] %onnx::Conv_1043[FLOAT, 512x512x1x1] %onnx::Conv_1046[FLOAT, 512x512x3x3] %onnx::Conv_1049[FLOAT, 512x512x1x1] %onnx::Conv_1052[FLOAT, 512x512x1x1] %onnx::Conv_1055[FLOAT, 512x512x1x1] %onnx::Conv_1058[FLOAT, 512x512x1x1] ) { %onnx::Conv_1059 = Identity(%onnx::Conv_1008) %onnx::Conv_1056 = Identity(%onnx::Conv_1008) %onnx::Conv_1053 = Identity(%onnx::Conv_1008) %onnx::Conv_1050 = Identity(%onnx::Conv_1008) %onnx::Conv_1047 = Identity(%onnx::Conv_1008) %onnx::Conv_1044 = Identity(%onnx::Conv_1008) %onnx::Conv_1041 = Identity(%onnx::Conv_1008) %onnx::Conv_1038 = Identity(%onnx::Conv_1008) %onnx::Conv_1035 = Identity(%onnx::Conv_1008) %onnx::Conv_1032 = Identity(%onnx::Conv_1008) %onnx::Conv_1029 = Identity(%onnx::Conv_1008) %onnx::Conv_1026 = Identity(%onnx::Conv_1008) %onnx::Conv_1023 = Identity(%onnx::Conv_1008) %onnx::Conv_1020 = Identity(%onnx::Conv_1008) %onnx::Conv_1017 = Identity(%onnx::Conv_1008) %onnx::Conv_1014 = Identity(%onnx::Conv_1008) %onnx::Conv_1011 = Identity(%onnx::Conv_1008) %onnx::Conv_1005 = Identity(%onnx::Conv_954) %onnx::Conv_1002 = Identity(%onnx::Conv_954) %onnx::Conv_999 = Identity(%onnx::Conv_954) %onnx::Conv_996 = Identity(%onnx::Conv_954) %onnx::Conv_993 = Identity(%onnx::Conv_954) %onnx::Conv_990 = Identity(%onnx::Conv_954) %onnx::Conv_987 = Identity(%onnx::Conv_954) %onnx::Conv_984 = Identity(%onnx::Conv_954) %onnx::Conv_981 = Identity(%onnx::Conv_954) %onnx::Conv_978 = Identity(%onnx::Conv_954) %onnx::Conv_975 = Identity(%onnx::Conv_954) %onnx::Conv_972 = Identity(%onnx::Conv_954) %onnx::Conv_969 = Identity(%onnx::Conv_954) %onnx::Conv_966 = Identity(%onnx::Conv_954) %onnx::Conv_963 = Identity(%onnx::Conv_954) %onnx::Conv_960 = Identity(%onnx::Conv_954) %onnx::Conv_957 = Identity(%onnx::Conv_954) %onnx::Conv_951 = Identity(%onnx::Conv_897) %onnx::Conv_948 = Identity(%onnx::Conv_897) %onnx::Conv_945 = Identity(%onnx::Conv_897) %onnx::Conv_942 = Identity(%onnx::Conv_897) %onnx::Conv_939 = Identity(%onnx::Conv_897) %onnx::Conv_936 = Identity(%onnx::Conv_897) %onnx::Conv_933 = Identity(%onnx::Conv_897) %onnx::Conv_930 = Identity(%onnx::Conv_897) %onnx::Conv_927 = Identity(%onnx::Conv_897) %onnx::Conv_924 = Identity(%onnx::Conv_897) %onnx::Conv_921 = Identity(%onnx::Conv_897) %onnx::Conv_918 = Identity(%onnx::Conv_897) %onnx::Conv_915 = Identity(%onnx::Conv_897) %onnx::Conv_912 = Identity(%onnx::Conv_897) %onnx::Conv_909 = Identity(%onnx::Conv_897) %onnx::Conv_906 = Identity(%onnx::Conv_897) %onnx::Conv_903 = Identity(%onnx::Conv_897) %onnx::Conv_900 = Identity(%onnx::Conv_897) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_896, %onnx::Conv_897) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_899, %onnx::Conv_900) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_902, %onnx::Conv_903) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_905, %onnx::Conv_906) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/Add_2_output_0 = Add(%/layers.1/Add_1_output_0, %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_2_output_0, %onnx::Conv_908, %onnx::Conv_909) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_3_output_0 = Add(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_3_output_0, %onnx::Conv_911, %onnx::Conv_912) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_4_output_0 = Add(%/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_3_output_0) %/layers.1/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_4_output_0) %/layers.1/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_5_output_0 = Add(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_4_output_0) %/layers.1/Add_6_output_0 = Add(%/layers.1/Add_5_output_0, %/layers.1/vertex_op.4/maxpool/MaxPool_output_0) %/layers.1/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_6_output_0) %/layers.1/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_914, %onnx::Conv_915) %/layers.1/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Add_7_output_0 = Add(%/layers.1/vertex_op.5/maxpool/MaxPool_output_0, %/layers.1/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_7_output_0, %onnx::Conv_917, %onnx::Conv_918) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_920, %onnx::Conv_921) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_7_output_0, %onnx::Conv_923, %onnx::Conv_924) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/Add_2_output_0 = Add(%/layers.2/Add_1_output_0, %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_2_output_0, %onnx::Conv_926, %onnx::Conv_927) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_3_output_0 = Add(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_3_output_0, %onnx::Conv_929, %onnx::Conv_930) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_4_output_0 = Add(%/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_3_output_0) %/layers.2/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_4_output_0) %/layers.2/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_5_output_0 = Add(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_4_output_0) %/layers.2/Add_6_output_0 = Add(%/layers.2/Add_5_output_0, %/layers.2/vertex_op.4/maxpool/MaxPool_output_0) %/layers.2/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_6_output_0) %/layers.2/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_7_output_0, %onnx::Conv_932, %onnx::Conv_933) %/layers.2/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Add_7_output_0 = Add(%/layers.2/vertex_op.5/maxpool/MaxPool_output_0, %/layers.2/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_7_output_0, %onnx::Conv_935, %onnx::Conv_936) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_938, %onnx::Conv_939) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_7_output_0, %onnx::Conv_941, %onnx::Conv_942) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/Add_2_output_0 = Add(%/layers.3/Add_1_output_0, %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_2_output_0, %onnx::Conv_944, %onnx::Conv_945) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_3_output_0 = Add(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_3_output_0, %onnx::Conv_947, %onnx::Conv_948) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_4_output_0 = Add(%/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_3_output_0) %/layers.3/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_4_output_0) %/layers.3/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_5_output_0 = Add(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_4_output_0) %/layers.3/Add_6_output_0 = Add(%/layers.3/Add_5_output_0, %/layers.3/vertex_op.4/maxpool/MaxPool_output_0) %/layers.3/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_6_output_0) %/layers.3/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_7_output_0, %onnx::Conv_950, %onnx::Conv_951) %/layers.3/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Add_7_output_0 = Add(%/layers.3/vertex_op.5/maxpool/MaxPool_output_0, %/layers.3/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Add_7_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_953, %onnx::Conv_954) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_956, %onnx::Conv_957) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_959, %onnx::Conv_960) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/Add_2_output_0 = Add(%/layers.5/Add_1_output_0, %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_2_output_0, %onnx::Conv_962, %onnx::Conv_963) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_3_output_0 = Add(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_3_output_0, %onnx::Conv_965, %onnx::Conv_966) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_4_output_0 = Add(%/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_3_output_0) %/layers.5/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_4_output_0) %/layers.5/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_5_output_0 = Add(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_4_output_0) %/layers.5/Add_6_output_0 = Add(%/layers.5/Add_5_output_0, %/layers.5/vertex_op.4/maxpool/MaxPool_output_0) %/layers.5/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_6_output_0) %/layers.5/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_968, %onnx::Conv_969) %/layers.5/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Add_7_output_0 = Add(%/layers.5/vertex_op.5/maxpool/MaxPool_output_0, %/layers.5/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_7_output_0, %onnx::Conv_971, %onnx::Conv_972) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_974, %onnx::Conv_975) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_7_output_0, %onnx::Conv_977, %onnx::Conv_978) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/Add_2_output_0 = Add(%/layers.6/Add_1_output_0, %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_2_output_0, %onnx::Conv_980, %onnx::Conv_981) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_3_output_0 = Add(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_3_output_0, %onnx::Conv_983, %onnx::Conv_984) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_4_output_0 = Add(%/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_3_output_0) %/layers.6/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_4_output_0) %/layers.6/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_5_output_0 = Add(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_4_output_0) %/layers.6/Add_6_output_0 = Add(%/layers.6/Add_5_output_0, %/layers.6/vertex_op.4/maxpool/MaxPool_output_0) %/layers.6/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_6_output_0) %/layers.6/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_7_output_0, %onnx::Conv_986, %onnx::Conv_987) %/layers.6/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Add_7_output_0 = Add(%/layers.6/vertex_op.5/maxpool/MaxPool_output_0, %/layers.6/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_7_output_0, %onnx::Conv_989, %onnx::Conv_990) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_992, %onnx::Conv_993) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_7_output_0, %onnx::Conv_995, %onnx::Conv_996) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/Add_2_output_0 = Add(%/layers.7/Add_1_output_0, %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_2_output_0, %onnx::Conv_998, %onnx::Conv_999) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_3_output_0 = Add(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_3_output_0, %onnx::Conv_1001, %onnx::Conv_1002) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_4_output_0 = Add(%/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_3_output_0) %/layers.7/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_4_output_0) %/layers.7/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_5_output_0 = Add(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_4_output_0) %/layers.7/Add_6_output_0 = Add(%/layers.7/Add_5_output_0, %/layers.7/vertex_op.4/maxpool/MaxPool_output_0) %/layers.7/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_6_output_0) %/layers.7/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_7_output_0, %onnx::Conv_1004, %onnx::Conv_1005) %/layers.7/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Add_7_output_0 = Add(%/layers.7/vertex_op.5/maxpool/MaxPool_output_0, %/layers.7/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Add_7_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1007, %onnx::Conv_1008) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_1010, %onnx::Conv_1011) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1013, %onnx::Conv_1014) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/Add_2_output_0 = Add(%/layers.9/Add_1_output_0, %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_2_output_0, %onnx::Conv_1016, %onnx::Conv_1017) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_3_output_0 = Add(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_3_output_0, %onnx::Conv_1019, %onnx::Conv_1020) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_4_output_0 = Add(%/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_3_output_0) %/layers.9/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_4_output_0) %/layers.9/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_5_output_0 = Add(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_4_output_0) %/layers.9/Add_6_output_0 = Add(%/layers.9/Add_5_output_0, %/layers.9/vertex_op.4/maxpool/MaxPool_output_0) %/layers.9/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_6_output_0) %/layers.9/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1022, %onnx::Conv_1023) %/layers.9/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Add_7_output_0 = Add(%/layers.9/vertex_op.5/maxpool/MaxPool_output_0, %/layers.9/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_7_output_0, %onnx::Conv_1025, %onnx::Conv_1026) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_1028, %onnx::Conv_1029) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_7_output_0, %onnx::Conv_1031, %onnx::Conv_1032) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/Add_2_output_0 = Add(%/layers.10/Add_1_output_0, %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_2_output_0, %onnx::Conv_1034, %onnx::Conv_1035) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_3_output_0 = Add(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_3_output_0, %onnx::Conv_1037, %onnx::Conv_1038) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_4_output_0 = Add(%/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_3_output_0) %/layers.10/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_4_output_0) %/layers.10/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_5_output_0 = Add(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_4_output_0) %/layers.10/Add_6_output_0 = Add(%/layers.10/Add_5_output_0, %/layers.10/vertex_op.4/maxpool/MaxPool_output_0) %/layers.10/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_6_output_0) %/layers.10/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_7_output_0, %onnx::Conv_1040, %onnx::Conv_1041) %/layers.10/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Add_7_output_0 = Add(%/layers.10/vertex_op.5/maxpool/MaxPool_output_0, %/layers.10/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_7_output_0, %onnx::Conv_1043, %onnx::Conv_1044) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_1046, %onnx::Conv_1047) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_7_output_0, %onnx::Conv_1049, %onnx::Conv_1050) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/Add_2_output_0 = Add(%/layers.11/Add_1_output_0, %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_2_output_0, %onnx::Conv_1052, %onnx::Conv_1053) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_3_output_0 = Add(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_3_output_0, %onnx::Conv_1055, %onnx::Conv_1056) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_4_output_0 = Add(%/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_3_output_0) %/layers.11/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_4_output_0) %/layers.11/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_5_output_0 = Add(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_4_output_0) %/layers.11/Add_6_output_0 = Add(%/layers.11/Add_5_output_0, %/layers.11/vertex_op.4/maxpool/MaxPool_output_0) %/layers.11/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_6_output_0) %/layers.11/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_7_output_0, %onnx::Conv_1058, %onnx::Conv_1059) %/layers.11/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Add_7_output_0 = Add(%/layers.11/vertex_op.5/maxpool/MaxPool_output_0, %/layers.11/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Add_7_output_0) %894 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %894 }
val_accuracy
90.995592
4,168,361,984
14,000,266
{'zcp_epe_nas': 119.17001200198898, 'zcp_fisher': 264.2716064453125, 'zcp_flops': 66693791744.0, 'zcp_grad_norm': 323.44573974609375, 'zcp_grasp': -96.181640625, 'zcp_jacov': -16.062723697442575, 'zcp_l2_norm': 1226.098388671875, 'zcp_nwot': 235.0499883542207, 'zcp_params': 14000266.0, 'zcp_plain': 0.157805755734443, 'zcp_snip': 2629.605712890625, 'zcp_synflow': 99.91191397365964, 'zcp_zen': 112.59562683105469, 'zcp_val_accuracy': 0.9131610393524171}
NASBench101_361656
NASBench101
361656
da9d1cb53bca1beae31036c1ac620614
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_1028[FLOAT, 128x3x3x3] %onnx::Conv_1029[FLOAT, 128] %onnx::Conv_1031[FLOAT, 43x128x1x1] %onnx::Conv_1032[FLOAT, 43] %onnx::Conv_1034[FLOAT, 43x43x3x3] %onnx::Conv_1037[FLOAT, 43x43x1x1] %onnx::Conv_1040[FLOAT, 43x43x1x1] %onnx::Conv_1043[FLOAT, 43x43x3x3] %onnx::Conv_1046[FLOAT, 42x128x1x1] %onnx::Conv_1047[FLOAT, 42] %onnx::Conv_1049[FLOAT, 42x42x1x1] %onnx::Conv_1052[FLOAT, 43x128x1x1] %onnx::Conv_1055[FLOAT, 43x43x3x3] %onnx::Conv_1058[FLOAT, 43x43x1x1] %onnx::Conv_1061[FLOAT, 43x43x1x1] %onnx::Conv_1064[FLOAT, 43x43x3x3] %onnx::Conv_1067[FLOAT, 42x128x1x1] %onnx::Conv_1070[FLOAT, 42x42x1x1] %onnx::Conv_1073[FLOAT, 43x128x1x1] %onnx::Conv_1076[FLOAT, 43x43x3x3] %onnx::Conv_1079[FLOAT, 43x43x1x1] %onnx::Conv_1082[FLOAT, 43x43x1x1] %onnx::Conv_1085[FLOAT, 43x43x3x3] %onnx::Conv_1088[FLOAT, 42x128x1x1] %onnx::Conv_1091[FLOAT, 42x42x1x1] %onnx::Conv_1094[FLOAT, 86x128x1x1] %onnx::Conv_1095[FLOAT, 86] %onnx::Conv_1097[FLOAT, 86x86x3x3] %onnx::Conv_1100[FLOAT, 86x86x1x1] %onnx::Conv_1103[FLOAT, 86x86x1x1] %onnx::Conv_1106[FLOAT, 85x85x3x3] %onnx::Conv_1107[FLOAT, 85] %onnx::Conv_1109[FLOAT, 85x128x1x1] %onnx::Conv_1112[FLOAT, 85x85x1x1] %onnx::Conv_1115[FLOAT, 86x256x1x1] %onnx::Conv_1118[FLOAT, 86x86x3x3] %onnx::Conv_1121[FLOAT, 86x86x1x1] %onnx::Conv_1124[FLOAT, 86x86x1x1] %onnx::Conv_1127[FLOAT, 85x85x3x3] %onnx::Conv_1130[FLOAT, 85x256x1x1] %onnx::Conv_1133[FLOAT, 85x85x1x1] %onnx::Conv_1136[FLOAT, 86x256x1x1] %onnx::Conv_1139[FLOAT, 86x86x3x3] %onnx::Conv_1142[FLOAT, 86x86x1x1] %onnx::Conv_1145[FLOAT, 86x86x1x1] %onnx::Conv_1148[FLOAT, 85x85x3x3] %onnx::Conv_1151[FLOAT, 85x256x1x1] %onnx::Conv_1154[FLOAT, 85x85x1x1] %onnx::Conv_1157[FLOAT, 171x256x1x1] %onnx::Conv_1158[FLOAT, 171] %onnx::Conv_1160[FLOAT, 171x171x3x3] %onnx::Conv_1163[FLOAT, 171x171x1x1] %onnx::Conv_1166[FLOAT, 171x171x1x1] %onnx::Conv_1169[FLOAT, 171x171x3x3] %onnx::Conv_1172[FLOAT, 170x256x1x1] %onnx::Conv_1173[FLOAT, 170] %onnx::Conv_1175[FLOAT, 170x170x1x1] %onnx::Conv_1178[FLOAT, 171x512x1x1] %onnx::Conv_1181[FLOAT, 171x171x3x3] %onnx::Conv_1184[FLOAT, 171x171x1x1] %onnx::Conv_1187[FLOAT, 171x171x1x1] %onnx::Conv_1190[FLOAT, 171x171x3x3] %onnx::Conv_1193[FLOAT, 170x512x1x1] %onnx::Conv_1196[FLOAT, 170x170x1x1] %onnx::Conv_1199[FLOAT, 171x512x1x1] %onnx::Conv_1202[FLOAT, 171x171x3x3] %onnx::Conv_1205[FLOAT, 171x171x1x1] %onnx::Conv_1208[FLOAT, 171x171x1x1] %onnx::Conv_1211[FLOAT, 171x171x3x3] %onnx::Conv_1214[FLOAT, 170x512x1x1] %onnx::Conv_1217[FLOAT, 170x170x1x1] ) { %onnx::Conv_1218 = Identity(%onnx::Conv_1173) %onnx::Conv_1215 = Identity(%onnx::Conv_1173) %onnx::Conv_1212 = Identity(%onnx::Conv_1158) %onnx::Conv_1209 = Identity(%onnx::Conv_1158) %onnx::Conv_1206 = Identity(%onnx::Conv_1158) %onnx::Conv_1203 = Identity(%onnx::Conv_1158) %onnx::Conv_1200 = Identity(%onnx::Conv_1158) %onnx::Conv_1197 = Identity(%onnx::Conv_1173) %onnx::Conv_1194 = Identity(%onnx::Conv_1173) %onnx::Conv_1191 = Identity(%onnx::Conv_1158) %onnx::Conv_1188 = Identity(%onnx::Conv_1158) %onnx::Conv_1185 = Identity(%onnx::Conv_1158) %onnx::Conv_1182 = Identity(%onnx::Conv_1158) %onnx::Conv_1179 = Identity(%onnx::Conv_1158) %onnx::Conv_1176 = Identity(%onnx::Conv_1173) %onnx::Conv_1170 = Identity(%onnx::Conv_1158) %onnx::Conv_1167 = Identity(%onnx::Conv_1158) %onnx::Conv_1164 = Identity(%onnx::Conv_1158) %onnx::Conv_1161 = Identity(%onnx::Conv_1158) %onnx::Conv_1155 = Identity(%onnx::Conv_1107) %onnx::Conv_1152 = Identity(%onnx::Conv_1107) %onnx::Conv_1149 = Identity(%onnx::Conv_1107) %onnx::Conv_1146 = Identity(%onnx::Conv_1095) %onnx::Conv_1143 = Identity(%onnx::Conv_1095) %onnx::Conv_1140 = Identity(%onnx::Conv_1095) %onnx::Conv_1137 = Identity(%onnx::Conv_1095) %onnx::Conv_1134 = Identity(%onnx::Conv_1107) %onnx::Conv_1131 = Identity(%onnx::Conv_1107) %onnx::Conv_1128 = Identity(%onnx::Conv_1107) %onnx::Conv_1125 = Identity(%onnx::Conv_1095) %onnx::Conv_1122 = Identity(%onnx::Conv_1095) %onnx::Conv_1119 = Identity(%onnx::Conv_1095) %onnx::Conv_1116 = Identity(%onnx::Conv_1095) %onnx::Conv_1113 = Identity(%onnx::Conv_1107) %onnx::Conv_1110 = Identity(%onnx::Conv_1107) %onnx::Conv_1104 = Identity(%onnx::Conv_1095) %onnx::Conv_1101 = Identity(%onnx::Conv_1095) %onnx::Conv_1098 = Identity(%onnx::Conv_1095) %onnx::Conv_1092 = Identity(%onnx::Conv_1047) %onnx::Conv_1089 = Identity(%onnx::Conv_1047) %onnx::Conv_1086 = Identity(%onnx::Conv_1032) %onnx::Conv_1083 = Identity(%onnx::Conv_1032) %onnx::Conv_1080 = Identity(%onnx::Conv_1032) %onnx::Conv_1077 = Identity(%onnx::Conv_1032) %onnx::Conv_1074 = Identity(%onnx::Conv_1032) %onnx::Conv_1071 = Identity(%onnx::Conv_1047) %onnx::Conv_1068 = Identity(%onnx::Conv_1047) %onnx::Conv_1065 = Identity(%onnx::Conv_1032) %onnx::Conv_1062 = Identity(%onnx::Conv_1032) %onnx::Conv_1059 = Identity(%onnx::Conv_1032) %onnx::Conv_1056 = Identity(%onnx::Conv_1032) %onnx::Conv_1053 = Identity(%onnx::Conv_1032) %onnx::Conv_1050 = Identity(%onnx::Conv_1047) %onnx::Conv_1044 = Identity(%onnx::Conv_1032) %onnx::Conv_1041 = Identity(%onnx::Conv_1032) %onnx::Conv_1038 = Identity(%onnx::Conv_1032) %onnx::Conv_1035 = Identity(%onnx::Conv_1032) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_1028, %onnx::Conv_1029) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1031, %onnx::Conv_1032) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_1034, %onnx::Conv_1035) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_1037, %onnx::Conv_1038) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_2_output_0, %onnx::Conv_1040, %onnx::Conv_1041) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_3_output_0 = Add(%/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_3_output_0) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_3_output_0, %onnx::Conv_1043, %onnx::Conv_1044) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.1/Slice_output_0 = Slice(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_5_output_0, %/layers.1/Constant_6_output_0, %/layers.1/Constant_4_output_0, %/layers.1/Constant_7_output_0) %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1046, %onnx::Conv_1047) %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_8_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_4_output_0 = Add(%/layers.1/Slice_output_0, %/layers.1/Constant_8_output_0) %/layers.1/Add_5_output_0 = Add(%/layers.1/Add_4_output_0, %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_5_output_0, %onnx::Conv_1049, %onnx::Conv_1050) %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_1052, %onnx::Conv_1053) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_1055, %onnx::Conv_1056) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_1058, %onnx::Conv_1059) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_2_output_0, %onnx::Conv_1061, %onnx::Conv_1062) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_3_output_0 = Add(%/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_3_output_0) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_3_output_0, %onnx::Conv_1064, %onnx::Conv_1065) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.2/Slice_output_0 = Slice(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_5_output_0, %/layers.2/Constant_6_output_0, %/layers.2/Constant_4_output_0, %/layers.2/Constant_7_output_0) %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_1067, %onnx::Conv_1068) %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_8_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_4_output_0 = Add(%/layers.2/Slice_output_0, %/layers.2/Constant_8_output_0) %/layers.2/Add_5_output_0 = Add(%/layers.2/Add_4_output_0, %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_5_output_0, %onnx::Conv_1070, %onnx::Conv_1071) %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_1073, %onnx::Conv_1074) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_1076, %onnx::Conv_1077) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_1079, %onnx::Conv_1080) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_2_output_0, %onnx::Conv_1082, %onnx::Conv_1083) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_3_output_0 = Add(%/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_3_output_0) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_3_output_0, %onnx::Conv_1085, %onnx::Conv_1086) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.3/Slice_output_0 = Slice(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_5_output_0, %/layers.3/Constant_6_output_0, %/layers.3/Constant_4_output_0, %/layers.3/Constant_7_output_0) %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_1088, %onnx::Conv_1089) %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_8_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_4_output_0 = Add(%/layers.3/Slice_output_0, %/layers.3/Constant_8_output_0) %/layers.3/Add_5_output_0 = Add(%/layers.3/Add_4_output_0, %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_5_output_0, %onnx::Conv_1091, %onnx::Conv_1092) %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Concat_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_1094, %onnx::Conv_1095) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_1097, %onnx::Conv_1098) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_1100, %onnx::Conv_1101) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_2_output_0, %onnx::Conv_1103, %onnx::Conv_1104) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.5/Slice_output_0 = Slice(%/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_4_output_0, %/layers.5/Constant_5_output_0, %/layers.5/Constant_3_output_0, %/layers.5/Constant_6_output_0) %/layers.5/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_3_output_0 = Add(%/layers.5/Slice_output_0, %/layers.5/Constant_7_output_0) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_3_output_0, %onnx::Conv_1106, %onnx::Conv_1107) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_8_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_9_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_10_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_11_output_0 = Constant[value = <Tensor>]() %/layers.5/Slice_1_output_0 = Slice(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_9_output_0, %/layers.5/Constant_10_output_0, %/layers.5/Constant_8_output_0, %/layers.5/Constant_11_output_0) %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_1109, %onnx::Conv_1110) %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_12_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_4_output_0 = Add(%/layers.5/Slice_1_output_0, %/layers.5/Constant_12_output_0) %/layers.5/Add_5_output_0 = Add(%/layers.5/Add_4_output_0, %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_5_output_0, %onnx::Conv_1112, %onnx::Conv_1113) %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_1115, %onnx::Conv_1116) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_1118, %onnx::Conv_1119) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_1121, %onnx::Conv_1122) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_2_output_0, %onnx::Conv_1124, %onnx::Conv_1125) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.6/Slice_output_0 = Slice(%/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_4_output_0, %/layers.6/Constant_5_output_0, %/layers.6/Constant_3_output_0, %/layers.6/Constant_6_output_0) %/layers.6/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_3_output_0 = Add(%/layers.6/Slice_output_0, %/layers.6/Constant_7_output_0) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_3_output_0, %onnx::Conv_1127, %onnx::Conv_1128) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_8_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_9_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_10_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_11_output_0 = Constant[value = <Tensor>]() %/layers.6/Slice_1_output_0 = Slice(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_9_output_0, %/layers.6/Constant_10_output_0, %/layers.6/Constant_8_output_0, %/layers.6/Constant_11_output_0) %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_1130, %onnx::Conv_1131) %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_12_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_4_output_0 = Add(%/layers.6/Slice_1_output_0, %/layers.6/Constant_12_output_0) %/layers.6/Add_5_output_0 = Add(%/layers.6/Add_4_output_0, %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_5_output_0, %onnx::Conv_1133, %onnx::Conv_1134) %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_1136, %onnx::Conv_1137) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_1139, %onnx::Conv_1140) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_1142, %onnx::Conv_1143) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_2_output_0, %onnx::Conv_1145, %onnx::Conv_1146) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.7/Slice_output_0 = Slice(%/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_4_output_0, %/layers.7/Constant_5_output_0, %/layers.7/Constant_3_output_0, %/layers.7/Constant_6_output_0) %/layers.7/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_3_output_0 = Add(%/layers.7/Slice_output_0, %/layers.7/Constant_7_output_0) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_3_output_0, %onnx::Conv_1148, %onnx::Conv_1149) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_8_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_9_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_10_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_11_output_0 = Constant[value = <Tensor>]() %/layers.7/Slice_1_output_0 = Slice(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_9_output_0, %/layers.7/Constant_10_output_0, %/layers.7/Constant_8_output_0, %/layers.7/Constant_11_output_0) %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_1151, %onnx::Conv_1152) %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_12_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_4_output_0 = Add(%/layers.7/Slice_1_output_0, %/layers.7/Constant_12_output_0) %/layers.7/Add_5_output_0 = Add(%/layers.7/Add_4_output_0, %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_5_output_0, %onnx::Conv_1154, %onnx::Conv_1155) %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Concat_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1157, %onnx::Conv_1158) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_1160, %onnx::Conv_1161) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_1163, %onnx::Conv_1164) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_2_output_0, %onnx::Conv_1166, %onnx::Conv_1167) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_3_output_0 = Add(%/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_3_output_0) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_3_output_0, %onnx::Conv_1169, %onnx::Conv_1170) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.9/Slice_output_0 = Slice(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_5_output_0, %/layers.9/Constant_6_output_0, %/layers.9/Constant_4_output_0, %/layers.9/Constant_7_output_0) %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1172, %onnx::Conv_1173) %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_8_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_4_output_0 = Add(%/layers.9/Slice_output_0, %/layers.9/Constant_8_output_0) %/layers.9/Add_5_output_0 = Add(%/layers.9/Add_4_output_0, %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_5_output_0, %onnx::Conv_1175, %onnx::Conv_1176) %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_1178, %onnx::Conv_1179) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_1181, %onnx::Conv_1182) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_1184, %onnx::Conv_1185) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_2_output_0, %onnx::Conv_1187, %onnx::Conv_1188) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_3_output_0 = Add(%/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_3_output_0) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_3_output_0, %onnx::Conv_1190, %onnx::Conv_1191) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.10/Slice_output_0 = Slice(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_5_output_0, %/layers.10/Constant_6_output_0, %/layers.10/Constant_4_output_0, %/layers.10/Constant_7_output_0) %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_1193, %onnx::Conv_1194) %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_8_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_4_output_0 = Add(%/layers.10/Slice_output_0, %/layers.10/Constant_8_output_0) %/layers.10/Add_5_output_0 = Add(%/layers.10/Add_4_output_0, %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_5_output_0, %onnx::Conv_1196, %onnx::Conv_1197) %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_1199, %onnx::Conv_1200) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_1202, %onnx::Conv_1203) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_1205, %onnx::Conv_1206) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_2_output_0, %onnx::Conv_1208, %onnx::Conv_1209) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_3_output_0 = Add(%/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_3_output_0) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_3_output_0, %onnx::Conv_1211, %onnx::Conv_1212) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.11/Slice_output_0 = Slice(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_5_output_0, %/layers.11/Constant_6_output_0, %/layers.11/Constant_4_output_0, %/layers.11/Constant_7_output_0) %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_1214, %onnx::Conv_1215) %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_8_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_4_output_0 = Add(%/layers.11/Slice_output_0, %/layers.11/Constant_8_output_0) %/layers.11/Add_5_output_0 = Add(%/layers.11/Add_4_output_0, %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_5_output_0, %onnx::Conv_1217, %onnx::Conv_1218) %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Concat_output_0) %1026 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %1026 }
val_accuracy
92.077321
909,400,576
3,018,170
{'zcp_epe_nas': 64.41535050048314, 'zcp_fisher': 239.40174865722656, 'zcp_flops': 14550409216.0, 'zcp_grad_norm': 302.6273193359375, 'zcp_grasp': -963.427734375, 'zcp_jacov': -16.066984752835275, 'zcp_l2_norm': 1007.1971435546875, 'zcp_nwot': 220.9718134577349, 'zcp_params': 3018170.0, 'zcp_plain': 0.004481247160583001, 'zcp_snip': 1253.5657958984375, 'zcp_synflow': 131.03177473969407, 'zcp_zen': 95.41708374023438, 'zcp_val_accuracy': 0.906049668788909}
NASBench101_252471
NASBench101
252471
98d7992c05990f2c7ec4eade5dffee1c
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_1013[FLOAT, 128x3x3x3] %onnx::Conv_1014[FLOAT, 128] %onnx::Conv_1016[FLOAT, 43x128x1x1] %onnx::Conv_1017[FLOAT, 43] %onnx::Conv_1019[FLOAT, 43x43x1x1] %onnx::Conv_1022[FLOAT, 43x43x3x3] %onnx::Conv_1025[FLOAT, 43x128x1x1] %onnx::Conv_1028[FLOAT, 43x43x1x1] %onnx::Conv_1031[FLOAT, 43x43x3x3] %onnx::Conv_1034[FLOAT, 42x42x3x3] %onnx::Conv_1035[FLOAT, 42] %onnx::Conv_1037[FLOAT, 43x128x1x1] %onnx::Conv_1040[FLOAT, 43x43x1x1] %onnx::Conv_1043[FLOAT, 43x43x3x3] %onnx::Conv_1046[FLOAT, 43x128x1x1] %onnx::Conv_1049[FLOAT, 43x43x1x1] %onnx::Conv_1052[FLOAT, 43x43x3x3] %onnx::Conv_1055[FLOAT, 42x42x3x3] %onnx::Conv_1058[FLOAT, 43x128x1x1] %onnx::Conv_1061[FLOAT, 43x43x1x1] %onnx::Conv_1064[FLOAT, 43x43x3x3] %onnx::Conv_1067[FLOAT, 43x128x1x1] %onnx::Conv_1070[FLOAT, 43x43x1x1] %onnx::Conv_1073[FLOAT, 43x43x3x3] %onnx::Conv_1076[FLOAT, 42x42x3x3] %onnx::Conv_1079[FLOAT, 86x128x1x1] %onnx::Conv_1080[FLOAT, 86] %onnx::Conv_1082[FLOAT, 86x86x1x1] %onnx::Conv_1085[FLOAT, 86x86x3x3] %onnx::Conv_1088[FLOAT, 85x128x1x1] %onnx::Conv_1089[FLOAT, 85] %onnx::Conv_1091[FLOAT, 85x85x1x1] %onnx::Conv_1094[FLOAT, 85x85x3x3] %onnx::Conv_1097[FLOAT, 85x85x3x3] %onnx::Conv_1100[FLOAT, 86x256x1x1] %onnx::Conv_1103[FLOAT, 86x86x1x1] %onnx::Conv_1106[FLOAT, 86x86x3x3] %onnx::Conv_1109[FLOAT, 85x256x1x1] %onnx::Conv_1112[FLOAT, 85x85x1x1] %onnx::Conv_1115[FLOAT, 85x85x3x3] %onnx::Conv_1118[FLOAT, 85x85x3x3] %onnx::Conv_1121[FLOAT, 86x256x1x1] %onnx::Conv_1124[FLOAT, 86x86x1x1] %onnx::Conv_1127[FLOAT, 86x86x3x3] %onnx::Conv_1130[FLOAT, 85x256x1x1] %onnx::Conv_1133[FLOAT, 85x85x1x1] %onnx::Conv_1136[FLOAT, 85x85x3x3] %onnx::Conv_1139[FLOAT, 85x85x3x3] %onnx::Conv_1142[FLOAT, 171x256x1x1] %onnx::Conv_1143[FLOAT, 171] %onnx::Conv_1145[FLOAT, 171x171x1x1] %onnx::Conv_1148[FLOAT, 171x171x3x3] %onnx::Conv_1151[FLOAT, 171x256x1x1] %onnx::Conv_1154[FLOAT, 171x171x1x1] %onnx::Conv_1157[FLOAT, 171x171x3x3] %onnx::Conv_1160[FLOAT, 170x170x3x3] %onnx::Conv_1161[FLOAT, 170] %onnx::Conv_1163[FLOAT, 171x512x1x1] %onnx::Conv_1166[FLOAT, 171x171x1x1] %onnx::Conv_1169[FLOAT, 171x171x3x3] %onnx::Conv_1172[FLOAT, 171x512x1x1] %onnx::Conv_1175[FLOAT, 171x171x1x1] %onnx::Conv_1178[FLOAT, 171x171x3x3] %onnx::Conv_1181[FLOAT, 170x170x3x3] %onnx::Conv_1184[FLOAT, 171x512x1x1] %onnx::Conv_1187[FLOAT, 171x171x1x1] %onnx::Conv_1190[FLOAT, 171x171x3x3] %onnx::Conv_1193[FLOAT, 171x512x1x1] %onnx::Conv_1196[FLOAT, 171x171x1x1] %onnx::Conv_1199[FLOAT, 171x171x3x3] %onnx::Conv_1202[FLOAT, 170x170x3x3] ) { %onnx::Conv_1203 = Identity(%onnx::Conv_1161) %onnx::Conv_1200 = Identity(%onnx::Conv_1143) %onnx::Conv_1197 = Identity(%onnx::Conv_1143) %onnx::Conv_1194 = Identity(%onnx::Conv_1143) %onnx::Conv_1191 = Identity(%onnx::Conv_1143) %onnx::Conv_1188 = Identity(%onnx::Conv_1143) %onnx::Conv_1185 = Identity(%onnx::Conv_1143) %onnx::Conv_1182 = Identity(%onnx::Conv_1161) %onnx::Conv_1179 = Identity(%onnx::Conv_1143) %onnx::Conv_1176 = Identity(%onnx::Conv_1143) %onnx::Conv_1173 = Identity(%onnx::Conv_1143) %onnx::Conv_1170 = Identity(%onnx::Conv_1143) %onnx::Conv_1167 = Identity(%onnx::Conv_1143) %onnx::Conv_1164 = Identity(%onnx::Conv_1143) %onnx::Conv_1158 = Identity(%onnx::Conv_1143) %onnx::Conv_1155 = Identity(%onnx::Conv_1143) %onnx::Conv_1152 = Identity(%onnx::Conv_1143) %onnx::Conv_1149 = Identity(%onnx::Conv_1143) %onnx::Conv_1146 = Identity(%onnx::Conv_1143) %onnx::Conv_1140 = Identity(%onnx::Conv_1089) %onnx::Conv_1137 = Identity(%onnx::Conv_1089) %onnx::Conv_1134 = Identity(%onnx::Conv_1089) %onnx::Conv_1131 = Identity(%onnx::Conv_1089) %onnx::Conv_1128 = Identity(%onnx::Conv_1080) %onnx::Conv_1125 = Identity(%onnx::Conv_1080) %onnx::Conv_1122 = Identity(%onnx::Conv_1080) %onnx::Conv_1119 = Identity(%onnx::Conv_1089) %onnx::Conv_1116 = Identity(%onnx::Conv_1089) %onnx::Conv_1113 = Identity(%onnx::Conv_1089) %onnx::Conv_1110 = Identity(%onnx::Conv_1089) %onnx::Conv_1107 = Identity(%onnx::Conv_1080) %onnx::Conv_1104 = Identity(%onnx::Conv_1080) %onnx::Conv_1101 = Identity(%onnx::Conv_1080) %onnx::Conv_1098 = Identity(%onnx::Conv_1089) %onnx::Conv_1095 = Identity(%onnx::Conv_1089) %onnx::Conv_1092 = Identity(%onnx::Conv_1089) %onnx::Conv_1086 = Identity(%onnx::Conv_1080) %onnx::Conv_1083 = Identity(%onnx::Conv_1080) %onnx::Conv_1077 = Identity(%onnx::Conv_1035) %onnx::Conv_1074 = Identity(%onnx::Conv_1017) %onnx::Conv_1071 = Identity(%onnx::Conv_1017) %onnx::Conv_1068 = Identity(%onnx::Conv_1017) %onnx::Conv_1065 = Identity(%onnx::Conv_1017) %onnx::Conv_1062 = Identity(%onnx::Conv_1017) %onnx::Conv_1059 = Identity(%onnx::Conv_1017) %onnx::Conv_1056 = Identity(%onnx::Conv_1035) %onnx::Conv_1053 = Identity(%onnx::Conv_1017) %onnx::Conv_1050 = Identity(%onnx::Conv_1017) %onnx::Conv_1047 = Identity(%onnx::Conv_1017) %onnx::Conv_1044 = Identity(%onnx::Conv_1017) %onnx::Conv_1041 = Identity(%onnx::Conv_1017) %onnx::Conv_1038 = Identity(%onnx::Conv_1017) %onnx::Conv_1032 = Identity(%onnx::Conv_1017) %onnx::Conv_1029 = Identity(%onnx::Conv_1017) %onnx::Conv_1026 = Identity(%onnx::Conv_1017) %onnx::Conv_1023 = Identity(%onnx::Conv_1017) %onnx::Conv_1020 = Identity(%onnx::Conv_1017) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_1013, %onnx::Conv_1014) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1016, %onnx::Conv_1017) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_1019, %onnx::Conv_1020) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_1022, %onnx::Conv_1023) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1025, %onnx::Conv_1026) %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/Add_3_output_0 = Add(%/layers.1/Add_2_output_0, %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_3_output_0, %onnx::Conv_1028, %onnx::Conv_1029) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_4_output_0 = Add(%/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_3_output_0) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_4_output_0, %onnx::Conv_1031, %onnx::Conv_1032) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.1/Slice_output_0 = Slice(%/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_5_output_0, %/layers.1/Constant_6_output_0, %/layers.1/Constant_4_output_0, %/layers.1/Constant_7_output_0) %/layers.1/Constant_8_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_5_output_0 = Add(%/layers.1/Slice_output_0, %/layers.1/Constant_8_output_0) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_5_output_0, %onnx::Conv_1034, %onnx::Conv_1035) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_1037, %onnx::Conv_1038) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_1040, %onnx::Conv_1041) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_1043, %onnx::Conv_1044) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_1046, %onnx::Conv_1047) %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/Add_3_output_0 = Add(%/layers.2/Add_2_output_0, %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_3_output_0, %onnx::Conv_1049, %onnx::Conv_1050) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_4_output_0 = Add(%/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_3_output_0) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_4_output_0, %onnx::Conv_1052, %onnx::Conv_1053) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.2/Slice_output_0 = Slice(%/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_5_output_0, %/layers.2/Constant_6_output_0, %/layers.2/Constant_4_output_0, %/layers.2/Constant_7_output_0) %/layers.2/Constant_8_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_5_output_0 = Add(%/layers.2/Slice_output_0, %/layers.2/Constant_8_output_0) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_5_output_0, %onnx::Conv_1055, %onnx::Conv_1056) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_1058, %onnx::Conv_1059) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_1061, %onnx::Conv_1062) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_1064, %onnx::Conv_1065) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_1067, %onnx::Conv_1068) %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/Add_3_output_0 = Add(%/layers.3/Add_2_output_0, %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_3_output_0, %onnx::Conv_1070, %onnx::Conv_1071) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_4_output_0 = Add(%/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_3_output_0) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_4_output_0, %onnx::Conv_1073, %onnx::Conv_1074) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.3/Slice_output_0 = Slice(%/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_5_output_0, %/layers.3/Constant_6_output_0, %/layers.3/Constant_4_output_0, %/layers.3/Constant_7_output_0) %/layers.3/Constant_8_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_5_output_0 = Add(%/layers.3/Slice_output_0, %/layers.3/Constant_8_output_0) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_5_output_0, %onnx::Conv_1076, %onnx::Conv_1077) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Concat_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_1079, %onnx::Conv_1080) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_1082, %onnx::Conv_1083) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_1085, %onnx::Conv_1086) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.5/Slice_output_0 = Slice(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_3_output_0, %/layers.5/Constant_4_output_0, %/layers.5/Constant_2_output_0, %/layers.5/Constant_5_output_0) %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_1088, %onnx::Conv_1089) %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_6_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/Slice_output_0, %/layers.5/Constant_6_output_0) %/layers.5/Add_3_output_0 = Add(%/layers.5/Add_2_output_0, %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_3_output_0, %onnx::Conv_1091, %onnx::Conv_1092) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_4_output_0 = Add(%/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_7_output_0) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_4_output_0, %onnx::Conv_1094, %onnx::Conv_1095) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_8_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_5_output_0 = Add(%/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_8_output_0) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_5_output_0, %onnx::Conv_1097, %onnx::Conv_1098) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_1100, %onnx::Conv_1101) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_1103, %onnx::Conv_1104) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_1106, %onnx::Conv_1107) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.6/Slice_output_0 = Slice(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_3_output_0, %/layers.6/Constant_4_output_0, %/layers.6/Constant_2_output_0, %/layers.6/Constant_5_output_0) %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_1109, %onnx::Conv_1110) %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_6_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/Slice_output_0, %/layers.6/Constant_6_output_0) %/layers.6/Add_3_output_0 = Add(%/layers.6/Add_2_output_0, %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_3_output_0, %onnx::Conv_1112, %onnx::Conv_1113) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_4_output_0 = Add(%/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_7_output_0) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_4_output_0, %onnx::Conv_1115, %onnx::Conv_1116) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_8_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_5_output_0 = Add(%/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_8_output_0) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_5_output_0, %onnx::Conv_1118, %onnx::Conv_1119) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_1121, %onnx::Conv_1122) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_1124, %onnx::Conv_1125) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_1127, %onnx::Conv_1128) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.7/Slice_output_0 = Slice(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_3_output_0, %/layers.7/Constant_4_output_0, %/layers.7/Constant_2_output_0, %/layers.7/Constant_5_output_0) %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_1130, %onnx::Conv_1131) %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_6_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/Slice_output_0, %/layers.7/Constant_6_output_0) %/layers.7/Add_3_output_0 = Add(%/layers.7/Add_2_output_0, %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_3_output_0, %onnx::Conv_1133, %onnx::Conv_1134) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_4_output_0 = Add(%/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_7_output_0) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_4_output_0, %onnx::Conv_1136, %onnx::Conv_1137) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_8_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_5_output_0 = Add(%/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_8_output_0) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_5_output_0, %onnx::Conv_1139, %onnx::Conv_1140) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Concat_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1142, %onnx::Conv_1143) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_1145, %onnx::Conv_1146) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_1148, %onnx::Conv_1149) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1151, %onnx::Conv_1152) %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/Add_3_output_0 = Add(%/layers.9/Add_2_output_0, %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_3_output_0, %onnx::Conv_1154, %onnx::Conv_1155) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_4_output_0 = Add(%/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_3_output_0) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_4_output_0, %onnx::Conv_1157, %onnx::Conv_1158) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.9/Slice_output_0 = Slice(%/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_5_output_0, %/layers.9/Constant_6_output_0, %/layers.9/Constant_4_output_0, %/layers.9/Constant_7_output_0) %/layers.9/Constant_8_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_5_output_0 = Add(%/layers.9/Slice_output_0, %/layers.9/Constant_8_output_0) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_5_output_0, %onnx::Conv_1160, %onnx::Conv_1161) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_1163, %onnx::Conv_1164) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_1166, %onnx::Conv_1167) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_1169, %onnx::Conv_1170) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_1172, %onnx::Conv_1173) %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/Add_3_output_0 = Add(%/layers.10/Add_2_output_0, %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_3_output_0, %onnx::Conv_1175, %onnx::Conv_1176) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_4_output_0 = Add(%/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_3_output_0) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_4_output_0, %onnx::Conv_1178, %onnx::Conv_1179) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.10/Slice_output_0 = Slice(%/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_5_output_0, %/layers.10/Constant_6_output_0, %/layers.10/Constant_4_output_0, %/layers.10/Constant_7_output_0) %/layers.10/Constant_8_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_5_output_0 = Add(%/layers.10/Slice_output_0, %/layers.10/Constant_8_output_0) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_5_output_0, %onnx::Conv_1181, %onnx::Conv_1182) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_1184, %onnx::Conv_1185) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_1187, %onnx::Conv_1188) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_1190, %onnx::Conv_1191) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_1193, %onnx::Conv_1194) %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/Add_3_output_0 = Add(%/layers.11/Add_2_output_0, %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_3_output_0, %onnx::Conv_1196, %onnx::Conv_1197) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_4_output_0 = Add(%/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_3_output_0) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_4_output_0, %onnx::Conv_1199, %onnx::Conv_1200) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.11/Slice_output_0 = Slice(%/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_5_output_0, %/layers.11/Constant_6_output_0, %/layers.11/Constant_4_output_0, %/layers.11/Constant_7_output_0) %/layers.11/Constant_8_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_5_output_0 = Add(%/layers.11/Slice_output_0, %/layers.11/Constant_8_output_0) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_5_output_0, %onnx::Conv_1202, %onnx::Conv_1203) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Concat_output_0) %1011 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %1011 }
val_accuracy
92.818511
1,174,373,888
3,928,663
{'zcp_epe_nas': 81.35795074799313, 'zcp_fisher': 30.820999145507812, 'zcp_flops': 18789982208.0, 'zcp_grad_norm': 122.97797393798828, 'zcp_grasp': 43.670654296875, 'zcp_jacov': -16.05808653518343, 'zcp_l2_norm': 1007.051513671875, 'zcp_nwot': 220.87682011022147, 'zcp_params': 3928663.0, 'zcp_plain': 0.00285653816536, 'zcp_snip': 602.924072265625, 'zcp_synflow': 131.6424738744061, 'zcp_zen': 104.11040496826172, 'zcp_val_accuracy': 0.9083533883094781}
NASBench101_267095
NASBench101
267095
a1c0cedbc2040b168a6ae96a59ed6434
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_887[FLOAT, 128x3x3x3] %onnx::Conv_888[FLOAT, 128] %onnx::Conv_890[FLOAT, 64x128x1x1] %onnx::Conv_891[FLOAT, 64] %onnx::Conv_893[FLOAT, 64x64x3x3] %onnx::Conv_896[FLOAT, 64x64x1x1] %onnx::Conv_899[FLOAT, 64x64x1x1] %onnx::Conv_902[FLOAT, 64x64x1x1] %onnx::Conv_905[FLOAT, 128x128x1x1] %onnx::Conv_908[FLOAT, 64x128x1x1] %onnx::Conv_911[FLOAT, 64x64x3x3] %onnx::Conv_914[FLOAT, 64x64x1x1] %onnx::Conv_917[FLOAT, 64x64x1x1] %onnx::Conv_920[FLOAT, 64x64x1x1] %onnx::Conv_923[FLOAT, 128x128x1x1] %onnx::Conv_926[FLOAT, 64x128x1x1] %onnx::Conv_929[FLOAT, 64x64x3x3] %onnx::Conv_932[FLOAT, 64x64x1x1] %onnx::Conv_935[FLOAT, 64x64x1x1] %onnx::Conv_938[FLOAT, 64x64x1x1] %onnx::Conv_941[FLOAT, 128x128x1x1] %onnx::Conv_944[FLOAT, 128x128x1x1] %onnx::Conv_947[FLOAT, 128x128x3x3] %onnx::Conv_950[FLOAT, 128x128x1x1] %onnx::Conv_953[FLOAT, 128x128x1x1] %onnx::Conv_956[FLOAT, 128x128x1x1] %onnx::Conv_959[FLOAT, 256x128x1x1] %onnx::Conv_960[FLOAT, 256] %onnx::Conv_962[FLOAT, 128x256x1x1] %onnx::Conv_965[FLOAT, 128x128x3x3] %onnx::Conv_968[FLOAT, 128x128x1x1] %onnx::Conv_971[FLOAT, 128x128x1x1] %onnx::Conv_974[FLOAT, 128x128x1x1] %onnx::Conv_977[FLOAT, 256x256x1x1] %onnx::Conv_980[FLOAT, 128x256x1x1] %onnx::Conv_983[FLOAT, 128x128x3x3] %onnx::Conv_986[FLOAT, 128x128x1x1] %onnx::Conv_989[FLOAT, 128x128x1x1] %onnx::Conv_992[FLOAT, 128x128x1x1] %onnx::Conv_995[FLOAT, 256x256x1x1] %onnx::Conv_998[FLOAT, 256x256x1x1] %onnx::Conv_1001[FLOAT, 256x256x3x3] %onnx::Conv_1004[FLOAT, 256x256x1x1] %onnx::Conv_1007[FLOAT, 256x256x1x1] %onnx::Conv_1010[FLOAT, 256x256x1x1] %onnx::Conv_1013[FLOAT, 512x256x1x1] %onnx::Conv_1014[FLOAT, 512] %onnx::Conv_1016[FLOAT, 256x512x1x1] %onnx::Conv_1019[FLOAT, 256x256x3x3] %onnx::Conv_1022[FLOAT, 256x256x1x1] %onnx::Conv_1025[FLOAT, 256x256x1x1] %onnx::Conv_1028[FLOAT, 256x256x1x1] %onnx::Conv_1031[FLOAT, 512x512x1x1] %onnx::Conv_1034[FLOAT, 256x512x1x1] %onnx::Conv_1037[FLOAT, 256x256x3x3] %onnx::Conv_1040[FLOAT, 256x256x1x1] %onnx::Conv_1043[FLOAT, 256x256x1x1] %onnx::Conv_1046[FLOAT, 256x256x1x1] %onnx::Conv_1049[FLOAT, 512x512x1x1] ) { %onnx::Conv_1050 = Identity(%onnx::Conv_1014) %onnx::Conv_1047 = Identity(%onnx::Conv_960) %onnx::Conv_1044 = Identity(%onnx::Conv_960) %onnx::Conv_1041 = Identity(%onnx::Conv_960) %onnx::Conv_1038 = Identity(%onnx::Conv_960) %onnx::Conv_1035 = Identity(%onnx::Conv_960) %onnx::Conv_1032 = Identity(%onnx::Conv_1014) %onnx::Conv_1029 = Identity(%onnx::Conv_960) %onnx::Conv_1026 = Identity(%onnx::Conv_960) %onnx::Conv_1023 = Identity(%onnx::Conv_960) %onnx::Conv_1020 = Identity(%onnx::Conv_960) %onnx::Conv_1017 = Identity(%onnx::Conv_960) %onnx::Conv_1011 = Identity(%onnx::Conv_960) %onnx::Conv_1008 = Identity(%onnx::Conv_960) %onnx::Conv_1005 = Identity(%onnx::Conv_960) %onnx::Conv_1002 = Identity(%onnx::Conv_960) %onnx::Conv_999 = Identity(%onnx::Conv_960) %onnx::Conv_996 = Identity(%onnx::Conv_960) %onnx::Conv_993 = Identity(%onnx::Conv_888) %onnx::Conv_990 = Identity(%onnx::Conv_888) %onnx::Conv_987 = Identity(%onnx::Conv_888) %onnx::Conv_984 = Identity(%onnx::Conv_888) %onnx::Conv_981 = Identity(%onnx::Conv_888) %onnx::Conv_978 = Identity(%onnx::Conv_960) %onnx::Conv_975 = Identity(%onnx::Conv_888) %onnx::Conv_972 = Identity(%onnx::Conv_888) %onnx::Conv_969 = Identity(%onnx::Conv_888) %onnx::Conv_966 = Identity(%onnx::Conv_888) %onnx::Conv_963 = Identity(%onnx::Conv_888) %onnx::Conv_957 = Identity(%onnx::Conv_888) %onnx::Conv_954 = Identity(%onnx::Conv_888) %onnx::Conv_951 = Identity(%onnx::Conv_888) %onnx::Conv_948 = Identity(%onnx::Conv_888) %onnx::Conv_945 = Identity(%onnx::Conv_888) %onnx::Conv_942 = Identity(%onnx::Conv_888) %onnx::Conv_939 = Identity(%onnx::Conv_891) %onnx::Conv_936 = Identity(%onnx::Conv_891) %onnx::Conv_933 = Identity(%onnx::Conv_891) %onnx::Conv_930 = Identity(%onnx::Conv_891) %onnx::Conv_927 = Identity(%onnx::Conv_891) %onnx::Conv_924 = Identity(%onnx::Conv_888) %onnx::Conv_921 = Identity(%onnx::Conv_891) %onnx::Conv_918 = Identity(%onnx::Conv_891) %onnx::Conv_915 = Identity(%onnx::Conv_891) %onnx::Conv_912 = Identity(%onnx::Conv_891) %onnx::Conv_909 = Identity(%onnx::Conv_891) %onnx::Conv_906 = Identity(%onnx::Conv_888) %onnx::Conv_903 = Identity(%onnx::Conv_891) %onnx::Conv_900 = Identity(%onnx::Conv_891) %onnx::Conv_897 = Identity(%onnx::Conv_891) %onnx::Conv_894 = Identity(%onnx::Conv_891) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_887, %onnx::Conv_888) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_890, %onnx::Conv_891) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_893, %onnx::Conv_894) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_1_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/Add_3_output_0 = Add(%/layers.1/Add_2_output_0, %/layers.1/vertex_op.2/maxpool/MaxPool_output_0) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_3_output_0, %onnx::Conv_896, %onnx::Conv_897) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_4_output_0 = Add(%/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_3_output_0) %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_4_output_0, %onnx::Conv_899, %onnx::Conv_900) %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_5_output_0 = Add(%/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_4_output_0) %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_5_output_0, %onnx::Conv_902, %onnx::Conv_903) %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_905, %onnx::Conv_906) %/layers.1/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Add_6_output_0 = Add(%/layers.1/Concat_output_0, %/layers.1/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_6_output_0, %onnx::Conv_908, %onnx::Conv_909) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_911, %onnx::Conv_912) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_1_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/Add_3_output_0 = Add(%/layers.2/Add_2_output_0, %/layers.2/vertex_op.2/maxpool/MaxPool_output_0) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_3_output_0, %onnx::Conv_914, %onnx::Conv_915) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_4_output_0 = Add(%/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_3_output_0) %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_4_output_0, %onnx::Conv_917, %onnx::Conv_918) %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_5_output_0 = Add(%/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_4_output_0) %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_5_output_0, %onnx::Conv_920, %onnx::Conv_921) %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_6_output_0, %onnx::Conv_923, %onnx::Conv_924) %/layers.2/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Add_6_output_0 = Add(%/layers.2/Concat_output_0, %/layers.2/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_6_output_0, %onnx::Conv_926, %onnx::Conv_927) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_929, %onnx::Conv_930) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_1_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/Add_3_output_0 = Add(%/layers.3/Add_2_output_0, %/layers.3/vertex_op.2/maxpool/MaxPool_output_0) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_3_output_0, %onnx::Conv_932, %onnx::Conv_933) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_4_output_0 = Add(%/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_3_output_0) %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_4_output_0, %onnx::Conv_935, %onnx::Conv_936) %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_5_output_0 = Add(%/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_4_output_0) %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_5_output_0, %onnx::Conv_938, %onnx::Conv_939) %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_6_output_0, %onnx::Conv_941, %onnx::Conv_942) %/layers.3/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Add_6_output_0 = Add(%/layers.3/Concat_output_0, %/layers.3/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Add_6_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_944, %onnx::Conv_945) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_947, %onnx::Conv_948) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_1_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/Add_3_output_0 = Add(%/layers.5/Add_2_output_0, %/layers.5/vertex_op.2/maxpool/MaxPool_output_0) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_3_output_0, %onnx::Conv_950, %onnx::Conv_951) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_4_output_0 = Add(%/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_3_output_0) %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_4_output_0, %onnx::Conv_953, %onnx::Conv_954) %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_5_output_0 = Add(%/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_4_output_0) %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_5_output_0, %onnx::Conv_956, %onnx::Conv_957) %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_959, %onnx::Conv_960) %/layers.5/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Add_6_output_0 = Add(%/layers.5/Concat_output_0, %/layers.5/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_6_output_0, %onnx::Conv_962, %onnx::Conv_963) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_965, %onnx::Conv_966) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_1_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/Add_3_output_0 = Add(%/layers.6/Add_2_output_0, %/layers.6/vertex_op.2/maxpool/MaxPool_output_0) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_3_output_0, %onnx::Conv_968, %onnx::Conv_969) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_4_output_0 = Add(%/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_3_output_0) %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_4_output_0, %onnx::Conv_971, %onnx::Conv_972) %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_5_output_0 = Add(%/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_4_output_0) %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_5_output_0, %onnx::Conv_974, %onnx::Conv_975) %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_6_output_0, %onnx::Conv_977, %onnx::Conv_978) %/layers.6/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Add_6_output_0 = Add(%/layers.6/Concat_output_0, %/layers.6/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_6_output_0, %onnx::Conv_980, %onnx::Conv_981) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_983, %onnx::Conv_984) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_1_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/Add_3_output_0 = Add(%/layers.7/Add_2_output_0, %/layers.7/vertex_op.2/maxpool/MaxPool_output_0) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_3_output_0, %onnx::Conv_986, %onnx::Conv_987) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_4_output_0 = Add(%/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_3_output_0) %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_4_output_0, %onnx::Conv_989, %onnx::Conv_990) %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_5_output_0 = Add(%/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_4_output_0) %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_5_output_0, %onnx::Conv_992, %onnx::Conv_993) %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_6_output_0, %onnx::Conv_995, %onnx::Conv_996) %/layers.7/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Add_6_output_0 = Add(%/layers.7/Concat_output_0, %/layers.7/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Add_6_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_998, %onnx::Conv_999) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_1001, %onnx::Conv_1002) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_1_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/Add_3_output_0 = Add(%/layers.9/Add_2_output_0, %/layers.9/vertex_op.2/maxpool/MaxPool_output_0) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_3_output_0, %onnx::Conv_1004, %onnx::Conv_1005) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_4_output_0 = Add(%/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_3_output_0) %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_4_output_0, %onnx::Conv_1007, %onnx::Conv_1008) %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_5_output_0 = Add(%/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_4_output_0) %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_5_output_0, %onnx::Conv_1010, %onnx::Conv_1011) %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1013, %onnx::Conv_1014) %/layers.9/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Add_6_output_0 = Add(%/layers.9/Concat_output_0, %/layers.9/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_6_output_0, %onnx::Conv_1016, %onnx::Conv_1017) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_1019, %onnx::Conv_1020) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_1_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/Add_3_output_0 = Add(%/layers.10/Add_2_output_0, %/layers.10/vertex_op.2/maxpool/MaxPool_output_0) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_3_output_0, %onnx::Conv_1022, %onnx::Conv_1023) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_4_output_0 = Add(%/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_3_output_0) %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_4_output_0, %onnx::Conv_1025, %onnx::Conv_1026) %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_5_output_0 = Add(%/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_4_output_0) %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_5_output_0, %onnx::Conv_1028, %onnx::Conv_1029) %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_6_output_0, %onnx::Conv_1031, %onnx::Conv_1032) %/layers.10/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Add_6_output_0 = Add(%/layers.10/Concat_output_0, %/layers.10/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_6_output_0, %onnx::Conv_1034, %onnx::Conv_1035) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_1037, %onnx::Conv_1038) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_1_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/Add_3_output_0 = Add(%/layers.11/Add_2_output_0, %/layers.11/vertex_op.2/maxpool/MaxPool_output_0) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_3_output_0, %onnx::Conv_1040, %onnx::Conv_1041) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_4_output_0 = Add(%/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_3_output_0) %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_4_output_0, %onnx::Conv_1043, %onnx::Conv_1044) %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_5_output_0 = Add(%/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_4_output_0) %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_5_output_0, %onnx::Conv_1046, %onnx::Conv_1047) %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_6_output_0, %onnx::Conv_1049, %onnx::Conv_1050) %/layers.11/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Add_6_output_0 = Add(%/layers.11/Concat_output_0, %/layers.11/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Add_6_output_0) %885 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %885 }
val_accuracy
92.568111
1,336,027,136
4,426,762
{'zcp_epe_nas': 71.66824191373375, 'zcp_fisher': 30.96872329711914, 'zcp_flops': 21376434176.0, 'zcp_grad_norm': 108.15846252441406, 'zcp_grasp': 0.792236328125, 'zcp_jacov': -16.052185821736515, 'zcp_l2_norm': 995.0692138671875, 'zcp_nwot': 227.1599769816161, 'zcp_params': 4426762.0, 'zcp_plain': 0.022178787738084002, 'zcp_snip': 658.5643310546875, 'zcp_synflow': 136.73196783722636, 'zcp_zen': 92.19757843017578, 'zcp_val_accuracy': 0.918569684028625}
NASBench101_363257
NASBench101
363257
db95cd6038fd22f6924a56bea58feb97
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_986[FLOAT, 128x3x3x3] %onnx::Conv_987[FLOAT, 128] %onnx::Conv_989[FLOAT, 64x128x1x1] %onnx::Conv_990[FLOAT, 64] %onnx::Conv_992[FLOAT, 64x64x1x1] %onnx::Conv_995[FLOAT, 64x64x1x1] %onnx::Conv_998[FLOAT, 64x64x1x1] %onnx::Conv_1001[FLOAT, 64x128x1x1] %onnx::Conv_1004[FLOAT, 64x64x3x3] %onnx::Conv_1007[FLOAT, 128x128x1x1] %onnx::Conv_1010[FLOAT, 64x128x1x1] %onnx::Conv_1013[FLOAT, 64x64x1x1] %onnx::Conv_1016[FLOAT, 64x64x1x1] %onnx::Conv_1019[FLOAT, 64x64x1x1] %onnx::Conv_1022[FLOAT, 64x128x1x1] %onnx::Conv_1025[FLOAT, 64x64x3x3] %onnx::Conv_1028[FLOAT, 128x128x1x1] %onnx::Conv_1031[FLOAT, 64x128x1x1] %onnx::Conv_1034[FLOAT, 64x64x1x1] %onnx::Conv_1037[FLOAT, 64x64x1x1] %onnx::Conv_1040[FLOAT, 64x64x1x1] %onnx::Conv_1043[FLOAT, 64x128x1x1] %onnx::Conv_1046[FLOAT, 64x64x3x3] %onnx::Conv_1049[FLOAT, 128x128x1x1] %onnx::Conv_1052[FLOAT, 128x128x1x1] %onnx::Conv_1055[FLOAT, 128x128x1x1] %onnx::Conv_1058[FLOAT, 128x128x1x1] %onnx::Conv_1061[FLOAT, 128x128x1x1] %onnx::Conv_1064[FLOAT, 128x128x1x1] %onnx::Conv_1067[FLOAT, 128x128x3x3] %onnx::Conv_1070[FLOAT, 256x128x1x1] %onnx::Conv_1071[FLOAT, 256] %onnx::Conv_1073[FLOAT, 128x256x1x1] %onnx::Conv_1076[FLOAT, 128x128x1x1] %onnx::Conv_1079[FLOAT, 128x128x1x1] %onnx::Conv_1082[FLOAT, 128x128x1x1] %onnx::Conv_1085[FLOAT, 128x256x1x1] %onnx::Conv_1088[FLOAT, 128x128x3x3] %onnx::Conv_1091[FLOAT, 256x256x1x1] %onnx::Conv_1094[FLOAT, 128x256x1x1] %onnx::Conv_1097[FLOAT, 128x128x1x1] %onnx::Conv_1100[FLOAT, 128x128x1x1] %onnx::Conv_1103[FLOAT, 128x128x1x1] %onnx::Conv_1106[FLOAT, 128x256x1x1] %onnx::Conv_1109[FLOAT, 128x128x3x3] %onnx::Conv_1112[FLOAT, 256x256x1x1] %onnx::Conv_1115[FLOAT, 256x256x1x1] %onnx::Conv_1118[FLOAT, 256x256x1x1] %onnx::Conv_1121[FLOAT, 256x256x1x1] %onnx::Conv_1124[FLOAT, 256x256x1x1] %onnx::Conv_1127[FLOAT, 256x256x1x1] %onnx::Conv_1130[FLOAT, 256x256x3x3] %onnx::Conv_1133[FLOAT, 512x256x1x1] %onnx::Conv_1134[FLOAT, 512] %onnx::Conv_1136[FLOAT, 256x512x1x1] %onnx::Conv_1139[FLOAT, 256x256x1x1] %onnx::Conv_1142[FLOAT, 256x256x1x1] %onnx::Conv_1145[FLOAT, 256x256x1x1] %onnx::Conv_1148[FLOAT, 256x512x1x1] %onnx::Conv_1151[FLOAT, 256x256x3x3] %onnx::Conv_1154[FLOAT, 512x512x1x1] %onnx::Conv_1157[FLOAT, 256x512x1x1] %onnx::Conv_1160[FLOAT, 256x256x1x1] %onnx::Conv_1163[FLOAT, 256x256x1x1] %onnx::Conv_1166[FLOAT, 256x256x1x1] %onnx::Conv_1169[FLOAT, 256x512x1x1] %onnx::Conv_1172[FLOAT, 256x256x3x3] %onnx::Conv_1175[FLOAT, 512x512x1x1] ) { %onnx::Conv_1176 = Identity(%onnx::Conv_1134) %onnx::Conv_1173 = Identity(%onnx::Conv_1071) %onnx::Conv_1170 = Identity(%onnx::Conv_1071) %onnx::Conv_1167 = Identity(%onnx::Conv_1071) %onnx::Conv_1164 = Identity(%onnx::Conv_1071) %onnx::Conv_1161 = Identity(%onnx::Conv_1071) %onnx::Conv_1158 = Identity(%onnx::Conv_1071) %onnx::Conv_1155 = Identity(%onnx::Conv_1134) %onnx::Conv_1152 = Identity(%onnx::Conv_1071) %onnx::Conv_1149 = Identity(%onnx::Conv_1071) %onnx::Conv_1146 = Identity(%onnx::Conv_1071) %onnx::Conv_1143 = Identity(%onnx::Conv_1071) %onnx::Conv_1140 = Identity(%onnx::Conv_1071) %onnx::Conv_1137 = Identity(%onnx::Conv_1071) %onnx::Conv_1131 = Identity(%onnx::Conv_1071) %onnx::Conv_1128 = Identity(%onnx::Conv_1071) %onnx::Conv_1125 = Identity(%onnx::Conv_1071) %onnx::Conv_1122 = Identity(%onnx::Conv_1071) %onnx::Conv_1119 = Identity(%onnx::Conv_1071) %onnx::Conv_1116 = Identity(%onnx::Conv_1071) %onnx::Conv_1113 = Identity(%onnx::Conv_1071) %onnx::Conv_1110 = Identity(%onnx::Conv_987) %onnx::Conv_1107 = Identity(%onnx::Conv_987) %onnx::Conv_1104 = Identity(%onnx::Conv_987) %onnx::Conv_1101 = Identity(%onnx::Conv_987) %onnx::Conv_1098 = Identity(%onnx::Conv_987) %onnx::Conv_1095 = Identity(%onnx::Conv_987) %onnx::Conv_1092 = Identity(%onnx::Conv_1071) %onnx::Conv_1089 = Identity(%onnx::Conv_987) %onnx::Conv_1086 = Identity(%onnx::Conv_987) %onnx::Conv_1083 = Identity(%onnx::Conv_987) %onnx::Conv_1080 = Identity(%onnx::Conv_987) %onnx::Conv_1077 = Identity(%onnx::Conv_987) %onnx::Conv_1074 = Identity(%onnx::Conv_987) %onnx::Conv_1068 = Identity(%onnx::Conv_987) %onnx::Conv_1065 = Identity(%onnx::Conv_987) %onnx::Conv_1062 = Identity(%onnx::Conv_987) %onnx::Conv_1059 = Identity(%onnx::Conv_987) %onnx::Conv_1056 = Identity(%onnx::Conv_987) %onnx::Conv_1053 = Identity(%onnx::Conv_987) %onnx::Conv_1050 = Identity(%onnx::Conv_987) %onnx::Conv_1047 = Identity(%onnx::Conv_990) %onnx::Conv_1044 = Identity(%onnx::Conv_990) %onnx::Conv_1041 = Identity(%onnx::Conv_990) %onnx::Conv_1038 = Identity(%onnx::Conv_990) %onnx::Conv_1035 = Identity(%onnx::Conv_990) %onnx::Conv_1032 = Identity(%onnx::Conv_990) %onnx::Conv_1029 = Identity(%onnx::Conv_987) %onnx::Conv_1026 = Identity(%onnx::Conv_990) %onnx::Conv_1023 = Identity(%onnx::Conv_990) %onnx::Conv_1020 = Identity(%onnx::Conv_990) %onnx::Conv_1017 = Identity(%onnx::Conv_990) %onnx::Conv_1014 = Identity(%onnx::Conv_990) %onnx::Conv_1011 = Identity(%onnx::Conv_990) %onnx::Conv_1008 = Identity(%onnx::Conv_987) %onnx::Conv_1005 = Identity(%onnx::Conv_990) %onnx::Conv_1002 = Identity(%onnx::Conv_990) %onnx::Conv_999 = Identity(%onnx::Conv_990) %onnx::Conv_996 = Identity(%onnx::Conv_990) %onnx::Conv_993 = Identity(%onnx::Conv_990) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_986, %onnx::Conv_987) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_989, %onnx::Conv_990) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_992, %onnx::Conv_993) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_995, %onnx::Conv_996) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_2_output_0, %onnx::Conv_998, %onnx::Conv_999) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1001, %onnx::Conv_1002) %/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_3_output_0 = Add(%/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_3_output_0) %/layers.1/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_3_output_0) %/layers.1/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_4_output_0 = Add(%/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_4_output_0) %/layers.1/Add_5_output_0 = Add(%/layers.1/Add_4_output_0, %/layers.1/vertex_op.4/maxpool/MaxPool_output_0) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_5_output_0, %onnx::Conv_1004, %onnx::Conv_1005) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1007, %onnx::Conv_1008) %/layers.1/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Add_6_output_0 = Add(%/layers.1/Concat_output_0, %/layers.1/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_6_output_0, %onnx::Conv_1010, %onnx::Conv_1011) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_1013, %onnx::Conv_1014) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_1016, %onnx::Conv_1017) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_2_output_0, %onnx::Conv_1019, %onnx::Conv_1020) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_6_output_0, %onnx::Conv_1022, %onnx::Conv_1023) %/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_3_output_0 = Add(%/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_3_output_0) %/layers.2/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_3_output_0) %/layers.2/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_4_output_0 = Add(%/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_4_output_0) %/layers.2/Add_5_output_0 = Add(%/layers.2/Add_4_output_0, %/layers.2/vertex_op.4/maxpool/MaxPool_output_0) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_5_output_0, %onnx::Conv_1025, %onnx::Conv_1026) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_6_output_0, %onnx::Conv_1028, %onnx::Conv_1029) %/layers.2/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Add_6_output_0 = Add(%/layers.2/Concat_output_0, %/layers.2/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_6_output_0, %onnx::Conv_1031, %onnx::Conv_1032) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_1034, %onnx::Conv_1035) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_1037, %onnx::Conv_1038) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_2_output_0, %onnx::Conv_1040, %onnx::Conv_1041) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_6_output_0, %onnx::Conv_1043, %onnx::Conv_1044) %/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_3_output_0 = Add(%/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_3_output_0) %/layers.3/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_3_output_0) %/layers.3/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_4_output_0 = Add(%/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_4_output_0) %/layers.3/Add_5_output_0 = Add(%/layers.3/Add_4_output_0, %/layers.3/vertex_op.4/maxpool/MaxPool_output_0) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_5_output_0, %onnx::Conv_1046, %onnx::Conv_1047) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_6_output_0, %onnx::Conv_1049, %onnx::Conv_1050) %/layers.3/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Add_6_output_0 = Add(%/layers.3/Concat_output_0, %/layers.3/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Add_6_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_1052, %onnx::Conv_1053) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_1055, %onnx::Conv_1056) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_1058, %onnx::Conv_1059) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_2_output_0, %onnx::Conv_1061, %onnx::Conv_1062) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_1064, %onnx::Conv_1065) %/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_3_output_0 = Add(%/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_3_output_0) %/layers.5/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_3_output_0) %/layers.5/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_4_output_0 = Add(%/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_4_output_0) %/layers.5/Add_5_output_0 = Add(%/layers.5/Add_4_output_0, %/layers.5/vertex_op.4/maxpool/MaxPool_output_0) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_5_output_0, %onnx::Conv_1067, %onnx::Conv_1068) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_1070, %onnx::Conv_1071) %/layers.5/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Add_6_output_0 = Add(%/layers.5/Concat_output_0, %/layers.5/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_6_output_0, %onnx::Conv_1073, %onnx::Conv_1074) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_1076, %onnx::Conv_1077) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_1079, %onnx::Conv_1080) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_2_output_0, %onnx::Conv_1082, %onnx::Conv_1083) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_6_output_0, %onnx::Conv_1085, %onnx::Conv_1086) %/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_3_output_0 = Add(%/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_3_output_0) %/layers.6/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_3_output_0) %/layers.6/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_4_output_0 = Add(%/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_4_output_0) %/layers.6/Add_5_output_0 = Add(%/layers.6/Add_4_output_0, %/layers.6/vertex_op.4/maxpool/MaxPool_output_0) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_5_output_0, %onnx::Conv_1088, %onnx::Conv_1089) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_6_output_0, %onnx::Conv_1091, %onnx::Conv_1092) %/layers.6/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Add_6_output_0 = Add(%/layers.6/Concat_output_0, %/layers.6/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_6_output_0, %onnx::Conv_1094, %onnx::Conv_1095) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_1097, %onnx::Conv_1098) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_1100, %onnx::Conv_1101) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_2_output_0, %onnx::Conv_1103, %onnx::Conv_1104) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_6_output_0, %onnx::Conv_1106, %onnx::Conv_1107) %/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_3_output_0 = Add(%/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_3_output_0) %/layers.7/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_3_output_0) %/layers.7/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_4_output_0 = Add(%/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_4_output_0) %/layers.7/Add_5_output_0 = Add(%/layers.7/Add_4_output_0, %/layers.7/vertex_op.4/maxpool/MaxPool_output_0) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_5_output_0, %onnx::Conv_1109, %onnx::Conv_1110) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_6_output_0, %onnx::Conv_1112, %onnx::Conv_1113) %/layers.7/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Add_6_output_0 = Add(%/layers.7/Concat_output_0, %/layers.7/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Add_6_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1115, %onnx::Conv_1116) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_1118, %onnx::Conv_1119) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_1121, %onnx::Conv_1122) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_2_output_0, %onnx::Conv_1124, %onnx::Conv_1125) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1127, %onnx::Conv_1128) %/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_3_output_0 = Add(%/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_3_output_0) %/layers.9/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_3_output_0) %/layers.9/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_4_output_0 = Add(%/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_4_output_0) %/layers.9/Add_5_output_0 = Add(%/layers.9/Add_4_output_0, %/layers.9/vertex_op.4/maxpool/MaxPool_output_0) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_5_output_0, %onnx::Conv_1130, %onnx::Conv_1131) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1133, %onnx::Conv_1134) %/layers.9/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Add_6_output_0 = Add(%/layers.9/Concat_output_0, %/layers.9/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_6_output_0, %onnx::Conv_1136, %onnx::Conv_1137) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_1139, %onnx::Conv_1140) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_1142, %onnx::Conv_1143) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_2_output_0, %onnx::Conv_1145, %onnx::Conv_1146) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_6_output_0, %onnx::Conv_1148, %onnx::Conv_1149) %/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_3_output_0 = Add(%/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_3_output_0) %/layers.10/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_3_output_0) %/layers.10/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_4_output_0 = Add(%/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_4_output_0) %/layers.10/Add_5_output_0 = Add(%/layers.10/Add_4_output_0, %/layers.10/vertex_op.4/maxpool/MaxPool_output_0) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_5_output_0, %onnx::Conv_1151, %onnx::Conv_1152) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_6_output_0, %onnx::Conv_1154, %onnx::Conv_1155) %/layers.10/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Add_6_output_0 = Add(%/layers.10/Concat_output_0, %/layers.10/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_6_output_0, %onnx::Conv_1157, %onnx::Conv_1158) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_1160, %onnx::Conv_1161) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_1163, %onnx::Conv_1164) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_2_output_0, %onnx::Conv_1166, %onnx::Conv_1167) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_6_output_0, %onnx::Conv_1169, %onnx::Conv_1170) %/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_3_output_0 = Add(%/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_3_output_0) %/layers.11/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_3_output_0) %/layers.11/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_4_output_0 = Add(%/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_4_output_0) %/layers.11/Add_5_output_0 = Add(%/layers.11/Add_4_output_0, %/layers.11/vertex_op.4/maxpool/MaxPool_output_0) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_5_output_0, %onnx::Conv_1172, %onnx::Conv_1173) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_6_output_0, %onnx::Conv_1175, %onnx::Conv_1176) %/layers.11/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Add_6_output_0 = Add(%/layers.11/Concat_output_0, %/layers.11/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Add_6_output_0) %984 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %984 }
val_accuracy
93.619794
1,472,997,376
4,863,626
{'zcp_epe_nas': 90.6028430514126, 'zcp_fisher': 1.853667497634887, 'zcp_flops': 23567958016.0, 'zcp_grad_norm': 33.904335021972656, 'zcp_grasp': -0.045150756835937, 'zcp_jacov': -16.044548951826656, 'zcp_l2_norm': 1189.0277099609375, 'zcp_nwot': 228.86172108592774, 'zcp_params': 4863626.0, 'zcp_plain': 0.0036177877336740004, 'zcp_snip': 213.26512145996094, 'zcp_synflow': 107.20538589284303, 'zcp_zen': 105.6390151977539, 'zcp_val_accuracy': 0.9200721383094781}
NASBench101_155294
NASBench101
155294
5dfbccffd72bf5ac65d7d5eaac3df0e2
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_545[FLOAT, 128x3x3x3] %onnx::Conv_546[FLOAT, 128] %onnx::Conv_548[FLOAT, 43x128x1x1] %onnx::Conv_549[FLOAT, 43] %onnx::Conv_551[FLOAT, 43x43x1x1] %onnx::Conv_554[FLOAT, 43x128x1x1] %onnx::Conv_557[FLOAT, 43x43x1x1] %onnx::Conv_560[FLOAT, 43x128x1x1] %onnx::Conv_563[FLOAT, 43x43x1x1] %onnx::Conv_566[FLOAT, 86x128x1x1] %onnx::Conv_567[FLOAT, 86] %onnx::Conv_569[FLOAT, 86x86x1x1] %onnx::Conv_572[FLOAT, 86x256x1x1] %onnx::Conv_575[FLOAT, 86x86x1x1] %onnx::Conv_578[FLOAT, 86x256x1x1] %onnx::Conv_581[FLOAT, 86x86x1x1] %onnx::Conv_584[FLOAT, 171x256x1x1] %onnx::Conv_585[FLOAT, 171] %onnx::Conv_587[FLOAT, 171x171x1x1] %onnx::Conv_590[FLOAT, 171x512x1x1] %onnx::Conv_593[FLOAT, 171x171x1x1] %onnx::Conv_596[FLOAT, 171x512x1x1] %onnx::Conv_599[FLOAT, 171x171x1x1] ) { %onnx::Conv_600 = Identity(%onnx::Conv_585) %onnx::Conv_597 = Identity(%onnx::Conv_585) %onnx::Conv_594 = Identity(%onnx::Conv_585) %onnx::Conv_591 = Identity(%onnx::Conv_585) %onnx::Conv_588 = Identity(%onnx::Conv_585) %onnx::Conv_582 = Identity(%onnx::Conv_567) %onnx::Conv_579 = Identity(%onnx::Conv_567) %onnx::Conv_576 = Identity(%onnx::Conv_567) %onnx::Conv_573 = Identity(%onnx::Conv_567) %onnx::Conv_570 = Identity(%onnx::Conv_567) %onnx::Conv_564 = Identity(%onnx::Conv_549) %onnx::Conv_561 = Identity(%onnx::Conv_549) %onnx::Conv_558 = Identity(%onnx::Conv_549) %onnx::Conv_555 = Identity(%onnx::Conv_549) %onnx::Conv_552 = Identity(%onnx::Conv_549) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_545, %onnx::Conv_546) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_548, %onnx::Conv_549) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_551, %onnx::Conv_552) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/vertex_op.1/maxpool/MaxPool_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.1/Slice_output_0 = Slice(%/layers.1/vertex_op.3/maxpool/MaxPool_output_0, %/layers.1/Constant_2_output_0, %/layers.1/Constant_3_output_0, %/layers.1/Constant_1_output_0, %/layers.1/Constant_4_output_0) %/layers.1/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Slice_output_0) %/layers.1/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_8_output_0 = Constant[value = <Tensor>]() %/layers.1/Slice_1_output_0 = Slice(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_6_output_0, %/layers.1/Constant_7_output_0, %/layers.1/Constant_5_output_0, %/layers.1/Constant_8_output_0) %/layers.1/Constant_9_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/Slice_1_output_0, %/layers.1/Constant_9_output_0) %/layers.1/Add_2_output_0 = Add(%/layers.1/Add_1_output_0, %/layers.1/vertex_op.4/maxpool/MaxPool_output_0) %/layers.1/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_2_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.3/maxpool/MaxPool_output_0, %/layers.1/vertex_op.5/maxpool/MaxPool_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_554, %onnx::Conv_555) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_557, %onnx::Conv_558) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/vertex_op.1/maxpool/MaxPool_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.2/Slice_output_0 = Slice(%/layers.2/vertex_op.3/maxpool/MaxPool_output_0, %/layers.2/Constant_2_output_0, %/layers.2/Constant_3_output_0, %/layers.2/Constant_1_output_0, %/layers.2/Constant_4_output_0) %/layers.2/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Slice_output_0) %/layers.2/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_8_output_0 = Constant[value = <Tensor>]() %/layers.2/Slice_1_output_0 = Slice(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_6_output_0, %/layers.2/Constant_7_output_0, %/layers.2/Constant_5_output_0, %/layers.2/Constant_8_output_0) %/layers.2/Constant_9_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/Slice_1_output_0, %/layers.2/Constant_9_output_0) %/layers.2/Add_2_output_0 = Add(%/layers.2/Add_1_output_0, %/layers.2/vertex_op.4/maxpool/MaxPool_output_0) %/layers.2/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_2_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.3/maxpool/MaxPool_output_0, %/layers.2/vertex_op.5/maxpool/MaxPool_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_560, %onnx::Conv_561) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_563, %onnx::Conv_564) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/vertex_op.1/maxpool/MaxPool_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.3/Slice_output_0 = Slice(%/layers.3/vertex_op.3/maxpool/MaxPool_output_0, %/layers.3/Constant_2_output_0, %/layers.3/Constant_3_output_0, %/layers.3/Constant_1_output_0, %/layers.3/Constant_4_output_0) %/layers.3/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Slice_output_0) %/layers.3/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_8_output_0 = Constant[value = <Tensor>]() %/layers.3/Slice_1_output_0 = Slice(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_6_output_0, %/layers.3/Constant_7_output_0, %/layers.3/Constant_5_output_0, %/layers.3/Constant_8_output_0) %/layers.3/Constant_9_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/Slice_1_output_0, %/layers.3/Constant_9_output_0) %/layers.3/Add_2_output_0 = Add(%/layers.3/Add_1_output_0, %/layers.3/vertex_op.4/maxpool/MaxPool_output_0) %/layers.3/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_2_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.3/maxpool/MaxPool_output_0, %/layers.3/vertex_op.5/maxpool/MaxPool_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Concat_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_566, %onnx::Conv_567) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_569, %onnx::Conv_570) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.5/Slice_output_0 = Slice(%/layers.5/vertex_op.1/maxpool/MaxPool_output_0, %/layers.5/Constant_2_output_0, %/layers.5/Constant_3_output_0, %/layers.5/Constant_1_output_0, %/layers.5/Constant_4_output_0) %/layers.5/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Slice_output_0) %/layers.5/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/vertex_op.3/maxpool/MaxPool_output_0) %/layers.5/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_8_output_0 = Constant[value = <Tensor>]() %/layers.5/Slice_1_output_0 = Slice(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_6_output_0, %/layers.5/Constant_7_output_0, %/layers.5/Constant_5_output_0, %/layers.5/Constant_8_output_0) %/layers.5/Constant_9_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/Slice_1_output_0, %/layers.5/Constant_9_output_0) %/layers.5/Add_2_output_0 = Add(%/layers.5/Add_1_output_0, %/layers.5/vertex_op.4/maxpool/MaxPool_output_0) %/layers.5/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_2_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.3/maxpool/MaxPool_output_0, %/layers.5/vertex_op.5/maxpool/MaxPool_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_572, %onnx::Conv_573) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_575, %onnx::Conv_576) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.6/Slice_output_0 = Slice(%/layers.6/vertex_op.1/maxpool/MaxPool_output_0, %/layers.6/Constant_2_output_0, %/layers.6/Constant_3_output_0, %/layers.6/Constant_1_output_0, %/layers.6/Constant_4_output_0) %/layers.6/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Slice_output_0) %/layers.6/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/vertex_op.3/maxpool/MaxPool_output_0) %/layers.6/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_8_output_0 = Constant[value = <Tensor>]() %/layers.6/Slice_1_output_0 = Slice(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_6_output_0, %/layers.6/Constant_7_output_0, %/layers.6/Constant_5_output_0, %/layers.6/Constant_8_output_0) %/layers.6/Constant_9_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/Slice_1_output_0, %/layers.6/Constant_9_output_0) %/layers.6/Add_2_output_0 = Add(%/layers.6/Add_1_output_0, %/layers.6/vertex_op.4/maxpool/MaxPool_output_0) %/layers.6/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_2_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.3/maxpool/MaxPool_output_0, %/layers.6/vertex_op.5/maxpool/MaxPool_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_578, %onnx::Conv_579) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_581, %onnx::Conv_582) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.7/Slice_output_0 = Slice(%/layers.7/vertex_op.1/maxpool/MaxPool_output_0, %/layers.7/Constant_2_output_0, %/layers.7/Constant_3_output_0, %/layers.7/Constant_1_output_0, %/layers.7/Constant_4_output_0) %/layers.7/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Slice_output_0) %/layers.7/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/vertex_op.3/maxpool/MaxPool_output_0) %/layers.7/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_8_output_0 = Constant[value = <Tensor>]() %/layers.7/Slice_1_output_0 = Slice(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_6_output_0, %/layers.7/Constant_7_output_0, %/layers.7/Constant_5_output_0, %/layers.7/Constant_8_output_0) %/layers.7/Constant_9_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/Slice_1_output_0, %/layers.7/Constant_9_output_0) %/layers.7/Add_2_output_0 = Add(%/layers.7/Add_1_output_0, %/layers.7/vertex_op.4/maxpool/MaxPool_output_0) %/layers.7/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_2_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.3/maxpool/MaxPool_output_0, %/layers.7/vertex_op.5/maxpool/MaxPool_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Concat_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_584, %onnx::Conv_585) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_587, %onnx::Conv_588) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/vertex_op.1/maxpool/MaxPool_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.9/Slice_output_0 = Slice(%/layers.9/vertex_op.3/maxpool/MaxPool_output_0, %/layers.9/Constant_2_output_0, %/layers.9/Constant_3_output_0, %/layers.9/Constant_1_output_0, %/layers.9/Constant_4_output_0) %/layers.9/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Slice_output_0) %/layers.9/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_8_output_0 = Constant[value = <Tensor>]() %/layers.9/Slice_1_output_0 = Slice(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_6_output_0, %/layers.9/Constant_7_output_0, %/layers.9/Constant_5_output_0, %/layers.9/Constant_8_output_0) %/layers.9/Constant_9_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/Slice_1_output_0, %/layers.9/Constant_9_output_0) %/layers.9/Add_2_output_0 = Add(%/layers.9/Add_1_output_0, %/layers.9/vertex_op.4/maxpool/MaxPool_output_0) %/layers.9/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_2_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.3/maxpool/MaxPool_output_0, %/layers.9/vertex_op.5/maxpool/MaxPool_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_590, %onnx::Conv_591) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_593, %onnx::Conv_594) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/vertex_op.1/maxpool/MaxPool_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.10/Slice_output_0 = Slice(%/layers.10/vertex_op.3/maxpool/MaxPool_output_0, %/layers.10/Constant_2_output_0, %/layers.10/Constant_3_output_0, %/layers.10/Constant_1_output_0, %/layers.10/Constant_4_output_0) %/layers.10/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Slice_output_0) %/layers.10/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_8_output_0 = Constant[value = <Tensor>]() %/layers.10/Slice_1_output_0 = Slice(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_6_output_0, %/layers.10/Constant_7_output_0, %/layers.10/Constant_5_output_0, %/layers.10/Constant_8_output_0) %/layers.10/Constant_9_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/Slice_1_output_0, %/layers.10/Constant_9_output_0) %/layers.10/Add_2_output_0 = Add(%/layers.10/Add_1_output_0, %/layers.10/vertex_op.4/maxpool/MaxPool_output_0) %/layers.10/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_2_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.3/maxpool/MaxPool_output_0, %/layers.10/vertex_op.5/maxpool/MaxPool_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_596, %onnx::Conv_597) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_599, %onnx::Conv_600) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/vertex_op.1/maxpool/MaxPool_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.11/Slice_output_0 = Slice(%/layers.11/vertex_op.3/maxpool/MaxPool_output_0, %/layers.11/Constant_2_output_0, %/layers.11/Constant_3_output_0, %/layers.11/Constant_1_output_0, %/layers.11/Constant_4_output_0) %/layers.11/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Slice_output_0) %/layers.11/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_8_output_0 = Constant[value = <Tensor>]() %/layers.11/Slice_1_output_0 = Slice(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_6_output_0, %/layers.11/Constant_7_output_0, %/layers.11/Constant_5_output_0, %/layers.11/Constant_8_output_0) %/layers.11/Constant_9_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/Slice_1_output_0, %/layers.11/Constant_9_output_0) %/layers.11/Add_2_output_0 = Add(%/layers.11/Add_1_output_0, %/layers.11/vertex_op.4/maxpool/MaxPool_output_0) %/layers.11/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_2_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.3/maxpool/MaxPool_output_0, %/layers.11/vertex_op.5/maxpool/MaxPool_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Concat_output_0) %543 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %543 }
val_accuracy
86.127806
135,795,072
418,332
{'zcp_epe_nas': 62.422024457106964, 'zcp_fisher': 5.925540447235107, 'zcp_flops': 2172721152.0, 'zcp_grad_norm': 35.97146987915039, 'zcp_grasp': -2.0614013671875, 'zcp_jacov': -16.058365577500197, 'zcp_l2_norm': 321.75384521484375, 'zcp_nwot': 203.3223127110813, 'zcp_params': 418332.0, 'zcp_plain': 0.102312803268432, 'zcp_snip': 162.2161407470703, 'zcp_synflow': 54.4376715196925, 'zcp_zen': 31.599674224853516, 'zcp_val_accuracy': 0.900240361690521}
NASBench101_7381
NASBench101
7381
04776db85686fa06d97c6c73a20841c6
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_806[FLOAT, 128x3x3x3] %onnx::Conv_807[FLOAT, 128] %onnx::Conv_809[FLOAT, 128x128x1x1] %onnx::Conv_812[FLOAT, 128x128x1x1] %onnx::Conv_815[FLOAT, 128x128x1x1] %onnx::Conv_818[FLOAT, 128x128x3x3] %onnx::Conv_821[FLOAT, 128x128x1x1] %onnx::Conv_824[FLOAT, 128x128x1x1] %onnx::Conv_827[FLOAT, 128x128x1x1] %onnx::Conv_830[FLOAT, 128x128x1x1] %onnx::Conv_833[FLOAT, 128x128x1x1] %onnx::Conv_836[FLOAT, 128x128x3x3] %onnx::Conv_839[FLOAT, 128x128x1x1] %onnx::Conv_842[FLOAT, 128x128x1x1] %onnx::Conv_845[FLOAT, 128x128x1x1] %onnx::Conv_848[FLOAT, 128x128x1x1] %onnx::Conv_851[FLOAT, 128x128x1x1] %onnx::Conv_854[FLOAT, 128x128x3x3] %onnx::Conv_857[FLOAT, 128x128x1x1] %onnx::Conv_860[FLOAT, 128x128x1x1] %onnx::Conv_863[FLOAT, 256x128x1x1] %onnx::Conv_864[FLOAT, 256] %onnx::Conv_866[FLOAT, 256x256x1x1] %onnx::Conv_869[FLOAT, 256x128x1x1] %onnx::Conv_872[FLOAT, 256x256x3x3] %onnx::Conv_875[FLOAT, 256x128x1x1] %onnx::Conv_878[FLOAT, 256x256x1x1] %onnx::Conv_881[FLOAT, 256x256x1x1] %onnx::Conv_884[FLOAT, 256x256x1x1] %onnx::Conv_887[FLOAT, 256x256x1x1] %onnx::Conv_890[FLOAT, 256x256x3x3] %onnx::Conv_893[FLOAT, 256x256x1x1] %onnx::Conv_896[FLOAT, 256x256x1x1] %onnx::Conv_899[FLOAT, 256x256x1x1] %onnx::Conv_902[FLOAT, 256x256x1x1] %onnx::Conv_905[FLOAT, 256x256x1x1] %onnx::Conv_908[FLOAT, 256x256x3x3] %onnx::Conv_911[FLOAT, 256x256x1x1] %onnx::Conv_914[FLOAT, 256x256x1x1] %onnx::Conv_917[FLOAT, 512x256x1x1] %onnx::Conv_918[FLOAT, 512] %onnx::Conv_920[FLOAT, 512x512x1x1] %onnx::Conv_923[FLOAT, 512x256x1x1] %onnx::Conv_926[FLOAT, 512x512x3x3] %onnx::Conv_929[FLOAT, 512x256x1x1] %onnx::Conv_932[FLOAT, 512x512x1x1] %onnx::Conv_935[FLOAT, 512x512x1x1] %onnx::Conv_938[FLOAT, 512x512x1x1] %onnx::Conv_941[FLOAT, 512x512x1x1] %onnx::Conv_944[FLOAT, 512x512x3x3] %onnx::Conv_947[FLOAT, 512x512x1x1] %onnx::Conv_950[FLOAT, 512x512x1x1] %onnx::Conv_953[FLOAT, 512x512x1x1] %onnx::Conv_956[FLOAT, 512x512x1x1] %onnx::Conv_959[FLOAT, 512x512x1x1] %onnx::Conv_962[FLOAT, 512x512x3x3] %onnx::Conv_965[FLOAT, 512x512x1x1] %onnx::Conv_968[FLOAT, 512x512x1x1] ) { %onnx::Conv_969 = Identity(%onnx::Conv_918) %onnx::Conv_966 = Identity(%onnx::Conv_918) %onnx::Conv_963 = Identity(%onnx::Conv_918) %onnx::Conv_960 = Identity(%onnx::Conv_918) %onnx::Conv_957 = Identity(%onnx::Conv_918) %onnx::Conv_954 = Identity(%onnx::Conv_918) %onnx::Conv_951 = Identity(%onnx::Conv_918) %onnx::Conv_948 = Identity(%onnx::Conv_918) %onnx::Conv_945 = Identity(%onnx::Conv_918) %onnx::Conv_942 = Identity(%onnx::Conv_918) %onnx::Conv_939 = Identity(%onnx::Conv_918) %onnx::Conv_936 = Identity(%onnx::Conv_918) %onnx::Conv_933 = Identity(%onnx::Conv_918) %onnx::Conv_930 = Identity(%onnx::Conv_918) %onnx::Conv_927 = Identity(%onnx::Conv_918) %onnx::Conv_924 = Identity(%onnx::Conv_918) %onnx::Conv_921 = Identity(%onnx::Conv_918) %onnx::Conv_915 = Identity(%onnx::Conv_864) %onnx::Conv_912 = Identity(%onnx::Conv_864) %onnx::Conv_909 = Identity(%onnx::Conv_864) %onnx::Conv_906 = Identity(%onnx::Conv_864) %onnx::Conv_903 = Identity(%onnx::Conv_864) %onnx::Conv_900 = Identity(%onnx::Conv_864) %onnx::Conv_897 = Identity(%onnx::Conv_864) %onnx::Conv_894 = Identity(%onnx::Conv_864) %onnx::Conv_891 = Identity(%onnx::Conv_864) %onnx::Conv_888 = Identity(%onnx::Conv_864) %onnx::Conv_885 = Identity(%onnx::Conv_864) %onnx::Conv_882 = Identity(%onnx::Conv_864) %onnx::Conv_879 = Identity(%onnx::Conv_864) %onnx::Conv_876 = Identity(%onnx::Conv_864) %onnx::Conv_873 = Identity(%onnx::Conv_864) %onnx::Conv_870 = Identity(%onnx::Conv_864) %onnx::Conv_867 = Identity(%onnx::Conv_864) %onnx::Conv_861 = Identity(%onnx::Conv_807) %onnx::Conv_858 = Identity(%onnx::Conv_807) %onnx::Conv_855 = Identity(%onnx::Conv_807) %onnx::Conv_852 = Identity(%onnx::Conv_807) %onnx::Conv_849 = Identity(%onnx::Conv_807) %onnx::Conv_846 = Identity(%onnx::Conv_807) %onnx::Conv_843 = Identity(%onnx::Conv_807) %onnx::Conv_840 = Identity(%onnx::Conv_807) %onnx::Conv_837 = Identity(%onnx::Conv_807) %onnx::Conv_834 = Identity(%onnx::Conv_807) %onnx::Conv_831 = Identity(%onnx::Conv_807) %onnx::Conv_828 = Identity(%onnx::Conv_807) %onnx::Conv_825 = Identity(%onnx::Conv_807) %onnx::Conv_822 = Identity(%onnx::Conv_807) %onnx::Conv_819 = Identity(%onnx::Conv_807) %onnx::Conv_816 = Identity(%onnx::Conv_807) %onnx::Conv_813 = Identity(%onnx::Conv_807) %onnx::Conv_810 = Identity(%onnx::Conv_807) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_806, %onnx::Conv_807) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_809, %onnx::Conv_810) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_812, %onnx::Conv_813) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_815, %onnx::Conv_816) %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/maxpool/MaxPool_output_0, %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/Add_2_output_0 = Add(%/layers.1/Add_1_output_0, %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_2_output_0, %onnx::Conv_818, %onnx::Conv_819) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_821, %onnx::Conv_822) %/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Add_3_output_0 = Add(%/layers.1/vertex_op.1/maxpool/MaxPool_output_0, %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/Add_4_output_0 = Add(%/layers.1/Add_3_output_0, %/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_4_output_0, %onnx::Conv_824, %onnx::Conv_825) %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_827, %onnx::Conv_828) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_830, %onnx::Conv_831) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_833, %onnx::Conv_834) %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/maxpool/MaxPool_output_0, %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/Add_2_output_0 = Add(%/layers.2/Add_1_output_0, %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_2_output_0, %onnx::Conv_836, %onnx::Conv_837) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_839, %onnx::Conv_840) %/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Add_3_output_0 = Add(%/layers.2/vertex_op.1/maxpool/MaxPool_output_0, %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/Add_4_output_0 = Add(%/layers.2/Add_3_output_0, %/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_4_output_0, %onnx::Conv_842, %onnx::Conv_843) %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_845, %onnx::Conv_846) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_848, %onnx::Conv_849) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_851, %onnx::Conv_852) %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/maxpool/MaxPool_output_0, %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/Add_2_output_0 = Add(%/layers.3/Add_1_output_0, %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_2_output_0, %onnx::Conv_854, %onnx::Conv_855) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_857, %onnx::Conv_858) %/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Add_3_output_0 = Add(%/layers.3/vertex_op.1/maxpool/MaxPool_output_0, %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/Add_4_output_0 = Add(%/layers.3/Add_3_output_0, %/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_4_output_0, %onnx::Conv_860, %onnx::Conv_861) %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_863, %onnx::Conv_864) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_866, %onnx::Conv_867) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_869, %onnx::Conv_870) %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.1/maxpool/MaxPool_output_0, %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/Add_2_output_0 = Add(%/layers.5/Add_1_output_0, %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_2_output_0, %onnx::Conv_872, %onnx::Conv_873) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_875, %onnx::Conv_876) %/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Add_3_output_0 = Add(%/layers.5/vertex_op.1/maxpool/MaxPool_output_0, %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/Add_4_output_0 = Add(%/layers.5/Add_3_output_0, %/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_4_output_0, %onnx::Conv_878, %onnx::Conv_879) %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_881, %onnx::Conv_882) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_884, %onnx::Conv_885) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_887, %onnx::Conv_888) %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.1/maxpool/MaxPool_output_0, %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/Add_2_output_0 = Add(%/layers.6/Add_1_output_0, %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_2_output_0, %onnx::Conv_890, %onnx::Conv_891) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_893, %onnx::Conv_894) %/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Add_3_output_0 = Add(%/layers.6/vertex_op.1/maxpool/MaxPool_output_0, %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/Add_4_output_0 = Add(%/layers.6/Add_3_output_0, %/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_4_output_0, %onnx::Conv_896, %onnx::Conv_897) %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_899, %onnx::Conv_900) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_902, %onnx::Conv_903) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_905, %onnx::Conv_906) %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.1/maxpool/MaxPool_output_0, %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/Add_2_output_0 = Add(%/layers.7/Add_1_output_0, %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_2_output_0, %onnx::Conv_908, %onnx::Conv_909) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_911, %onnx::Conv_912) %/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Add_3_output_0 = Add(%/layers.7/vertex_op.1/maxpool/MaxPool_output_0, %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/Add_4_output_0 = Add(%/layers.7/Add_3_output_0, %/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_4_output_0, %onnx::Conv_914, %onnx::Conv_915) %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_917, %onnx::Conv_918) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_920, %onnx::Conv_921) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_923, %onnx::Conv_924) %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/maxpool/MaxPool_output_0, %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/Add_2_output_0 = Add(%/layers.9/Add_1_output_0, %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_2_output_0, %onnx::Conv_926, %onnx::Conv_927) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_929, %onnx::Conv_930) %/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Add_3_output_0 = Add(%/layers.9/vertex_op.1/maxpool/MaxPool_output_0, %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/Add_4_output_0 = Add(%/layers.9/Add_3_output_0, %/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_4_output_0, %onnx::Conv_932, %onnx::Conv_933) %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_935, %onnx::Conv_936) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_938, %onnx::Conv_939) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_941, %onnx::Conv_942) %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/maxpool/MaxPool_output_0, %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/Add_2_output_0 = Add(%/layers.10/Add_1_output_0, %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_2_output_0, %onnx::Conv_944, %onnx::Conv_945) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_947, %onnx::Conv_948) %/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Add_3_output_0 = Add(%/layers.10/vertex_op.1/maxpool/MaxPool_output_0, %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/Add_4_output_0 = Add(%/layers.10/Add_3_output_0, %/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_4_output_0, %onnx::Conv_950, %onnx::Conv_951) %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_953, %onnx::Conv_954) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_956, %onnx::Conv_957) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_959, %onnx::Conv_960) %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/maxpool/MaxPool_output_0, %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/Add_2_output_0 = Add(%/layers.11/Add_1_output_0, %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_2_output_0, %onnx::Conv_962, %onnx::Conv_963) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_965, %onnx::Conv_966) %/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Add_3_output_0 = Add(%/layers.11/vertex_op.1/maxpool/MaxPool_output_0, %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/Add_4_output_0 = Add(%/layers.11/Add_3_output_0, %/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_4_output_0, %onnx::Conv_968, %onnx::Conv_969) %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %804 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %804 }
val_accuracy
93.659854
4,168,361,984
14,000,266
{'zcp_epe_nas': 164.39697467006116, 'zcp_fisher': 5.968270301818848, 'zcp_flops': 66693791744.0, 'zcp_grad_norm': 52.131038665771484, 'zcp_grasp': -2.876846313476562, 'zcp_jacov': -16.046580261006746, 'zcp_l2_norm': 1225.689208984375, 'zcp_nwot': 234.74304730600923, 'zcp_params': 14000266.0, 'zcp_plain': 0.037733193486928, 'zcp_snip': 412.1624755859375, 'zcp_synflow': 120.63209786763667, 'zcp_zen': 107.34319305419922, 'zcp_val_accuracy': 0.881510436534881}
NASBench101_210056
NASBench101
210056
7f330574c3958b22dbcde0030e1ac807
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_968[FLOAT, 128x3x3x3] %onnx::Conv_969[FLOAT, 128] %onnx::Conv_971[FLOAT, 64x128x1x1] %onnx::Conv_972[FLOAT, 64] %onnx::Conv_974[FLOAT, 64x64x3x3] %onnx::Conv_977[FLOAT, 64x128x1x1] %onnx::Conv_980[FLOAT, 64x64x3x3] %onnx::Conv_983[FLOAT, 64x64x3x3] %onnx::Conv_986[FLOAT, 64x64x1x1] %onnx::Conv_989[FLOAT, 128x128x1x1] %onnx::Conv_992[FLOAT, 64x128x1x1] %onnx::Conv_995[FLOAT, 64x64x3x3] %onnx::Conv_998[FLOAT, 64x128x1x1] %onnx::Conv_1001[FLOAT, 64x64x3x3] %onnx::Conv_1004[FLOAT, 64x64x3x3] %onnx::Conv_1007[FLOAT, 64x64x1x1] %onnx::Conv_1010[FLOAT, 128x128x1x1] %onnx::Conv_1013[FLOAT, 64x128x1x1] %onnx::Conv_1016[FLOAT, 64x64x3x3] %onnx::Conv_1019[FLOAT, 64x128x1x1] %onnx::Conv_1022[FLOAT, 64x64x3x3] %onnx::Conv_1025[FLOAT, 64x64x3x3] %onnx::Conv_1028[FLOAT, 64x64x1x1] %onnx::Conv_1031[FLOAT, 128x128x1x1] %onnx::Conv_1034[FLOAT, 128x128x1x1] %onnx::Conv_1037[FLOAT, 128x128x3x3] %onnx::Conv_1040[FLOAT, 128x128x1x1] %onnx::Conv_1043[FLOAT, 128x128x3x3] %onnx::Conv_1046[FLOAT, 128x128x3x3] %onnx::Conv_1049[FLOAT, 128x128x1x1] %onnx::Conv_1052[FLOAT, 256x128x1x1] %onnx::Conv_1053[FLOAT, 256] %onnx::Conv_1055[FLOAT, 128x256x1x1] %onnx::Conv_1058[FLOAT, 128x128x3x3] %onnx::Conv_1061[FLOAT, 128x256x1x1] %onnx::Conv_1064[FLOAT, 128x128x3x3] %onnx::Conv_1067[FLOAT, 128x128x3x3] %onnx::Conv_1070[FLOAT, 128x128x1x1] %onnx::Conv_1073[FLOAT, 256x256x1x1] %onnx::Conv_1076[FLOAT, 128x256x1x1] %onnx::Conv_1079[FLOAT, 128x128x3x3] %onnx::Conv_1082[FLOAT, 128x256x1x1] %onnx::Conv_1085[FLOAT, 128x128x3x3] %onnx::Conv_1088[FLOAT, 128x128x3x3] %onnx::Conv_1091[FLOAT, 128x128x1x1] %onnx::Conv_1094[FLOAT, 256x256x1x1] %onnx::Conv_1097[FLOAT, 256x256x1x1] %onnx::Conv_1100[FLOAT, 256x256x3x3] %onnx::Conv_1103[FLOAT, 256x256x1x1] %onnx::Conv_1106[FLOAT, 256x256x3x3] %onnx::Conv_1109[FLOAT, 256x256x3x3] %onnx::Conv_1112[FLOAT, 256x256x1x1] %onnx::Conv_1115[FLOAT, 512x256x1x1] %onnx::Conv_1116[FLOAT, 512] %onnx::Conv_1118[FLOAT, 256x512x1x1] %onnx::Conv_1121[FLOAT, 256x256x3x3] %onnx::Conv_1124[FLOAT, 256x512x1x1] %onnx::Conv_1127[FLOAT, 256x256x3x3] %onnx::Conv_1130[FLOAT, 256x256x3x3] %onnx::Conv_1133[FLOAT, 256x256x1x1] %onnx::Conv_1136[FLOAT, 512x512x1x1] %onnx::Conv_1139[FLOAT, 256x512x1x1] %onnx::Conv_1142[FLOAT, 256x256x3x3] %onnx::Conv_1145[FLOAT, 256x512x1x1] %onnx::Conv_1148[FLOAT, 256x256x3x3] %onnx::Conv_1151[FLOAT, 256x256x3x3] %onnx::Conv_1154[FLOAT, 256x256x1x1] %onnx::Conv_1157[FLOAT, 512x512x1x1] ) { %onnx::Conv_1158 = Identity(%onnx::Conv_1116) %onnx::Conv_1155 = Identity(%onnx::Conv_1053) %onnx::Conv_1152 = Identity(%onnx::Conv_1053) %onnx::Conv_1149 = Identity(%onnx::Conv_1053) %onnx::Conv_1146 = Identity(%onnx::Conv_1053) %onnx::Conv_1143 = Identity(%onnx::Conv_1053) %onnx::Conv_1140 = Identity(%onnx::Conv_1053) %onnx::Conv_1137 = Identity(%onnx::Conv_1116) %onnx::Conv_1134 = Identity(%onnx::Conv_1053) %onnx::Conv_1131 = Identity(%onnx::Conv_1053) %onnx::Conv_1128 = Identity(%onnx::Conv_1053) %onnx::Conv_1125 = Identity(%onnx::Conv_1053) %onnx::Conv_1122 = Identity(%onnx::Conv_1053) %onnx::Conv_1119 = Identity(%onnx::Conv_1053) %onnx::Conv_1113 = Identity(%onnx::Conv_1053) %onnx::Conv_1110 = Identity(%onnx::Conv_1053) %onnx::Conv_1107 = Identity(%onnx::Conv_1053) %onnx::Conv_1104 = Identity(%onnx::Conv_1053) %onnx::Conv_1101 = Identity(%onnx::Conv_1053) %onnx::Conv_1098 = Identity(%onnx::Conv_1053) %onnx::Conv_1095 = Identity(%onnx::Conv_1053) %onnx::Conv_1092 = Identity(%onnx::Conv_969) %onnx::Conv_1089 = Identity(%onnx::Conv_969) %onnx::Conv_1086 = Identity(%onnx::Conv_969) %onnx::Conv_1083 = Identity(%onnx::Conv_969) %onnx::Conv_1080 = Identity(%onnx::Conv_969) %onnx::Conv_1077 = Identity(%onnx::Conv_969) %onnx::Conv_1074 = Identity(%onnx::Conv_1053) %onnx::Conv_1071 = Identity(%onnx::Conv_969) %onnx::Conv_1068 = Identity(%onnx::Conv_969) %onnx::Conv_1065 = Identity(%onnx::Conv_969) %onnx::Conv_1062 = Identity(%onnx::Conv_969) %onnx::Conv_1059 = Identity(%onnx::Conv_969) %onnx::Conv_1056 = Identity(%onnx::Conv_969) %onnx::Conv_1050 = Identity(%onnx::Conv_969) %onnx::Conv_1047 = Identity(%onnx::Conv_969) %onnx::Conv_1044 = Identity(%onnx::Conv_969) %onnx::Conv_1041 = Identity(%onnx::Conv_969) %onnx::Conv_1038 = Identity(%onnx::Conv_969) %onnx::Conv_1035 = Identity(%onnx::Conv_969) %onnx::Conv_1032 = Identity(%onnx::Conv_969) %onnx::Conv_1029 = Identity(%onnx::Conv_972) %onnx::Conv_1026 = Identity(%onnx::Conv_972) %onnx::Conv_1023 = Identity(%onnx::Conv_972) %onnx::Conv_1020 = Identity(%onnx::Conv_972) %onnx::Conv_1017 = Identity(%onnx::Conv_972) %onnx::Conv_1014 = Identity(%onnx::Conv_972) %onnx::Conv_1011 = Identity(%onnx::Conv_969) %onnx::Conv_1008 = Identity(%onnx::Conv_972) %onnx::Conv_1005 = Identity(%onnx::Conv_972) %onnx::Conv_1002 = Identity(%onnx::Conv_972) %onnx::Conv_999 = Identity(%onnx::Conv_972) %onnx::Conv_996 = Identity(%onnx::Conv_972) %onnx::Conv_993 = Identity(%onnx::Conv_972) %onnx::Conv_990 = Identity(%onnx::Conv_969) %onnx::Conv_987 = Identity(%onnx::Conv_972) %onnx::Conv_984 = Identity(%onnx::Conv_972) %onnx::Conv_981 = Identity(%onnx::Conv_972) %onnx::Conv_978 = Identity(%onnx::Conv_972) %onnx::Conv_975 = Identity(%onnx::Conv_972) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_968, %onnx::Conv_969) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_971, %onnx::Conv_972) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_974, %onnx::Conv_975) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_977, %onnx::Conv_978) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_980, %onnx::Conv_981) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/Add_3_output_0 = Add(%/layers.1/Add_2_output_0, %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_3_output_0, %onnx::Conv_983, %onnx::Conv_984) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_4_output_0 = Add(%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_3_output_0) %/layers.1/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_4_output_0) %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.4/maxpool/MaxPool_output_0, %onnx::Conv_986, %onnx::Conv_987) %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_989, %onnx::Conv_990) %/layers.1/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Add_5_output_0 = Add(%/layers.1/Concat_output_0, %/layers.1/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_5_output_0, %onnx::Conv_992, %onnx::Conv_993) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_995, %onnx::Conv_996) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_5_output_0, %onnx::Conv_998, %onnx::Conv_999) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_1001, %onnx::Conv_1002) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/Add_3_output_0 = Add(%/layers.2/Add_2_output_0, %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_3_output_0, %onnx::Conv_1004, %onnx::Conv_1005) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_4_output_0 = Add(%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_3_output_0) %/layers.2/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_4_output_0) %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.4/maxpool/MaxPool_output_0, %onnx::Conv_1007, %onnx::Conv_1008) %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_5_output_0, %onnx::Conv_1010, %onnx::Conv_1011) %/layers.2/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Add_5_output_0 = Add(%/layers.2/Concat_output_0, %/layers.2/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_5_output_0, %onnx::Conv_1013, %onnx::Conv_1014) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_1016, %onnx::Conv_1017) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_5_output_0, %onnx::Conv_1019, %onnx::Conv_1020) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_1022, %onnx::Conv_1023) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/Add_3_output_0 = Add(%/layers.3/Add_2_output_0, %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_3_output_0, %onnx::Conv_1025, %onnx::Conv_1026) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_4_output_0 = Add(%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_3_output_0) %/layers.3/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_4_output_0) %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/vertex_op.4/maxpool/MaxPool_output_0, %onnx::Conv_1028, %onnx::Conv_1029) %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_5_output_0, %onnx::Conv_1031, %onnx::Conv_1032) %/layers.3/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Add_5_output_0 = Add(%/layers.3/Concat_output_0, %/layers.3/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Add_5_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_1034, %onnx::Conv_1035) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_1037, %onnx::Conv_1038) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_1040, %onnx::Conv_1041) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_1043, %onnx::Conv_1044) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/Add_3_output_0 = Add(%/layers.5/Add_2_output_0, %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_3_output_0, %onnx::Conv_1046, %onnx::Conv_1047) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_4_output_0 = Add(%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_3_output_0) %/layers.5/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_4_output_0) %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.4/maxpool/MaxPool_output_0, %onnx::Conv_1049, %onnx::Conv_1050) %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_1052, %onnx::Conv_1053) %/layers.5/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Add_5_output_0 = Add(%/layers.5/Concat_output_0, %/layers.5/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_5_output_0, %onnx::Conv_1055, %onnx::Conv_1056) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_1058, %onnx::Conv_1059) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_5_output_0, %onnx::Conv_1061, %onnx::Conv_1062) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_1064, %onnx::Conv_1065) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/Add_3_output_0 = Add(%/layers.6/Add_2_output_0, %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_3_output_0, %onnx::Conv_1067, %onnx::Conv_1068) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_4_output_0 = Add(%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_3_output_0) %/layers.6/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_4_output_0) %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.4/maxpool/MaxPool_output_0, %onnx::Conv_1070, %onnx::Conv_1071) %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_5_output_0, %onnx::Conv_1073, %onnx::Conv_1074) %/layers.6/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Add_5_output_0 = Add(%/layers.6/Concat_output_0, %/layers.6/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_5_output_0, %onnx::Conv_1076, %onnx::Conv_1077) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_1079, %onnx::Conv_1080) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_5_output_0, %onnx::Conv_1082, %onnx::Conv_1083) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_1085, %onnx::Conv_1086) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/Add_3_output_0 = Add(%/layers.7/Add_2_output_0, %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_3_output_0, %onnx::Conv_1088, %onnx::Conv_1089) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_4_output_0 = Add(%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_3_output_0) %/layers.7/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_4_output_0) %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/vertex_op.4/maxpool/MaxPool_output_0, %onnx::Conv_1091, %onnx::Conv_1092) %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_5_output_0, %onnx::Conv_1094, %onnx::Conv_1095) %/layers.7/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Add_5_output_0 = Add(%/layers.7/Concat_output_0, %/layers.7/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Add_5_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1097, %onnx::Conv_1098) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_1100, %onnx::Conv_1101) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1103, %onnx::Conv_1104) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_1106, %onnx::Conv_1107) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/Add_3_output_0 = Add(%/layers.9/Add_2_output_0, %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_3_output_0, %onnx::Conv_1109, %onnx::Conv_1110) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_4_output_0 = Add(%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_3_output_0) %/layers.9/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_4_output_0) %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.4/maxpool/MaxPool_output_0, %onnx::Conv_1112, %onnx::Conv_1113) %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1115, %onnx::Conv_1116) %/layers.9/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Add_5_output_0 = Add(%/layers.9/Concat_output_0, %/layers.9/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_5_output_0, %onnx::Conv_1118, %onnx::Conv_1119) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_1121, %onnx::Conv_1122) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_5_output_0, %onnx::Conv_1124, %onnx::Conv_1125) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_1127, %onnx::Conv_1128) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/Add_3_output_0 = Add(%/layers.10/Add_2_output_0, %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_3_output_0, %onnx::Conv_1130, %onnx::Conv_1131) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_4_output_0 = Add(%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_3_output_0) %/layers.10/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_4_output_0) %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.4/maxpool/MaxPool_output_0, %onnx::Conv_1133, %onnx::Conv_1134) %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_5_output_0, %onnx::Conv_1136, %onnx::Conv_1137) %/layers.10/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Add_5_output_0 = Add(%/layers.10/Concat_output_0, %/layers.10/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_5_output_0, %onnx::Conv_1139, %onnx::Conv_1140) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_1142, %onnx::Conv_1143) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_5_output_0, %onnx::Conv_1145, %onnx::Conv_1146) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_1148, %onnx::Conv_1149) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/Add_3_output_0 = Add(%/layers.11/Add_2_output_0, %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_3_output_0, %onnx::Conv_1151, %onnx::Conv_1152) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_4_output_0 = Add(%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_3_output_0) %/layers.11/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_4_output_0) %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/vertex_op.4/maxpool/MaxPool_output_0, %onnx::Conv_1154, %onnx::Conv_1155) %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_5_output_0, %onnx::Conv_1157, %onnx::Conv_1158) %/layers.11/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Add_5_output_0 = Add(%/layers.11/Concat_output_0, %/layers.11/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Add_5_output_0) %966 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %966 }
val_accuracy
93.549681
2,680,956,928
8,992,394
{'zcp_epe_nas': 81.9062199291541, 'zcp_fisher': 24.699996948242188, 'zcp_flops': 42895310848.0, 'zcp_grad_norm': 115.66204071044922, 'zcp_grasp': 16.7491455078125, 'zcp_jacov': -16.054877485249357, 'zcp_l2_norm': 1189.416015625, 'zcp_nwot': 228.85919120550653, 'zcp_params': 8992394.0, 'zcp_plain': 0.019400073215365, 'zcp_snip': 722.1860961914062, 'zcp_synflow': 124.11159362570949, 'zcp_zen': 124.6203842163086, 'zcp_val_accuracy': 0.926282048225402}
NASBench101_239415
NASBench101
239415
90e329b9b5bd29388c0bc211270587f2
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_1067[FLOAT, 128x3x3x3] %onnx::Conv_1068[FLOAT, 128] %onnx::Conv_1070[FLOAT, 128x128x1x1] %onnx::Conv_1073[FLOAT, 128x128x1x1] %onnx::Conv_1076[FLOAT, 128x128x1x1] %onnx::Conv_1079[FLOAT, 128x128x1x1] %onnx::Conv_1082[FLOAT, 128x128x3x3] %onnx::Conv_1085[FLOAT, 128x128x1x1] %onnx::Conv_1088[FLOAT, 128x128x1x1] %onnx::Conv_1091[FLOAT, 128x128x3x3] %onnx::Conv_1094[FLOAT, 128x128x1x1] %onnx::Conv_1097[FLOAT, 128x128x1x1] %onnx::Conv_1100[FLOAT, 128x128x1x1] %onnx::Conv_1103[FLOAT, 128x128x1x1] %onnx::Conv_1106[FLOAT, 128x128x3x3] %onnx::Conv_1109[FLOAT, 128x128x1x1] %onnx::Conv_1112[FLOAT, 128x128x1x1] %onnx::Conv_1115[FLOAT, 128x128x3x3] %onnx::Conv_1118[FLOAT, 128x128x1x1] %onnx::Conv_1121[FLOAT, 128x128x1x1] %onnx::Conv_1124[FLOAT, 128x128x1x1] %onnx::Conv_1127[FLOAT, 128x128x1x1] %onnx::Conv_1130[FLOAT, 128x128x3x3] %onnx::Conv_1133[FLOAT, 128x128x1x1] %onnx::Conv_1136[FLOAT, 128x128x1x1] %onnx::Conv_1139[FLOAT, 128x128x3x3] %onnx::Conv_1142[FLOAT, 256x128x1x1] %onnx::Conv_1143[FLOAT, 256] %onnx::Conv_1145[FLOAT, 256x128x1x1] %onnx::Conv_1148[FLOAT, 256x256x1x1] %onnx::Conv_1151[FLOAT, 256x128x1x1] %onnx::Conv_1154[FLOAT, 256x256x3x3] %onnx::Conv_1157[FLOAT, 256x256x1x1] %onnx::Conv_1160[FLOAT, 256x128x1x1] %onnx::Conv_1163[FLOAT, 256x256x3x3] %onnx::Conv_1166[FLOAT, 256x256x1x1] %onnx::Conv_1169[FLOAT, 256x256x1x1] %onnx::Conv_1172[FLOAT, 256x256x1x1] %onnx::Conv_1175[FLOAT, 256x256x1x1] %onnx::Conv_1178[FLOAT, 256x256x3x3] %onnx::Conv_1181[FLOAT, 256x256x1x1] %onnx::Conv_1184[FLOAT, 256x256x1x1] %onnx::Conv_1187[FLOAT, 256x256x3x3] %onnx::Conv_1190[FLOAT, 256x256x1x1] %onnx::Conv_1193[FLOAT, 256x256x1x1] %onnx::Conv_1196[FLOAT, 256x256x1x1] %onnx::Conv_1199[FLOAT, 256x256x1x1] %onnx::Conv_1202[FLOAT, 256x256x3x3] %onnx::Conv_1205[FLOAT, 256x256x1x1] %onnx::Conv_1208[FLOAT, 256x256x1x1] %onnx::Conv_1211[FLOAT, 256x256x3x3] %onnx::Conv_1214[FLOAT, 512x256x1x1] %onnx::Conv_1215[FLOAT, 512] %onnx::Conv_1217[FLOAT, 512x256x1x1] %onnx::Conv_1220[FLOAT, 512x512x1x1] %onnx::Conv_1223[FLOAT, 512x256x1x1] %onnx::Conv_1226[FLOAT, 512x512x3x3] %onnx::Conv_1229[FLOAT, 512x512x1x1] %onnx::Conv_1232[FLOAT, 512x256x1x1] %onnx::Conv_1235[FLOAT, 512x512x3x3] %onnx::Conv_1238[FLOAT, 512x512x1x1] %onnx::Conv_1241[FLOAT, 512x512x1x1] %onnx::Conv_1244[FLOAT, 512x512x1x1] %onnx::Conv_1247[FLOAT, 512x512x1x1] %onnx::Conv_1250[FLOAT, 512x512x3x3] %onnx::Conv_1253[FLOAT, 512x512x1x1] %onnx::Conv_1256[FLOAT, 512x512x1x1] %onnx::Conv_1259[FLOAT, 512x512x3x3] %onnx::Conv_1262[FLOAT, 512x512x1x1] %onnx::Conv_1265[FLOAT, 512x512x1x1] %onnx::Conv_1268[FLOAT, 512x512x1x1] %onnx::Conv_1271[FLOAT, 512x512x1x1] %onnx::Conv_1274[FLOAT, 512x512x3x3] %onnx::Conv_1277[FLOAT, 512x512x1x1] %onnx::Conv_1280[FLOAT, 512x512x1x1] %onnx::Conv_1283[FLOAT, 512x512x3x3] ) { %onnx::Conv_1284 = Identity(%onnx::Conv_1215) %onnx::Conv_1281 = Identity(%onnx::Conv_1215) %onnx::Conv_1278 = Identity(%onnx::Conv_1215) %onnx::Conv_1275 = Identity(%onnx::Conv_1215) %onnx::Conv_1272 = Identity(%onnx::Conv_1215) %onnx::Conv_1269 = Identity(%onnx::Conv_1215) %onnx::Conv_1266 = Identity(%onnx::Conv_1215) %onnx::Conv_1263 = Identity(%onnx::Conv_1215) %onnx::Conv_1260 = Identity(%onnx::Conv_1215) %onnx::Conv_1257 = Identity(%onnx::Conv_1215) %onnx::Conv_1254 = Identity(%onnx::Conv_1215) %onnx::Conv_1251 = Identity(%onnx::Conv_1215) %onnx::Conv_1248 = Identity(%onnx::Conv_1215) %onnx::Conv_1245 = Identity(%onnx::Conv_1215) %onnx::Conv_1242 = Identity(%onnx::Conv_1215) %onnx::Conv_1239 = Identity(%onnx::Conv_1215) %onnx::Conv_1236 = Identity(%onnx::Conv_1215) %onnx::Conv_1233 = Identity(%onnx::Conv_1215) %onnx::Conv_1230 = Identity(%onnx::Conv_1215) %onnx::Conv_1227 = Identity(%onnx::Conv_1215) %onnx::Conv_1224 = Identity(%onnx::Conv_1215) %onnx::Conv_1221 = Identity(%onnx::Conv_1215) %onnx::Conv_1218 = Identity(%onnx::Conv_1215) %onnx::Conv_1212 = Identity(%onnx::Conv_1143) %onnx::Conv_1209 = Identity(%onnx::Conv_1143) %onnx::Conv_1206 = Identity(%onnx::Conv_1143) %onnx::Conv_1203 = Identity(%onnx::Conv_1143) %onnx::Conv_1200 = Identity(%onnx::Conv_1143) %onnx::Conv_1197 = Identity(%onnx::Conv_1143) %onnx::Conv_1194 = Identity(%onnx::Conv_1143) %onnx::Conv_1191 = Identity(%onnx::Conv_1143) %onnx::Conv_1188 = Identity(%onnx::Conv_1143) %onnx::Conv_1185 = Identity(%onnx::Conv_1143) %onnx::Conv_1182 = Identity(%onnx::Conv_1143) %onnx::Conv_1179 = Identity(%onnx::Conv_1143) %onnx::Conv_1176 = Identity(%onnx::Conv_1143) %onnx::Conv_1173 = Identity(%onnx::Conv_1143) %onnx::Conv_1170 = Identity(%onnx::Conv_1143) %onnx::Conv_1167 = Identity(%onnx::Conv_1143) %onnx::Conv_1164 = Identity(%onnx::Conv_1143) %onnx::Conv_1161 = Identity(%onnx::Conv_1143) %onnx::Conv_1158 = Identity(%onnx::Conv_1143) %onnx::Conv_1155 = Identity(%onnx::Conv_1143) %onnx::Conv_1152 = Identity(%onnx::Conv_1143) %onnx::Conv_1149 = Identity(%onnx::Conv_1143) %onnx::Conv_1146 = Identity(%onnx::Conv_1143) %onnx::Conv_1140 = Identity(%onnx::Conv_1068) %onnx::Conv_1137 = Identity(%onnx::Conv_1068) %onnx::Conv_1134 = Identity(%onnx::Conv_1068) %onnx::Conv_1131 = Identity(%onnx::Conv_1068) %onnx::Conv_1128 = Identity(%onnx::Conv_1068) %onnx::Conv_1125 = Identity(%onnx::Conv_1068) %onnx::Conv_1122 = Identity(%onnx::Conv_1068) %onnx::Conv_1119 = Identity(%onnx::Conv_1068) %onnx::Conv_1116 = Identity(%onnx::Conv_1068) %onnx::Conv_1113 = Identity(%onnx::Conv_1068) %onnx::Conv_1110 = Identity(%onnx::Conv_1068) %onnx::Conv_1107 = Identity(%onnx::Conv_1068) %onnx::Conv_1104 = Identity(%onnx::Conv_1068) %onnx::Conv_1101 = Identity(%onnx::Conv_1068) %onnx::Conv_1098 = Identity(%onnx::Conv_1068) %onnx::Conv_1095 = Identity(%onnx::Conv_1068) %onnx::Conv_1092 = Identity(%onnx::Conv_1068) %onnx::Conv_1089 = Identity(%onnx::Conv_1068) %onnx::Conv_1086 = Identity(%onnx::Conv_1068) %onnx::Conv_1083 = Identity(%onnx::Conv_1068) %onnx::Conv_1080 = Identity(%onnx::Conv_1068) %onnx::Conv_1077 = Identity(%onnx::Conv_1068) %onnx::Conv_1074 = Identity(%onnx::Conv_1068) %onnx::Conv_1071 = Identity(%onnx::Conv_1068) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_1067, %onnx::Conv_1068) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1070, %onnx::Conv_1071) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1073, %onnx::Conv_1074) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_1076, %onnx::Conv_1077) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1079, %onnx::Conv_1080) %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/Add_3_output_0 = Add(%/layers.1/Add_2_output_0, %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_3_output_0, %onnx::Conv_1082, %onnx::Conv_1083) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_4_output_0 = Add(%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_3_output_0) %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_4_output_0, %onnx::Conv_1085, %onnx::Conv_1086) %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1088, %onnx::Conv_1089) %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Add_5_output_0 = Add(%/layers.1/vertex_op.1/maxpool/MaxPool_output_0, %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/Add_6_output_0 = Add(%/layers.1/Add_5_output_0, %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_6_output_0, %onnx::Conv_1091, %onnx::Conv_1092) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1094, %onnx::Conv_1095) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1097, %onnx::Conv_1098) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_1100, %onnx::Conv_1101) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1103, %onnx::Conv_1104) %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/Add_3_output_0 = Add(%/layers.2/Add_2_output_0, %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_3_output_0, %onnx::Conv_1106, %onnx::Conv_1107) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_4_output_0 = Add(%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_3_output_0) %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_4_output_0, %onnx::Conv_1109, %onnx::Conv_1110) %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1112, %onnx::Conv_1113) %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Add_5_output_0 = Add(%/layers.2/vertex_op.1/maxpool/MaxPool_output_0, %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/Add_6_output_0 = Add(%/layers.2/Add_5_output_0, %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_6_output_0, %onnx::Conv_1115, %onnx::Conv_1116) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1118, %onnx::Conv_1119) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1121, %onnx::Conv_1122) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_1124, %onnx::Conv_1125) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1127, %onnx::Conv_1128) %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/Add_3_output_0 = Add(%/layers.3/Add_2_output_0, %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_3_output_0, %onnx::Conv_1130, %onnx::Conv_1131) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_4_output_0 = Add(%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_3_output_0) %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_4_output_0, %onnx::Conv_1133, %onnx::Conv_1134) %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1136, %onnx::Conv_1137) %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Add_5_output_0 = Add(%/layers.3/vertex_op.1/maxpool/MaxPool_output_0, %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/Add_6_output_0 = Add(%/layers.3/Add_5_output_0, %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_6_output_0, %onnx::Conv_1139, %onnx::Conv_1140) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_1142, %onnx::Conv_1143) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_1145, %onnx::Conv_1146) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_1148, %onnx::Conv_1149) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_1151, %onnx::Conv_1152) %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/Add_3_output_0 = Add(%/layers.5/Add_2_output_0, %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_3_output_0, %onnx::Conv_1154, %onnx::Conv_1155) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_4_output_0 = Add(%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_3_output_0) %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_4_output_0, %onnx::Conv_1157, %onnx::Conv_1158) %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_1160, %onnx::Conv_1161) %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Add_5_output_0 = Add(%/layers.5/vertex_op.1/maxpool/MaxPool_output_0, %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/Add_6_output_0 = Add(%/layers.5/Add_5_output_0, %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_6_output_0, %onnx::Conv_1163, %onnx::Conv_1164) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1166, %onnx::Conv_1167) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1169, %onnx::Conv_1170) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_1172, %onnx::Conv_1173) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1175, %onnx::Conv_1176) %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/Add_3_output_0 = Add(%/layers.6/Add_2_output_0, %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_3_output_0, %onnx::Conv_1178, %onnx::Conv_1179) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_4_output_0 = Add(%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_3_output_0) %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_4_output_0, %onnx::Conv_1181, %onnx::Conv_1182) %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1184, %onnx::Conv_1185) %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Add_5_output_0 = Add(%/layers.6/vertex_op.1/maxpool/MaxPool_output_0, %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/Add_6_output_0 = Add(%/layers.6/Add_5_output_0, %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_6_output_0, %onnx::Conv_1187, %onnx::Conv_1188) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1190, %onnx::Conv_1191) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1193, %onnx::Conv_1194) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_1196, %onnx::Conv_1197) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1199, %onnx::Conv_1200) %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/Add_3_output_0 = Add(%/layers.7/Add_2_output_0, %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_3_output_0, %onnx::Conv_1202, %onnx::Conv_1203) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_4_output_0 = Add(%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_3_output_0) %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_4_output_0, %onnx::Conv_1205, %onnx::Conv_1206) %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1208, %onnx::Conv_1209) %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Add_5_output_0 = Add(%/layers.7/vertex_op.1/maxpool/MaxPool_output_0, %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/Add_6_output_0 = Add(%/layers.7/Add_5_output_0, %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_6_output_0, %onnx::Conv_1211, %onnx::Conv_1212) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1214, %onnx::Conv_1215) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1217, %onnx::Conv_1218) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_1220, %onnx::Conv_1221) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1223, %onnx::Conv_1224) %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/Add_3_output_0 = Add(%/layers.9/Add_2_output_0, %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_3_output_0, %onnx::Conv_1226, %onnx::Conv_1227) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_4_output_0 = Add(%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_3_output_0) %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_4_output_0, %onnx::Conv_1229, %onnx::Conv_1230) %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1232, %onnx::Conv_1233) %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Add_5_output_0 = Add(%/layers.9/vertex_op.1/maxpool/MaxPool_output_0, %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/Add_6_output_0 = Add(%/layers.9/Add_5_output_0, %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_6_output_0, %onnx::Conv_1235, %onnx::Conv_1236) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1238, %onnx::Conv_1239) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1241, %onnx::Conv_1242) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_1244, %onnx::Conv_1245) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1247, %onnx::Conv_1248) %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/Add_3_output_0 = Add(%/layers.10/Add_2_output_0, %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_3_output_0, %onnx::Conv_1250, %onnx::Conv_1251) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_4_output_0 = Add(%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_3_output_0) %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_4_output_0, %onnx::Conv_1253, %onnx::Conv_1254) %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1256, %onnx::Conv_1257) %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Add_5_output_0 = Add(%/layers.10/vertex_op.1/maxpool/MaxPool_output_0, %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/Add_6_output_0 = Add(%/layers.10/Add_5_output_0, %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_6_output_0, %onnx::Conv_1259, %onnx::Conv_1260) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1262, %onnx::Conv_1263) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1265, %onnx::Conv_1266) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_1268, %onnx::Conv_1269) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1271, %onnx::Conv_1272) %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/Add_3_output_0 = Add(%/layers.11/Add_2_output_0, %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_3_output_0, %onnx::Conv_1274, %onnx::Conv_1275) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_4_output_0 = Add(%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_3_output_0) %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_4_output_0, %onnx::Conv_1277, %onnx::Conv_1278) %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1280, %onnx::Conv_1281) %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Add_5_output_0 = Add(%/layers.11/vertex_op.1/maxpool/MaxPool_output_0, %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/Add_6_output_0 = Add(%/layers.11/Add_5_output_0, %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_6_output_0, %onnx::Conv_1283, %onnx::Conv_1284) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %1065 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %1065 }
val_accuracy
94.050479
7,165,716,480
24,169,098
{'zcp_epe_nas': 134.41534945407946, 'zcp_fisher': 16.220739364624023, 'zcp_flops': 114651463680.0, 'zcp_grad_norm': 73.42665100097656, 'zcp_grasp': 0.04550170898437501, 'zcp_jacov': -16.048437733282917, 'zcp_l2_norm': 1634.7962646484375, 'zcp_nwot': 239.12359558065944, 'zcp_params': 24169098.0, 'zcp_plain': -0.020044306293129, 'zcp_snip': 630.3916015625, 'zcp_synflow': 155.71474111289186, 'zcp_zen': 137.17137145996094, 'zcp_val_accuracy': 0.8968349099159241}
NASBench101_385853
NASBench101
385853
e9444927f3567585353581c1587899d3
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_599[FLOAT, 128x3x3x3] %onnx::Conv_600[FLOAT, 128] %onnx::Conv_602[FLOAT, 32x128x1x1] %onnx::Conv_603[FLOAT, 32] %onnx::Conv_605[FLOAT, 32x128x1x1] %onnx::Conv_608[FLOAT, 32x32x1x1] %onnx::Conv_611[FLOAT, 32x32x1x1] %onnx::Conv_614[FLOAT, 32x128x1x1] %onnx::Conv_617[FLOAT, 32x128x1x1] %onnx::Conv_620[FLOAT, 32x32x1x1] %onnx::Conv_623[FLOAT, 32x32x1x1] %onnx::Conv_626[FLOAT, 32x128x1x1] %onnx::Conv_629[FLOAT, 32x128x1x1] %onnx::Conv_632[FLOAT, 32x32x1x1] %onnx::Conv_635[FLOAT, 32x32x1x1] %onnx::Conv_638[FLOAT, 64x128x1x1] %onnx::Conv_639[FLOAT, 64] %onnx::Conv_641[FLOAT, 64x128x1x1] %onnx::Conv_644[FLOAT, 64x64x1x1] %onnx::Conv_647[FLOAT, 64x64x1x1] %onnx::Conv_650[FLOAT, 64x256x1x1] %onnx::Conv_653[FLOAT, 64x256x1x1] %onnx::Conv_656[FLOAT, 64x64x1x1] %onnx::Conv_659[FLOAT, 64x64x1x1] %onnx::Conv_662[FLOAT, 64x256x1x1] %onnx::Conv_665[FLOAT, 64x256x1x1] %onnx::Conv_668[FLOAT, 64x64x1x1] %onnx::Conv_671[FLOAT, 64x64x1x1] %onnx::Conv_674[FLOAT, 128x256x1x1] %onnx::Conv_677[FLOAT, 128x256x1x1] %onnx::Conv_680[FLOAT, 128x128x1x1] %onnx::Conv_683[FLOAT, 128x128x1x1] %onnx::Conv_686[FLOAT, 128x512x1x1] %onnx::Conv_689[FLOAT, 128x512x1x1] %onnx::Conv_692[FLOAT, 128x128x1x1] %onnx::Conv_695[FLOAT, 128x128x1x1] %onnx::Conv_698[FLOAT, 128x512x1x1] %onnx::Conv_701[FLOAT, 128x512x1x1] %onnx::Conv_704[FLOAT, 128x128x1x1] %onnx::Conv_707[FLOAT, 128x128x1x1] ) { %onnx::Conv_708 = Identity(%onnx::Conv_600) %onnx::Conv_705 = Identity(%onnx::Conv_600) %onnx::Conv_702 = Identity(%onnx::Conv_600) %onnx::Conv_699 = Identity(%onnx::Conv_600) %onnx::Conv_696 = Identity(%onnx::Conv_600) %onnx::Conv_693 = Identity(%onnx::Conv_600) %onnx::Conv_690 = Identity(%onnx::Conv_600) %onnx::Conv_687 = Identity(%onnx::Conv_600) %onnx::Conv_684 = Identity(%onnx::Conv_600) %onnx::Conv_681 = Identity(%onnx::Conv_600) %onnx::Conv_678 = Identity(%onnx::Conv_600) %onnx::Conv_675 = Identity(%onnx::Conv_600) %onnx::Conv_672 = Identity(%onnx::Conv_639) %onnx::Conv_669 = Identity(%onnx::Conv_639) %onnx::Conv_666 = Identity(%onnx::Conv_639) %onnx::Conv_663 = Identity(%onnx::Conv_639) %onnx::Conv_660 = Identity(%onnx::Conv_639) %onnx::Conv_657 = Identity(%onnx::Conv_639) %onnx::Conv_654 = Identity(%onnx::Conv_639) %onnx::Conv_651 = Identity(%onnx::Conv_639) %onnx::Conv_648 = Identity(%onnx::Conv_639) %onnx::Conv_645 = Identity(%onnx::Conv_639) %onnx::Conv_642 = Identity(%onnx::Conv_639) %onnx::Conv_636 = Identity(%onnx::Conv_603) %onnx::Conv_633 = Identity(%onnx::Conv_603) %onnx::Conv_630 = Identity(%onnx::Conv_603) %onnx::Conv_627 = Identity(%onnx::Conv_603) %onnx::Conv_624 = Identity(%onnx::Conv_603) %onnx::Conv_621 = Identity(%onnx::Conv_603) %onnx::Conv_618 = Identity(%onnx::Conv_603) %onnx::Conv_615 = Identity(%onnx::Conv_603) %onnx::Conv_612 = Identity(%onnx::Conv_603) %onnx::Conv_609 = Identity(%onnx::Conv_603) %onnx::Conv_606 = Identity(%onnx::Conv_603) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_599, %onnx::Conv_600) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_602, %onnx::Conv_603) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0) %/layers.1/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/vertex_op.1/maxpool/MaxPool_output_0) %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_605, %onnx::Conv_606) %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.2/maxpool/MaxPool_output_0, %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_608, %onnx::Conv_609) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_611, %onnx::Conv_612) %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.1/maxpool/MaxPool_output_0, %/layers.1/vertex_op.2/maxpool/MaxPool_output_0, %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_614, %onnx::Conv_615) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0) %/layers.2/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/vertex_op.1/maxpool/MaxPool_output_0) %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_617, %onnx::Conv_618) %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.2/maxpool/MaxPool_output_0, %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_620, %onnx::Conv_621) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_623, %onnx::Conv_624) %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.1/maxpool/MaxPool_output_0, %/layers.2/vertex_op.2/maxpool/MaxPool_output_0, %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_626, %onnx::Conv_627) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0) %/layers.3/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/vertex_op.1/maxpool/MaxPool_output_0) %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_629, %onnx::Conv_630) %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.2/maxpool/MaxPool_output_0, %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_632, %onnx::Conv_633) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_635, %onnx::Conv_636) %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.1/maxpool/MaxPool_output_0, %/layers.3/vertex_op.2/maxpool/MaxPool_output_0, %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Concat_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_638, %onnx::Conv_639) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0) %/layers.5/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/vertex_op.1/maxpool/MaxPool_output_0) %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_641, %onnx::Conv_642) %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.2/maxpool/MaxPool_output_0, %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_644, %onnx::Conv_645) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_647, %onnx::Conv_648) %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.1/maxpool/MaxPool_output_0, %/layers.5/vertex_op.2/maxpool/MaxPool_output_0, %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_650, %onnx::Conv_651) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0) %/layers.6/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/vertex_op.1/maxpool/MaxPool_output_0) %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_653, %onnx::Conv_654) %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.2/maxpool/MaxPool_output_0, %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_656, %onnx::Conv_657) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_659, %onnx::Conv_660) %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.1/maxpool/MaxPool_output_0, %/layers.6/vertex_op.2/maxpool/MaxPool_output_0, %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_662, %onnx::Conv_663) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0) %/layers.7/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/vertex_op.1/maxpool/MaxPool_output_0) %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_665, %onnx::Conv_666) %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.2/maxpool/MaxPool_output_0, %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_668, %onnx::Conv_669) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_671, %onnx::Conv_672) %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.1/maxpool/MaxPool_output_0, %/layers.7/vertex_op.2/maxpool/MaxPool_output_0, %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Concat_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_674, %onnx::Conv_675) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0) %/layers.9/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/vertex_op.1/maxpool/MaxPool_output_0) %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_677, %onnx::Conv_678) %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.2/maxpool/MaxPool_output_0, %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_680, %onnx::Conv_681) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_683, %onnx::Conv_684) %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.1/maxpool/MaxPool_output_0, %/layers.9/vertex_op.2/maxpool/MaxPool_output_0, %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_686, %onnx::Conv_687) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0) %/layers.10/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/vertex_op.1/maxpool/MaxPool_output_0) %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_689, %onnx::Conv_690) %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.2/maxpool/MaxPool_output_0, %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_692, %onnx::Conv_693) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_695, %onnx::Conv_696) %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.1/maxpool/MaxPool_output_0, %/layers.10/vertex_op.2/maxpool/MaxPool_output_0, %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_698, %onnx::Conv_699) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0) %/layers.11/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/vertex_op.1/maxpool/MaxPool_output_0) %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_701, %onnx::Conv_702) %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.2/maxpool/MaxPool_output_0, %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_704, %onnx::Conv_705) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_707, %onnx::Conv_708) %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.1/maxpool/MaxPool_output_0, %/layers.11/vertex_op.2/maxpool/MaxPool_output_0, %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Concat_output_0) %597 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %597 }
val_accuracy
87.950718
185,608,192
577,418
{'zcp_epe_nas': 103.14532912742234, 'zcp_fisher': 2.333055019378662, 'zcp_flops': 2969731072.0, 'zcp_grad_norm': 26.310373306274414, 'zcp_grasp': -2.500930786132812, 'zcp_jacov': -16.04416657879137, 'zcp_l2_norm': 606.5339965820312, 'zcp_nwot': 208.6507893077138, 'zcp_params': 577418.0, 'zcp_plain': 0.048787336796522, 'zcp_snip': 114.11148834228516, 'zcp_synflow': 55.32192212334958, 'zcp_zen': 53.34769058227539, 'zcp_val_accuracy': 0.8947315812110901}
NASBench101_7482
NASBench101
7482
0484f8ce4b17745116cc3f352d38fcfa
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_959[FLOAT, 128x3x3x3] %onnx::Conv_960[FLOAT, 128] %onnx::Conv_962[FLOAT, 128x128x1x1] %onnx::Conv_965[FLOAT, 128x128x1x1] %onnx::Conv_968[FLOAT, 128x128x1x1] %onnx::Conv_971[FLOAT, 128x128x3x3] %onnx::Conv_974[FLOAT, 128x128x3x3] %onnx::Conv_977[FLOAT, 128x128x1x1] %onnx::Conv_980[FLOAT, 128x128x1x1] %onnx::Conv_983[FLOAT, 128x128x1x1] %onnx::Conv_986[FLOAT, 128x128x1x1] %onnx::Conv_989[FLOAT, 128x128x1x1] %onnx::Conv_992[FLOAT, 128x128x3x3] %onnx::Conv_995[FLOAT, 128x128x3x3] %onnx::Conv_998[FLOAT, 128x128x1x1] %onnx::Conv_1001[FLOAT, 128x128x1x1] %onnx::Conv_1004[FLOAT, 128x128x1x1] %onnx::Conv_1007[FLOAT, 128x128x1x1] %onnx::Conv_1010[FLOAT, 128x128x1x1] %onnx::Conv_1013[FLOAT, 128x128x3x3] %onnx::Conv_1016[FLOAT, 128x128x3x3] %onnx::Conv_1019[FLOAT, 128x128x1x1] %onnx::Conv_1022[FLOAT, 128x128x1x1] %onnx::Conv_1025[FLOAT, 256x128x1x1] %onnx::Conv_1026[FLOAT, 256] %onnx::Conv_1028[FLOAT, 256x256x1x1] %onnx::Conv_1031[FLOAT, 256x256x1x1] %onnx::Conv_1034[FLOAT, 256x256x3x3] %onnx::Conv_1037[FLOAT, 256x256x3x3] %onnx::Conv_1040[FLOAT, 256x256x1x1] %onnx::Conv_1043[FLOAT, 256x128x1x1] %onnx::Conv_1046[FLOAT, 256x256x1x1] %onnx::Conv_1049[FLOAT, 256x256x1x1] %onnx::Conv_1052[FLOAT, 256x256x1x1] %onnx::Conv_1055[FLOAT, 256x256x3x3] %onnx::Conv_1058[FLOAT, 256x256x3x3] %onnx::Conv_1061[FLOAT, 256x256x1x1] %onnx::Conv_1064[FLOAT, 256x256x1x1] %onnx::Conv_1067[FLOAT, 256x256x1x1] %onnx::Conv_1070[FLOAT, 256x256x1x1] %onnx::Conv_1073[FLOAT, 256x256x1x1] %onnx::Conv_1076[FLOAT, 256x256x3x3] %onnx::Conv_1079[FLOAT, 256x256x3x3] %onnx::Conv_1082[FLOAT, 256x256x1x1] %onnx::Conv_1085[FLOAT, 256x256x1x1] %onnx::Conv_1088[FLOAT, 512x256x1x1] %onnx::Conv_1089[FLOAT, 512] %onnx::Conv_1091[FLOAT, 512x512x1x1] %onnx::Conv_1094[FLOAT, 512x512x1x1] %onnx::Conv_1097[FLOAT, 512x512x3x3] %onnx::Conv_1100[FLOAT, 512x512x3x3] %onnx::Conv_1103[FLOAT, 512x512x1x1] %onnx::Conv_1106[FLOAT, 512x256x1x1] %onnx::Conv_1109[FLOAT, 512x512x1x1] %onnx::Conv_1112[FLOAT, 512x512x1x1] %onnx::Conv_1115[FLOAT, 512x512x1x1] %onnx::Conv_1118[FLOAT, 512x512x3x3] %onnx::Conv_1121[FLOAT, 512x512x3x3] %onnx::Conv_1124[FLOAT, 512x512x1x1] %onnx::Conv_1127[FLOAT, 512x512x1x1] %onnx::Conv_1130[FLOAT, 512x512x1x1] %onnx::Conv_1133[FLOAT, 512x512x1x1] %onnx::Conv_1136[FLOAT, 512x512x1x1] %onnx::Conv_1139[FLOAT, 512x512x3x3] %onnx::Conv_1142[FLOAT, 512x512x3x3] %onnx::Conv_1145[FLOAT, 512x512x1x1] %onnx::Conv_1148[FLOAT, 512x512x1x1] ) { %onnx::Conv_1149 = Identity(%onnx::Conv_1089) %onnx::Conv_1146 = Identity(%onnx::Conv_1089) %onnx::Conv_1143 = Identity(%onnx::Conv_1089) %onnx::Conv_1140 = Identity(%onnx::Conv_1089) %onnx::Conv_1137 = Identity(%onnx::Conv_1089) %onnx::Conv_1134 = Identity(%onnx::Conv_1089) %onnx::Conv_1131 = Identity(%onnx::Conv_1089) %onnx::Conv_1128 = Identity(%onnx::Conv_1089) %onnx::Conv_1125 = Identity(%onnx::Conv_1089) %onnx::Conv_1122 = Identity(%onnx::Conv_1089) %onnx::Conv_1119 = Identity(%onnx::Conv_1089) %onnx::Conv_1116 = Identity(%onnx::Conv_1089) %onnx::Conv_1113 = Identity(%onnx::Conv_1089) %onnx::Conv_1110 = Identity(%onnx::Conv_1089) %onnx::Conv_1107 = Identity(%onnx::Conv_1089) %onnx::Conv_1104 = Identity(%onnx::Conv_1089) %onnx::Conv_1101 = Identity(%onnx::Conv_1089) %onnx::Conv_1098 = Identity(%onnx::Conv_1089) %onnx::Conv_1095 = Identity(%onnx::Conv_1089) %onnx::Conv_1092 = Identity(%onnx::Conv_1089) %onnx::Conv_1086 = Identity(%onnx::Conv_1026) %onnx::Conv_1083 = Identity(%onnx::Conv_1026) %onnx::Conv_1080 = Identity(%onnx::Conv_1026) %onnx::Conv_1077 = Identity(%onnx::Conv_1026) %onnx::Conv_1074 = Identity(%onnx::Conv_1026) %onnx::Conv_1071 = Identity(%onnx::Conv_1026) %onnx::Conv_1068 = Identity(%onnx::Conv_1026) %onnx::Conv_1065 = Identity(%onnx::Conv_1026) %onnx::Conv_1062 = Identity(%onnx::Conv_1026) %onnx::Conv_1059 = Identity(%onnx::Conv_1026) %onnx::Conv_1056 = Identity(%onnx::Conv_1026) %onnx::Conv_1053 = Identity(%onnx::Conv_1026) %onnx::Conv_1050 = Identity(%onnx::Conv_1026) %onnx::Conv_1047 = Identity(%onnx::Conv_1026) %onnx::Conv_1044 = Identity(%onnx::Conv_1026) %onnx::Conv_1041 = Identity(%onnx::Conv_1026) %onnx::Conv_1038 = Identity(%onnx::Conv_1026) %onnx::Conv_1035 = Identity(%onnx::Conv_1026) %onnx::Conv_1032 = Identity(%onnx::Conv_1026) %onnx::Conv_1029 = Identity(%onnx::Conv_1026) %onnx::Conv_1023 = Identity(%onnx::Conv_960) %onnx::Conv_1020 = Identity(%onnx::Conv_960) %onnx::Conv_1017 = Identity(%onnx::Conv_960) %onnx::Conv_1014 = Identity(%onnx::Conv_960) %onnx::Conv_1011 = Identity(%onnx::Conv_960) %onnx::Conv_1008 = Identity(%onnx::Conv_960) %onnx::Conv_1005 = Identity(%onnx::Conv_960) %onnx::Conv_1002 = Identity(%onnx::Conv_960) %onnx::Conv_999 = Identity(%onnx::Conv_960) %onnx::Conv_996 = Identity(%onnx::Conv_960) %onnx::Conv_993 = Identity(%onnx::Conv_960) %onnx::Conv_990 = Identity(%onnx::Conv_960) %onnx::Conv_987 = Identity(%onnx::Conv_960) %onnx::Conv_984 = Identity(%onnx::Conv_960) %onnx::Conv_981 = Identity(%onnx::Conv_960) %onnx::Conv_978 = Identity(%onnx::Conv_960) %onnx::Conv_975 = Identity(%onnx::Conv_960) %onnx::Conv_972 = Identity(%onnx::Conv_960) %onnx::Conv_969 = Identity(%onnx::Conv_960) %onnx::Conv_966 = Identity(%onnx::Conv_960) %onnx::Conv_963 = Identity(%onnx::Conv_960) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_959, %onnx::Conv_960) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_962, %onnx::Conv_963) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_965, %onnx::Conv_966) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_968, %onnx::Conv_969) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_2_output_0, %onnx::Conv_971, %onnx::Conv_972) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_3_output_0 = Add(%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_3_output_0) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_3_output_0, %onnx::Conv_974, %onnx::Conv_975) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_4_output_0 = Add(%/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_4_output_0) %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_4_output_0, %onnx::Conv_977, %onnx::Conv_978) %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_980, %onnx::Conv_981) %/layers.1/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Add_5_output_0 = Add(%/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_5_output_0, %onnx::Conv_983, %onnx::Conv_984) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_986, %onnx::Conv_987) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_989, %onnx::Conv_990) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_2_output_0, %onnx::Conv_992, %onnx::Conv_993) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_3_output_0 = Add(%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_3_output_0) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_3_output_0, %onnx::Conv_995, %onnx::Conv_996) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_4_output_0 = Add(%/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_4_output_0) %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_4_output_0, %onnx::Conv_998, %onnx::Conv_999) %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_5_output_0, %onnx::Conv_1001, %onnx::Conv_1002) %/layers.2/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Add_5_output_0 = Add(%/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_5_output_0, %onnx::Conv_1004, %onnx::Conv_1005) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_1007, %onnx::Conv_1008) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_1010, %onnx::Conv_1011) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_2_output_0, %onnx::Conv_1013, %onnx::Conv_1014) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_3_output_0 = Add(%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_3_output_0) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_3_output_0, %onnx::Conv_1016, %onnx::Conv_1017) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_4_output_0 = Add(%/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_4_output_0) %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_4_output_0, %onnx::Conv_1019, %onnx::Conv_1020) %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_5_output_0, %onnx::Conv_1022, %onnx::Conv_1023) %/layers.3/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Add_5_output_0 = Add(%/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Add_5_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_1025, %onnx::Conv_1026) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_1028, %onnx::Conv_1029) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_1031, %onnx::Conv_1032) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_2_output_0, %onnx::Conv_1034, %onnx::Conv_1035) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_3_output_0 = Add(%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_3_output_0) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_3_output_0, %onnx::Conv_1037, %onnx::Conv_1038) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_4_output_0 = Add(%/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_4_output_0) %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_4_output_0, %onnx::Conv_1040, %onnx::Conv_1041) %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_1043, %onnx::Conv_1044) %/layers.5/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Add_5_output_0 = Add(%/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_5_output_0, %onnx::Conv_1046, %onnx::Conv_1047) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_1049, %onnx::Conv_1050) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_1052, %onnx::Conv_1053) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_2_output_0, %onnx::Conv_1055, %onnx::Conv_1056) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_3_output_0 = Add(%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_3_output_0) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_3_output_0, %onnx::Conv_1058, %onnx::Conv_1059) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_4_output_0 = Add(%/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_4_output_0) %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_4_output_0, %onnx::Conv_1061, %onnx::Conv_1062) %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_5_output_0, %onnx::Conv_1064, %onnx::Conv_1065) %/layers.6/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Add_5_output_0 = Add(%/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_5_output_0, %onnx::Conv_1067, %onnx::Conv_1068) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_1070, %onnx::Conv_1071) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_1073, %onnx::Conv_1074) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_2_output_0, %onnx::Conv_1076, %onnx::Conv_1077) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_3_output_0 = Add(%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_3_output_0) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_3_output_0, %onnx::Conv_1079, %onnx::Conv_1080) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_4_output_0 = Add(%/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_4_output_0) %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_4_output_0, %onnx::Conv_1082, %onnx::Conv_1083) %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_5_output_0, %onnx::Conv_1085, %onnx::Conv_1086) %/layers.7/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Add_5_output_0 = Add(%/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Add_5_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1088, %onnx::Conv_1089) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_1091, %onnx::Conv_1092) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_1094, %onnx::Conv_1095) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_2_output_0, %onnx::Conv_1097, %onnx::Conv_1098) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_3_output_0 = Add(%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_3_output_0) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_3_output_0, %onnx::Conv_1100, %onnx::Conv_1101) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_4_output_0 = Add(%/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_4_output_0) %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_4_output_0, %onnx::Conv_1103, %onnx::Conv_1104) %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1106, %onnx::Conv_1107) %/layers.9/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Add_5_output_0 = Add(%/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_5_output_0, %onnx::Conv_1109, %onnx::Conv_1110) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_1112, %onnx::Conv_1113) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_1115, %onnx::Conv_1116) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_2_output_0, %onnx::Conv_1118, %onnx::Conv_1119) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_3_output_0 = Add(%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_3_output_0) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_3_output_0, %onnx::Conv_1121, %onnx::Conv_1122) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_4_output_0 = Add(%/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_4_output_0) %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_4_output_0, %onnx::Conv_1124, %onnx::Conv_1125) %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_5_output_0, %onnx::Conv_1127, %onnx::Conv_1128) %/layers.10/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Add_5_output_0 = Add(%/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_5_output_0, %onnx::Conv_1130, %onnx::Conv_1131) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_1133, %onnx::Conv_1134) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_1136, %onnx::Conv_1137) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_2_output_0, %onnx::Conv_1139, %onnx::Conv_1140) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_3_output_0 = Add(%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_3_output_0) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_3_output_0, %onnx::Conv_1142, %onnx::Conv_1143) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_4_output_0 = Add(%/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_4_output_0) %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_4_output_0, %onnx::Conv_1145, %onnx::Conv_1146) %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_5_output_0, %onnx::Conv_1148, %onnx::Conv_1149) %/layers.11/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Add_5_output_0 = Add(%/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Add_5_output_0) %957 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %957 }
val_accuracy
91.756809
6,925,330,432
23,459,210
{'zcp_epe_nas': 136.9319905644746, 'zcp_fisher': 3113.526123046875, 'zcp_flops': 110805286912.0, 'zcp_grad_norm': 1120.688232421875, 'zcp_grasp': -2925.203125, 'zcp_jacov': -16.06288884852919, 'zcp_l2_norm': 1454.2930908203125, 'zcp_nwot': 237.90805543954932, 'zcp_params': 23459210.0, 'zcp_plain': 0.025039909407496, 'zcp_snip': 8222.3505859375, 'zcp_synflow': 181.41967063824197, 'zcp_zen': 120.69648742675781, 'zcp_val_accuracy': 0.9102563858032221}
NASBench101_201582
NASBench101
201582
7a0b379b58a898ed40d8899a9ded8f37
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_887[FLOAT, 128x3x3x3] %onnx::Conv_888[FLOAT, 128] %onnx::Conv_890[FLOAT, 64x128x1x1] %onnx::Conv_891[FLOAT, 64] %onnx::Conv_893[FLOAT, 64x64x1x1] %onnx::Conv_896[FLOAT, 64x64x3x3] %onnx::Conv_899[FLOAT, 64x64x1x1] %onnx::Conv_902[FLOAT, 64x128x1x1] %onnx::Conv_905[FLOAT, 64x64x1x1] %onnx::Conv_908[FLOAT, 64x128x1x1] %onnx::Conv_911[FLOAT, 64x64x1x1] %onnx::Conv_914[FLOAT, 64x64x3x3] %onnx::Conv_917[FLOAT, 64x64x1x1] %onnx::Conv_920[FLOAT, 64x128x1x1] %onnx::Conv_923[FLOAT, 64x64x1x1] %onnx::Conv_926[FLOAT, 64x128x1x1] %onnx::Conv_929[FLOAT, 64x64x1x1] %onnx::Conv_932[FLOAT, 64x64x3x3] %onnx::Conv_935[FLOAT, 64x64x1x1] %onnx::Conv_938[FLOAT, 64x128x1x1] %onnx::Conv_941[FLOAT, 64x64x1x1] %onnx::Conv_944[FLOAT, 128x128x1x1] %onnx::Conv_947[FLOAT, 128x128x1x1] %onnx::Conv_950[FLOAT, 128x128x3x3] %onnx::Conv_953[FLOAT, 128x128x1x1] %onnx::Conv_956[FLOAT, 128x128x1x1] %onnx::Conv_959[FLOAT, 128x128x1x1] %onnx::Conv_962[FLOAT, 128x256x1x1] %onnx::Conv_965[FLOAT, 128x128x1x1] %onnx::Conv_968[FLOAT, 128x128x3x3] %onnx::Conv_971[FLOAT, 128x128x1x1] %onnx::Conv_974[FLOAT, 128x256x1x1] %onnx::Conv_977[FLOAT, 128x128x1x1] %onnx::Conv_980[FLOAT, 128x256x1x1] %onnx::Conv_983[FLOAT, 128x128x1x1] %onnx::Conv_986[FLOAT, 128x128x3x3] %onnx::Conv_989[FLOAT, 128x128x1x1] %onnx::Conv_992[FLOAT, 128x256x1x1] %onnx::Conv_995[FLOAT, 128x128x1x1] %onnx::Conv_998[FLOAT, 256x256x1x1] %onnx::Conv_999[FLOAT, 256] %onnx::Conv_1001[FLOAT, 256x256x1x1] %onnx::Conv_1004[FLOAT, 256x256x3x3] %onnx::Conv_1007[FLOAT, 256x256x1x1] %onnx::Conv_1010[FLOAT, 256x256x1x1] %onnx::Conv_1013[FLOAT, 256x256x1x1] %onnx::Conv_1016[FLOAT, 256x512x1x1] %onnx::Conv_1019[FLOAT, 256x256x1x1] %onnx::Conv_1022[FLOAT, 256x256x3x3] %onnx::Conv_1025[FLOAT, 256x256x1x1] %onnx::Conv_1028[FLOAT, 256x512x1x1] %onnx::Conv_1031[FLOAT, 256x256x1x1] %onnx::Conv_1034[FLOAT, 256x512x1x1] %onnx::Conv_1037[FLOAT, 256x256x1x1] %onnx::Conv_1040[FLOAT, 256x256x3x3] %onnx::Conv_1043[FLOAT, 256x256x1x1] %onnx::Conv_1046[FLOAT, 256x512x1x1] %onnx::Conv_1049[FLOAT, 256x256x1x1] ) { %onnx::Conv_1050 = Identity(%onnx::Conv_999) %onnx::Conv_1047 = Identity(%onnx::Conv_999) %onnx::Conv_1044 = Identity(%onnx::Conv_999) %onnx::Conv_1041 = Identity(%onnx::Conv_999) %onnx::Conv_1038 = Identity(%onnx::Conv_999) %onnx::Conv_1035 = Identity(%onnx::Conv_999) %onnx::Conv_1032 = Identity(%onnx::Conv_999) %onnx::Conv_1029 = Identity(%onnx::Conv_999) %onnx::Conv_1026 = Identity(%onnx::Conv_999) %onnx::Conv_1023 = Identity(%onnx::Conv_999) %onnx::Conv_1020 = Identity(%onnx::Conv_999) %onnx::Conv_1017 = Identity(%onnx::Conv_999) %onnx::Conv_1014 = Identity(%onnx::Conv_999) %onnx::Conv_1011 = Identity(%onnx::Conv_999) %onnx::Conv_1008 = Identity(%onnx::Conv_999) %onnx::Conv_1005 = Identity(%onnx::Conv_999) %onnx::Conv_1002 = Identity(%onnx::Conv_999) %onnx::Conv_996 = Identity(%onnx::Conv_888) %onnx::Conv_993 = Identity(%onnx::Conv_888) %onnx::Conv_990 = Identity(%onnx::Conv_888) %onnx::Conv_987 = Identity(%onnx::Conv_888) %onnx::Conv_984 = Identity(%onnx::Conv_888) %onnx::Conv_981 = Identity(%onnx::Conv_888) %onnx::Conv_978 = Identity(%onnx::Conv_888) %onnx::Conv_975 = Identity(%onnx::Conv_888) %onnx::Conv_972 = Identity(%onnx::Conv_888) %onnx::Conv_969 = Identity(%onnx::Conv_888) %onnx::Conv_966 = Identity(%onnx::Conv_888) %onnx::Conv_963 = Identity(%onnx::Conv_888) %onnx::Conv_960 = Identity(%onnx::Conv_888) %onnx::Conv_957 = Identity(%onnx::Conv_888) %onnx::Conv_954 = Identity(%onnx::Conv_888) %onnx::Conv_951 = Identity(%onnx::Conv_888) %onnx::Conv_948 = Identity(%onnx::Conv_888) %onnx::Conv_945 = Identity(%onnx::Conv_888) %onnx::Conv_942 = Identity(%onnx::Conv_891) %onnx::Conv_939 = Identity(%onnx::Conv_891) %onnx::Conv_936 = Identity(%onnx::Conv_891) %onnx::Conv_933 = Identity(%onnx::Conv_891) %onnx::Conv_930 = Identity(%onnx::Conv_891) %onnx::Conv_927 = Identity(%onnx::Conv_891) %onnx::Conv_924 = Identity(%onnx::Conv_891) %onnx::Conv_921 = Identity(%onnx::Conv_891) %onnx::Conv_918 = Identity(%onnx::Conv_891) %onnx::Conv_915 = Identity(%onnx::Conv_891) %onnx::Conv_912 = Identity(%onnx::Conv_891) %onnx::Conv_909 = Identity(%onnx::Conv_891) %onnx::Conv_906 = Identity(%onnx::Conv_891) %onnx::Conv_903 = Identity(%onnx::Conv_891) %onnx::Conv_900 = Identity(%onnx::Conv_891) %onnx::Conv_897 = Identity(%onnx::Conv_891) %onnx::Conv_894 = Identity(%onnx::Conv_891) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_887, %onnx::Conv_888) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_890, %onnx::Conv_891) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_893, %onnx::Conv_894) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_896, %onnx::Conv_897) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_2_output_0, %onnx::Conv_899, %onnx::Conv_900) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_3_output_0 = Add(%/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_3_output_0) %/layers.1/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_3_output_0) %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_902, %onnx::Conv_903) %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_4_output_0 = Add(%/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_4_output_0) %/layers.1/Add_5_output_0 = Add(%/layers.1/Add_4_output_0, %/layers.1/vertex_op.4/maxpool/MaxPool_output_0) %/layers.1/Add_6_output_0 = Add(%/layers.1/Add_5_output_0, %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_6_output_0, %onnx::Conv_905, %onnx::Conv_906) %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.4/maxpool/MaxPool_output_0, %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_908, %onnx::Conv_909) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_911, %onnx::Conv_912) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_914, %onnx::Conv_915) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_2_output_0, %onnx::Conv_917, %onnx::Conv_918) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_3_output_0 = Add(%/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_3_output_0) %/layers.2/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_3_output_0) %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_920, %onnx::Conv_921) %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_4_output_0 = Add(%/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_4_output_0) %/layers.2/Add_5_output_0 = Add(%/layers.2/Add_4_output_0, %/layers.2/vertex_op.4/maxpool/MaxPool_output_0) %/layers.2/Add_6_output_0 = Add(%/layers.2/Add_5_output_0, %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_6_output_0, %onnx::Conv_923, %onnx::Conv_924) %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.4/maxpool/MaxPool_output_0, %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_926, %onnx::Conv_927) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_929, %onnx::Conv_930) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_932, %onnx::Conv_933) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_2_output_0, %onnx::Conv_935, %onnx::Conv_936) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_3_output_0 = Add(%/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_3_output_0) %/layers.3/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_3_output_0) %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_938, %onnx::Conv_939) %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_4_output_0 = Add(%/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_4_output_0) %/layers.3/Add_5_output_0 = Add(%/layers.3/Add_4_output_0, %/layers.3/vertex_op.4/maxpool/MaxPool_output_0) %/layers.3/Add_6_output_0 = Add(%/layers.3/Add_5_output_0, %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_6_output_0, %onnx::Conv_941, %onnx::Conv_942) %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.4/maxpool/MaxPool_output_0, %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Concat_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_944, %onnx::Conv_945) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_947, %onnx::Conv_948) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_950, %onnx::Conv_951) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_2_output_0, %onnx::Conv_953, %onnx::Conv_954) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_3_output_0 = Add(%/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_3_output_0) %/layers.5/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_3_output_0) %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_956, %onnx::Conv_957) %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_4_output_0 = Add(%/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_4_output_0) %/layers.5/Add_5_output_0 = Add(%/layers.5/Add_4_output_0, %/layers.5/vertex_op.4/maxpool/MaxPool_output_0) %/layers.5/Add_6_output_0 = Add(%/layers.5/Add_5_output_0, %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_6_output_0, %onnx::Conv_959, %onnx::Conv_960) %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.4/maxpool/MaxPool_output_0, %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_962, %onnx::Conv_963) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_965, %onnx::Conv_966) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_968, %onnx::Conv_969) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_2_output_0, %onnx::Conv_971, %onnx::Conv_972) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_3_output_0 = Add(%/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_3_output_0) %/layers.6/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_3_output_0) %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_974, %onnx::Conv_975) %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_4_output_0 = Add(%/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_4_output_0) %/layers.6/Add_5_output_0 = Add(%/layers.6/Add_4_output_0, %/layers.6/vertex_op.4/maxpool/MaxPool_output_0) %/layers.6/Add_6_output_0 = Add(%/layers.6/Add_5_output_0, %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_6_output_0, %onnx::Conv_977, %onnx::Conv_978) %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.4/maxpool/MaxPool_output_0, %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_980, %onnx::Conv_981) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_983, %onnx::Conv_984) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_986, %onnx::Conv_987) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_2_output_0, %onnx::Conv_989, %onnx::Conv_990) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_3_output_0 = Add(%/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_3_output_0) %/layers.7/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_3_output_0) %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_992, %onnx::Conv_993) %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_4_output_0 = Add(%/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_4_output_0) %/layers.7/Add_5_output_0 = Add(%/layers.7/Add_4_output_0, %/layers.7/vertex_op.4/maxpool/MaxPool_output_0) %/layers.7/Add_6_output_0 = Add(%/layers.7/Add_5_output_0, %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_6_output_0, %onnx::Conv_995, %onnx::Conv_996) %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.4/maxpool/MaxPool_output_0, %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Concat_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_998, %onnx::Conv_999) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_1001, %onnx::Conv_1002) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_1004, %onnx::Conv_1005) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_2_output_0, %onnx::Conv_1007, %onnx::Conv_1008) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_3_output_0 = Add(%/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_3_output_0) %/layers.9/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_3_output_0) %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1010, %onnx::Conv_1011) %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_4_output_0 = Add(%/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_4_output_0) %/layers.9/Add_5_output_0 = Add(%/layers.9/Add_4_output_0, %/layers.9/vertex_op.4/maxpool/MaxPool_output_0) %/layers.9/Add_6_output_0 = Add(%/layers.9/Add_5_output_0, %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_6_output_0, %onnx::Conv_1013, %onnx::Conv_1014) %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.4/maxpool/MaxPool_output_0, %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_1016, %onnx::Conv_1017) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_1019, %onnx::Conv_1020) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_1022, %onnx::Conv_1023) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_2_output_0, %onnx::Conv_1025, %onnx::Conv_1026) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_3_output_0 = Add(%/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_3_output_0) %/layers.10/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_3_output_0) %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_1028, %onnx::Conv_1029) %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_4_output_0 = Add(%/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_4_output_0) %/layers.10/Add_5_output_0 = Add(%/layers.10/Add_4_output_0, %/layers.10/vertex_op.4/maxpool/MaxPool_output_0) %/layers.10/Add_6_output_0 = Add(%/layers.10/Add_5_output_0, %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_6_output_0, %onnx::Conv_1031, %onnx::Conv_1032) %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.4/maxpool/MaxPool_output_0, %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_1034, %onnx::Conv_1035) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_1037, %onnx::Conv_1038) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_1040, %onnx::Conv_1041) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_2_output_0, %onnx::Conv_1043, %onnx::Conv_1044) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_3_output_0 = Add(%/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_3_output_0) %/layers.11/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_3_output_0) %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_1046, %onnx::Conv_1047) %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_4_output_0 = Add(%/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_4_output_0) %/layers.11/Add_5_output_0 = Add(%/layers.11/Add_4_output_0, %/layers.11/vertex_op.4/maxpool/MaxPool_output_0) %/layers.11/Add_6_output_0 = Add(%/layers.11/Add_5_output_0, %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_6_output_0, %onnx::Conv_1049, %onnx::Conv_1050) %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.4/maxpool/MaxPool_output_0, %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Concat_output_0) %885 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %885 }
val_accuracy
89.603364
1,199,056,896
3,989,898
{'zcp_epe_nas': 111.40708122801928, 'zcp_fisher': 2612.310791015625, 'zcp_flops': 19184910336.0, 'zcp_grad_norm': 933.6531982421875, 'zcp_grasp': 328.0625, 'zcp_jacov': -16.050315344900454, 'zcp_l2_norm': 995.0833129882812, 'zcp_nwot': 224.7940743145399, 'zcp_params': 3989898.0, 'zcp_plain': 0.026808077469468002, 'zcp_snip': 4823.87451171875, 'zcp_synflow': 137.02437461206802, 'zcp_zen': 91.76261901855469, 'zcp_val_accuracy': 0.8692908883094781}
NASBench101_59025
NASBench101
59025
23dfd26857a2ac8f3e3c85018c0e4f76
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_743[FLOAT, 128x3x3x3] %onnx::Conv_744[FLOAT, 128] %onnx::Conv_746[FLOAT, 128x128x1x1] %onnx::Conv_749[FLOAT, 128x128x3x3] %onnx::Conv_752[FLOAT, 128x128x1x1] %onnx::Conv_755[FLOAT, 128x128x1x1] %onnx::Conv_758[FLOAT, 128x128x3x3] %onnx::Conv_761[FLOAT, 128x128x1x1] %onnx::Conv_764[FLOAT, 128x128x3x3] %onnx::Conv_767[FLOAT, 128x128x1x1] %onnx::Conv_770[FLOAT, 128x128x1x1] %onnx::Conv_773[FLOAT, 128x128x3x3] %onnx::Conv_776[FLOAT, 128x128x1x1] %onnx::Conv_779[FLOAT, 128x128x3x3] %onnx::Conv_782[FLOAT, 128x128x1x1] %onnx::Conv_785[FLOAT, 128x128x1x1] %onnx::Conv_788[FLOAT, 128x128x3x3] %onnx::Conv_791[FLOAT, 256x128x1x1] %onnx::Conv_792[FLOAT, 256] %onnx::Conv_794[FLOAT, 256x256x3x3] %onnx::Conv_797[FLOAT, 256x256x1x1] %onnx::Conv_800[FLOAT, 256x128x1x1] %onnx::Conv_803[FLOAT, 256x256x3x3] %onnx::Conv_806[FLOAT, 256x256x1x1] %onnx::Conv_809[FLOAT, 256x256x3x3] %onnx::Conv_812[FLOAT, 256x256x1x1] %onnx::Conv_815[FLOAT, 256x256x1x1] %onnx::Conv_818[FLOAT, 256x256x3x3] %onnx::Conv_821[FLOAT, 256x256x1x1] %onnx::Conv_824[FLOAT, 256x256x3x3] %onnx::Conv_827[FLOAT, 256x256x1x1] %onnx::Conv_830[FLOAT, 256x256x1x1] %onnx::Conv_833[FLOAT, 256x256x3x3] %onnx::Conv_836[FLOAT, 512x256x1x1] %onnx::Conv_837[FLOAT, 512] %onnx::Conv_839[FLOAT, 512x512x3x3] %onnx::Conv_842[FLOAT, 512x512x1x1] %onnx::Conv_845[FLOAT, 512x256x1x1] %onnx::Conv_848[FLOAT, 512x512x3x3] %onnx::Conv_851[FLOAT, 512x512x1x1] %onnx::Conv_854[FLOAT, 512x512x3x3] %onnx::Conv_857[FLOAT, 512x512x1x1] %onnx::Conv_860[FLOAT, 512x512x1x1] %onnx::Conv_863[FLOAT, 512x512x3x3] %onnx::Conv_866[FLOAT, 512x512x1x1] %onnx::Conv_869[FLOAT, 512x512x3x3] %onnx::Conv_872[FLOAT, 512x512x1x1] %onnx::Conv_875[FLOAT, 512x512x1x1] %onnx::Conv_878[FLOAT, 512x512x3x3] ) { %onnx::Conv_879 = Identity(%onnx::Conv_837) %onnx::Conv_876 = Identity(%onnx::Conv_837) %onnx::Conv_873 = Identity(%onnx::Conv_837) %onnx::Conv_870 = Identity(%onnx::Conv_837) %onnx::Conv_867 = Identity(%onnx::Conv_837) %onnx::Conv_864 = Identity(%onnx::Conv_837) %onnx::Conv_861 = Identity(%onnx::Conv_837) %onnx::Conv_858 = Identity(%onnx::Conv_837) %onnx::Conv_855 = Identity(%onnx::Conv_837) %onnx::Conv_852 = Identity(%onnx::Conv_837) %onnx::Conv_849 = Identity(%onnx::Conv_837) %onnx::Conv_846 = Identity(%onnx::Conv_837) %onnx::Conv_843 = Identity(%onnx::Conv_837) %onnx::Conv_840 = Identity(%onnx::Conv_837) %onnx::Conv_834 = Identity(%onnx::Conv_792) %onnx::Conv_831 = Identity(%onnx::Conv_792) %onnx::Conv_828 = Identity(%onnx::Conv_792) %onnx::Conv_825 = Identity(%onnx::Conv_792) %onnx::Conv_822 = Identity(%onnx::Conv_792) %onnx::Conv_819 = Identity(%onnx::Conv_792) %onnx::Conv_816 = Identity(%onnx::Conv_792) %onnx::Conv_813 = Identity(%onnx::Conv_792) %onnx::Conv_810 = Identity(%onnx::Conv_792) %onnx::Conv_807 = Identity(%onnx::Conv_792) %onnx::Conv_804 = Identity(%onnx::Conv_792) %onnx::Conv_801 = Identity(%onnx::Conv_792) %onnx::Conv_798 = Identity(%onnx::Conv_792) %onnx::Conv_795 = Identity(%onnx::Conv_792) %onnx::Conv_789 = Identity(%onnx::Conv_744) %onnx::Conv_786 = Identity(%onnx::Conv_744) %onnx::Conv_783 = Identity(%onnx::Conv_744) %onnx::Conv_780 = Identity(%onnx::Conv_744) %onnx::Conv_777 = Identity(%onnx::Conv_744) %onnx::Conv_774 = Identity(%onnx::Conv_744) %onnx::Conv_771 = Identity(%onnx::Conv_744) %onnx::Conv_768 = Identity(%onnx::Conv_744) %onnx::Conv_765 = Identity(%onnx::Conv_744) %onnx::Conv_762 = Identity(%onnx::Conv_744) %onnx::Conv_759 = Identity(%onnx::Conv_744) %onnx::Conv_756 = Identity(%onnx::Conv_744) %onnx::Conv_753 = Identity(%onnx::Conv_744) %onnx::Conv_750 = Identity(%onnx::Conv_744) %onnx::Conv_747 = Identity(%onnx::Conv_744) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_743, %onnx::Conv_744) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_746, %onnx::Conv_747) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0) %/layers.1/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/vertex_op.1/maxpool/MaxPool_output_0) %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/maxpool/MaxPool_output_0, %/layers.1/vertex_op.2/maxpool/MaxPool_output_0) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_749, %onnx::Conv_750) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.1/maxpool/MaxPool_output_0, %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_2_output_0, %onnx::Conv_752, %onnx::Conv_753) %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_755, %onnx::Conv_756) %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_3_output_0 = Add(%/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/Add_4_output_0 = Add(%/layers.1/Add_3_output_0, %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_4_output_0, %onnx::Conv_758, %onnx::Conv_759) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_761, %onnx::Conv_762) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0) %/layers.2/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/vertex_op.1/maxpool/MaxPool_output_0) %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/maxpool/MaxPool_output_0, %/layers.2/vertex_op.2/maxpool/MaxPool_output_0) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_764, %onnx::Conv_765) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.1/maxpool/MaxPool_output_0, %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_2_output_0, %onnx::Conv_767, %onnx::Conv_768) %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_770, %onnx::Conv_771) %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_3_output_0 = Add(%/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/Add_4_output_0 = Add(%/layers.2/Add_3_output_0, %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_4_output_0, %onnx::Conv_773, %onnx::Conv_774) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_776, %onnx::Conv_777) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0) %/layers.3/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/vertex_op.1/maxpool/MaxPool_output_0) %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/maxpool/MaxPool_output_0, %/layers.3/vertex_op.2/maxpool/MaxPool_output_0) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_779, %onnx::Conv_780) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.1/maxpool/MaxPool_output_0, %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_2_output_0, %onnx::Conv_782, %onnx::Conv_783) %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_785, %onnx::Conv_786) %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_3_output_0 = Add(%/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/Add_4_output_0 = Add(%/layers.3/Add_3_output_0, %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_4_output_0, %onnx::Conv_788, %onnx::Conv_789) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_791, %onnx::Conv_792) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0) %/layers.5/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/vertex_op.1/maxpool/MaxPool_output_0) %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.1/maxpool/MaxPool_output_0, %/layers.5/vertex_op.2/maxpool/MaxPool_output_0) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_794, %onnx::Conv_795) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.1/maxpool/MaxPool_output_0, %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_2_output_0, %onnx::Conv_797, %onnx::Conv_798) %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_800, %onnx::Conv_801) %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_3_output_0 = Add(%/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/Add_4_output_0 = Add(%/layers.5/Add_3_output_0, %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_4_output_0, %onnx::Conv_803, %onnx::Conv_804) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_806, %onnx::Conv_807) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0) %/layers.6/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/vertex_op.1/maxpool/MaxPool_output_0) %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.1/maxpool/MaxPool_output_0, %/layers.6/vertex_op.2/maxpool/MaxPool_output_0) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_809, %onnx::Conv_810) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.1/maxpool/MaxPool_output_0, %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_2_output_0, %onnx::Conv_812, %onnx::Conv_813) %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_815, %onnx::Conv_816) %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_3_output_0 = Add(%/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/Add_4_output_0 = Add(%/layers.6/Add_3_output_0, %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_4_output_0, %onnx::Conv_818, %onnx::Conv_819) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_821, %onnx::Conv_822) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0) %/layers.7/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/vertex_op.1/maxpool/MaxPool_output_0) %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.1/maxpool/MaxPool_output_0, %/layers.7/vertex_op.2/maxpool/MaxPool_output_0) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_824, %onnx::Conv_825) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.1/maxpool/MaxPool_output_0, %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_2_output_0, %onnx::Conv_827, %onnx::Conv_828) %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_830, %onnx::Conv_831) %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_3_output_0 = Add(%/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/Add_4_output_0 = Add(%/layers.7/Add_3_output_0, %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_4_output_0, %onnx::Conv_833, %onnx::Conv_834) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_836, %onnx::Conv_837) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0) %/layers.9/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/vertex_op.1/maxpool/MaxPool_output_0) %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/maxpool/MaxPool_output_0, %/layers.9/vertex_op.2/maxpool/MaxPool_output_0) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_839, %onnx::Conv_840) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.1/maxpool/MaxPool_output_0, %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_2_output_0, %onnx::Conv_842, %onnx::Conv_843) %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_845, %onnx::Conv_846) %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_3_output_0 = Add(%/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/Add_4_output_0 = Add(%/layers.9/Add_3_output_0, %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_4_output_0, %onnx::Conv_848, %onnx::Conv_849) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_851, %onnx::Conv_852) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0) %/layers.10/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/vertex_op.1/maxpool/MaxPool_output_0) %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/maxpool/MaxPool_output_0, %/layers.10/vertex_op.2/maxpool/MaxPool_output_0) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_854, %onnx::Conv_855) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.1/maxpool/MaxPool_output_0, %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_2_output_0, %onnx::Conv_857, %onnx::Conv_858) %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_860, %onnx::Conv_861) %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_3_output_0 = Add(%/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/Add_4_output_0 = Add(%/layers.10/Add_3_output_0, %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_4_output_0, %onnx::Conv_863, %onnx::Conv_864) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_866, %onnx::Conv_867) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0) %/layers.11/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/vertex_op.1/maxpool/MaxPool_output_0) %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/maxpool/MaxPool_output_0, %/layers.11/vertex_op.2/maxpool/MaxPool_output_0) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_869, %onnx::Conv_870) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.1/maxpool/MaxPool_output_0, %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_2_output_0, %onnx::Conv_872, %onnx::Conv_873) %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_875, %onnx::Conv_876) %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_3_output_0 = Add(%/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/Add_4_output_0 = Add(%/layers.11/Add_3_output_0, %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_4_output_0, %onnx::Conv_878, %onnx::Conv_879) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %741 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %741 }
val_accuracy
92.648238
6,310,340,608
21,384,074
{'zcp_epe_nas': 116.22371197133616, 'zcp_fisher': 22.742979049682617, 'zcp_flops': 100965449728.0, 'zcp_grad_norm': 82.5387191772461, 'zcp_grasp': 0.43896484375, 'zcp_jacov': -16.056377331224414, 'zcp_l2_norm': 1030.3526611328125, 'zcp_nwot': 231.6729567776587, 'zcp_params': 21384074.0, 'zcp_plain': 0.05425089970231001, 'zcp_snip': 706.678466796875, 'zcp_synflow': 135.7771321122897, 'zcp_zen': 105.20926666259766, 'zcp_val_accuracy': 0.8642828464508051}
NASBench101_382738
NASBench101
382738
e764ef515df70d6ac48c67acc7b8bec7
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_977[FLOAT, 128x3x3x3] %onnx::Conv_978[FLOAT, 128] %onnx::Conv_980[FLOAT, 128x128x1x1] %onnx::Conv_983[FLOAT, 128x128x1x1] %onnx::Conv_986[FLOAT, 128x128x1x1] %onnx::Conv_989[FLOAT, 128x128x3x3] %onnx::Conv_992[FLOAT, 128x128x1x1] %onnx::Conv_995[FLOAT, 128x128x1x1] %onnx::Conv_998[FLOAT, 128x128x1x1] %onnx::Conv_1001[FLOAT, 128x128x1x1] %onnx::Conv_1004[FLOAT, 128x128x1x1] %onnx::Conv_1007[FLOAT, 128x128x1x1] %onnx::Conv_1010[FLOAT, 128x128x3x3] %onnx::Conv_1013[FLOAT, 128x128x1x1] %onnx::Conv_1016[FLOAT, 128x128x1x1] %onnx::Conv_1019[FLOAT, 128x128x1x1] %onnx::Conv_1022[FLOAT, 128x128x1x1] %onnx::Conv_1025[FLOAT, 128x128x1x1] %onnx::Conv_1028[FLOAT, 128x128x1x1] %onnx::Conv_1031[FLOAT, 128x128x3x3] %onnx::Conv_1034[FLOAT, 128x128x1x1] %onnx::Conv_1037[FLOAT, 128x128x1x1] %onnx::Conv_1040[FLOAT, 128x128x1x1] %onnx::Conv_1043[FLOAT, 256x128x1x1] %onnx::Conv_1044[FLOAT, 256] %onnx::Conv_1046[FLOAT, 256x256x1x1] %onnx::Conv_1049[FLOAT, 256x128x1x1] %onnx::Conv_1052[FLOAT, 256x256x3x3] %onnx::Conv_1055[FLOAT, 256x128x1x1] %onnx::Conv_1058[FLOAT, 256x256x1x1] %onnx::Conv_1061[FLOAT, 256x128x1x1] %onnx::Conv_1064[FLOAT, 256x256x1x1] %onnx::Conv_1067[FLOAT, 256x256x1x1] %onnx::Conv_1070[FLOAT, 256x256x1x1] %onnx::Conv_1073[FLOAT, 256x256x3x3] %onnx::Conv_1076[FLOAT, 256x256x1x1] %onnx::Conv_1079[FLOAT, 256x256x1x1] %onnx::Conv_1082[FLOAT, 256x256x1x1] %onnx::Conv_1085[FLOAT, 256x256x1x1] %onnx::Conv_1088[FLOAT, 256x256x1x1] %onnx::Conv_1091[FLOAT, 256x256x1x1] %onnx::Conv_1094[FLOAT, 256x256x3x3] %onnx::Conv_1097[FLOAT, 256x256x1x1] %onnx::Conv_1100[FLOAT, 256x256x1x1] %onnx::Conv_1103[FLOAT, 256x256x1x1] %onnx::Conv_1106[FLOAT, 512x256x1x1] %onnx::Conv_1107[FLOAT, 512] %onnx::Conv_1109[FLOAT, 512x512x1x1] %onnx::Conv_1112[FLOAT, 512x256x1x1] %onnx::Conv_1115[FLOAT, 512x512x3x3] %onnx::Conv_1118[FLOAT, 512x256x1x1] %onnx::Conv_1121[FLOAT, 512x512x1x1] %onnx::Conv_1124[FLOAT, 512x256x1x1] %onnx::Conv_1127[FLOAT, 512x512x1x1] %onnx::Conv_1130[FLOAT, 512x512x1x1] %onnx::Conv_1133[FLOAT, 512x512x1x1] %onnx::Conv_1136[FLOAT, 512x512x3x3] %onnx::Conv_1139[FLOAT, 512x512x1x1] %onnx::Conv_1142[FLOAT, 512x512x1x1] %onnx::Conv_1145[FLOAT, 512x512x1x1] %onnx::Conv_1148[FLOAT, 512x512x1x1] %onnx::Conv_1151[FLOAT, 512x512x1x1] %onnx::Conv_1154[FLOAT, 512x512x1x1] %onnx::Conv_1157[FLOAT, 512x512x3x3] %onnx::Conv_1160[FLOAT, 512x512x1x1] %onnx::Conv_1163[FLOAT, 512x512x1x1] %onnx::Conv_1166[FLOAT, 512x512x1x1] ) { %onnx::Conv_1167 = Identity(%onnx::Conv_1107) %onnx::Conv_1164 = Identity(%onnx::Conv_1107) %onnx::Conv_1161 = Identity(%onnx::Conv_1107) %onnx::Conv_1158 = Identity(%onnx::Conv_1107) %onnx::Conv_1155 = Identity(%onnx::Conv_1107) %onnx::Conv_1152 = Identity(%onnx::Conv_1107) %onnx::Conv_1149 = Identity(%onnx::Conv_1107) %onnx::Conv_1146 = Identity(%onnx::Conv_1107) %onnx::Conv_1143 = Identity(%onnx::Conv_1107) %onnx::Conv_1140 = Identity(%onnx::Conv_1107) %onnx::Conv_1137 = Identity(%onnx::Conv_1107) %onnx::Conv_1134 = Identity(%onnx::Conv_1107) %onnx::Conv_1131 = Identity(%onnx::Conv_1107) %onnx::Conv_1128 = Identity(%onnx::Conv_1107) %onnx::Conv_1125 = Identity(%onnx::Conv_1107) %onnx::Conv_1122 = Identity(%onnx::Conv_1107) %onnx::Conv_1119 = Identity(%onnx::Conv_1107) %onnx::Conv_1116 = Identity(%onnx::Conv_1107) %onnx::Conv_1113 = Identity(%onnx::Conv_1107) %onnx::Conv_1110 = Identity(%onnx::Conv_1107) %onnx::Conv_1104 = Identity(%onnx::Conv_1044) %onnx::Conv_1101 = Identity(%onnx::Conv_1044) %onnx::Conv_1098 = Identity(%onnx::Conv_1044) %onnx::Conv_1095 = Identity(%onnx::Conv_1044) %onnx::Conv_1092 = Identity(%onnx::Conv_1044) %onnx::Conv_1089 = Identity(%onnx::Conv_1044) %onnx::Conv_1086 = Identity(%onnx::Conv_1044) %onnx::Conv_1083 = Identity(%onnx::Conv_1044) %onnx::Conv_1080 = Identity(%onnx::Conv_1044) %onnx::Conv_1077 = Identity(%onnx::Conv_1044) %onnx::Conv_1074 = Identity(%onnx::Conv_1044) %onnx::Conv_1071 = Identity(%onnx::Conv_1044) %onnx::Conv_1068 = Identity(%onnx::Conv_1044) %onnx::Conv_1065 = Identity(%onnx::Conv_1044) %onnx::Conv_1062 = Identity(%onnx::Conv_1044) %onnx::Conv_1059 = Identity(%onnx::Conv_1044) %onnx::Conv_1056 = Identity(%onnx::Conv_1044) %onnx::Conv_1053 = Identity(%onnx::Conv_1044) %onnx::Conv_1050 = Identity(%onnx::Conv_1044) %onnx::Conv_1047 = Identity(%onnx::Conv_1044) %onnx::Conv_1041 = Identity(%onnx::Conv_978) %onnx::Conv_1038 = Identity(%onnx::Conv_978) %onnx::Conv_1035 = Identity(%onnx::Conv_978) %onnx::Conv_1032 = Identity(%onnx::Conv_978) %onnx::Conv_1029 = Identity(%onnx::Conv_978) %onnx::Conv_1026 = Identity(%onnx::Conv_978) %onnx::Conv_1023 = Identity(%onnx::Conv_978) %onnx::Conv_1020 = Identity(%onnx::Conv_978) %onnx::Conv_1017 = Identity(%onnx::Conv_978) %onnx::Conv_1014 = Identity(%onnx::Conv_978) %onnx::Conv_1011 = Identity(%onnx::Conv_978) %onnx::Conv_1008 = Identity(%onnx::Conv_978) %onnx::Conv_1005 = Identity(%onnx::Conv_978) %onnx::Conv_1002 = Identity(%onnx::Conv_978) %onnx::Conv_999 = Identity(%onnx::Conv_978) %onnx::Conv_996 = Identity(%onnx::Conv_978) %onnx::Conv_993 = Identity(%onnx::Conv_978) %onnx::Conv_990 = Identity(%onnx::Conv_978) %onnx::Conv_987 = Identity(%onnx::Conv_978) %onnx::Conv_984 = Identity(%onnx::Conv_978) %onnx::Conv_981 = Identity(%onnx::Conv_978) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_977, %onnx::Conv_978) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_980, %onnx::Conv_981) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_983, %onnx::Conv_984) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_986, %onnx::Conv_987) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_1_output_0) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_989, %onnx::Conv_990) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_992, %onnx::Conv_993) %/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/Add_3_output_0 = Add(%/layers.1/Add_2_output_0, %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/Add_4_output_0 = Add(%/layers.1/Add_3_output_0, %/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_4_output_0, %onnx::Conv_995, %onnx::Conv_996) %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_998, %onnx::Conv_999) %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_5_output_0 = Add(%/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_3_output_0) %/layers.1/Add_6_output_0 = Add(%/layers.1/Add_5_output_0, %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_6_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_1001, %onnx::Conv_1002) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_1004, %onnx::Conv_1005) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_1007, %onnx::Conv_1008) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_1_output_0) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_1010, %onnx::Conv_1011) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_1013, %onnx::Conv_1014) %/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/Add_3_output_0 = Add(%/layers.2/Add_2_output_0, %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/Add_4_output_0 = Add(%/layers.2/Add_3_output_0, %/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_4_output_0, %onnx::Conv_1016, %onnx::Conv_1017) %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_1019, %onnx::Conv_1020) %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_5_output_0 = Add(%/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_3_output_0) %/layers.2/Add_6_output_0 = Add(%/layers.2/Add_5_output_0, %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_6_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_1022, %onnx::Conv_1023) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_1025, %onnx::Conv_1026) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_1028, %onnx::Conv_1029) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_1_output_0) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_1031, %onnx::Conv_1032) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_1034, %onnx::Conv_1035) %/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/Add_3_output_0 = Add(%/layers.3/Add_2_output_0, %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/Add_4_output_0 = Add(%/layers.3/Add_3_output_0, %/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_4_output_0, %onnx::Conv_1037, %onnx::Conv_1038) %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_1040, %onnx::Conv_1041) %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_5_output_0 = Add(%/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_3_output_0) %/layers.3/Add_6_output_0 = Add(%/layers.3/Add_5_output_0, %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_6_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/vertex_op.5/maxpool/MaxPool_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_1043, %onnx::Conv_1044) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_1046, %onnx::Conv_1047) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_1049, %onnx::Conv_1050) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_1_output_0) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_1052, %onnx::Conv_1053) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_1055, %onnx::Conv_1056) %/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/Add_3_output_0 = Add(%/layers.5/Add_2_output_0, %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/Add_4_output_0 = Add(%/layers.5/Add_3_output_0, %/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_4_output_0, %onnx::Conv_1058, %onnx::Conv_1059) %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_1061, %onnx::Conv_1062) %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_5_output_0 = Add(%/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_3_output_0) %/layers.5/Add_6_output_0 = Add(%/layers.5/Add_5_output_0, %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_6_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_1064, %onnx::Conv_1065) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_1067, %onnx::Conv_1068) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_1070, %onnx::Conv_1071) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_1_output_0) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_1073, %onnx::Conv_1074) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_1076, %onnx::Conv_1077) %/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/Add_3_output_0 = Add(%/layers.6/Add_2_output_0, %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/Add_4_output_0 = Add(%/layers.6/Add_3_output_0, %/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_4_output_0, %onnx::Conv_1079, %onnx::Conv_1080) %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_1082, %onnx::Conv_1083) %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_5_output_0 = Add(%/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_3_output_0) %/layers.6/Add_6_output_0 = Add(%/layers.6/Add_5_output_0, %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_6_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_1085, %onnx::Conv_1086) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_1088, %onnx::Conv_1089) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_1091, %onnx::Conv_1092) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_1_output_0) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_1094, %onnx::Conv_1095) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_1097, %onnx::Conv_1098) %/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/Add_3_output_0 = Add(%/layers.7/Add_2_output_0, %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/Add_4_output_0 = Add(%/layers.7/Add_3_output_0, %/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_4_output_0, %onnx::Conv_1100, %onnx::Conv_1101) %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_1103, %onnx::Conv_1104) %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_5_output_0 = Add(%/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_3_output_0) %/layers.7/Add_6_output_0 = Add(%/layers.7/Add_5_output_0, %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_6_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/vertex_op.5/maxpool/MaxPool_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1106, %onnx::Conv_1107) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_1109, %onnx::Conv_1110) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1112, %onnx::Conv_1113) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_1_output_0) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_1115, %onnx::Conv_1116) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1118, %onnx::Conv_1119) %/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/Add_3_output_0 = Add(%/layers.9/Add_2_output_0, %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/Add_4_output_0 = Add(%/layers.9/Add_3_output_0, %/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_4_output_0, %onnx::Conv_1121, %onnx::Conv_1122) %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1124, %onnx::Conv_1125) %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_5_output_0 = Add(%/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_3_output_0) %/layers.9/Add_6_output_0 = Add(%/layers.9/Add_5_output_0, %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_6_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_1127, %onnx::Conv_1128) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_1130, %onnx::Conv_1131) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_1133, %onnx::Conv_1134) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_1_output_0) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_1136, %onnx::Conv_1137) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_1139, %onnx::Conv_1140) %/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/Add_3_output_0 = Add(%/layers.10/Add_2_output_0, %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/Add_4_output_0 = Add(%/layers.10/Add_3_output_0, %/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_4_output_0, %onnx::Conv_1142, %onnx::Conv_1143) %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_1145, %onnx::Conv_1146) %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_5_output_0 = Add(%/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_3_output_0) %/layers.10/Add_6_output_0 = Add(%/layers.10/Add_5_output_0, %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_6_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_1148, %onnx::Conv_1149) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_1151, %onnx::Conv_1152) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_1154, %onnx::Conv_1155) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_1_output_0) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_1157, %onnx::Conv_1158) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_1160, %onnx::Conv_1161) %/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/Add_3_output_0 = Add(%/layers.11/Add_2_output_0, %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/Add_4_output_0 = Add(%/layers.11/Add_3_output_0, %/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_4_output_0, %onnx::Conv_1163, %onnx::Conv_1164) %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_1166, %onnx::Conv_1167) %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_5_output_0 = Add(%/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_3_output_0) %/layers.11/Add_6_output_0 = Add(%/layers.11/Add_5_output_0, %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_6_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/vertex_op.5/maxpool/MaxPool_output_0) %975 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %975 }
val_accuracy
91.947114
4,442,302,464
14,873,994
{'zcp_epe_nas': 123.56144204456882, 'zcp_fisher': 24.51906967163086, 'zcp_flops': 71076839424.0, 'zcp_grad_norm': 126.78836059570312, 'zcp_grasp': -35.0589599609375, 'zcp_jacov': -16.072960850783815, 'zcp_l2_norm': 1421.834716796875, 'zcp_nwot': 237.1383138997203, 'zcp_params': 14873994.0, 'zcp_plain': 0.348775446414947, 'zcp_snip': 1034.2408447265625, 'zcp_synflow': 96.28454239947595, 'zcp_zen': 125.7506103515625, 'zcp_val_accuracy': 0.8985376358032221}
NASBench101_362761
NASBench101
362761
db472f847d86b52fa27d655a755ca0e4
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_977[FLOAT, 128x3x3x3] %onnx::Conv_978[FLOAT, 128] %onnx::Conv_980[FLOAT, 64x128x1x1] %onnx::Conv_981[FLOAT, 64] %onnx::Conv_983[FLOAT, 64x64x3x3] %onnx::Conv_986[FLOAT, 64x64x3x3] %onnx::Conv_989[FLOAT, 64x128x1x1] %onnx::Conv_992[FLOAT, 64x64x3x3] %onnx::Conv_995[FLOAT, 64x64x1x1] %onnx::Conv_998[FLOAT, 64x64x3x3] %onnx::Conv_1001[FLOAT, 64x128x1x1] %onnx::Conv_1004[FLOAT, 64x64x3x3] %onnx::Conv_1007[FLOAT, 64x64x3x3] %onnx::Conv_1010[FLOAT, 64x128x1x1] %onnx::Conv_1013[FLOAT, 64x64x3x3] %onnx::Conv_1016[FLOAT, 64x64x1x1] %onnx::Conv_1019[FLOAT, 64x64x3x3] %onnx::Conv_1022[FLOAT, 64x128x1x1] %onnx::Conv_1025[FLOAT, 64x64x3x3] %onnx::Conv_1028[FLOAT, 64x64x3x3] %onnx::Conv_1031[FLOAT, 64x128x1x1] %onnx::Conv_1034[FLOAT, 64x64x3x3] %onnx::Conv_1037[FLOAT, 64x64x1x1] %onnx::Conv_1040[FLOAT, 64x64x3x3] %onnx::Conv_1043[FLOAT, 128x128x1x1] %onnx::Conv_1046[FLOAT, 128x128x3x3] %onnx::Conv_1049[FLOAT, 128x128x3x3] %onnx::Conv_1052[FLOAT, 128x128x1x1] %onnx::Conv_1055[FLOAT, 128x128x3x3] %onnx::Conv_1058[FLOAT, 128x128x1x1] %onnx::Conv_1061[FLOAT, 128x128x3x3] %onnx::Conv_1064[FLOAT, 128x256x1x1] %onnx::Conv_1067[FLOAT, 128x128x3x3] %onnx::Conv_1070[FLOAT, 128x128x3x3] %onnx::Conv_1073[FLOAT, 128x256x1x1] %onnx::Conv_1076[FLOAT, 128x128x3x3] %onnx::Conv_1079[FLOAT, 128x128x1x1] %onnx::Conv_1082[FLOAT, 128x128x3x3] %onnx::Conv_1085[FLOAT, 128x256x1x1] %onnx::Conv_1088[FLOAT, 128x128x3x3] %onnx::Conv_1091[FLOAT, 128x128x3x3] %onnx::Conv_1094[FLOAT, 128x256x1x1] %onnx::Conv_1097[FLOAT, 128x128x3x3] %onnx::Conv_1100[FLOAT, 128x128x1x1] %onnx::Conv_1103[FLOAT, 128x128x3x3] %onnx::Conv_1106[FLOAT, 256x256x1x1] %onnx::Conv_1107[FLOAT, 256] %onnx::Conv_1109[FLOAT, 256x256x3x3] %onnx::Conv_1112[FLOAT, 256x256x3x3] %onnx::Conv_1115[FLOAT, 256x256x1x1] %onnx::Conv_1118[FLOAT, 256x256x3x3] %onnx::Conv_1121[FLOAT, 256x256x1x1] %onnx::Conv_1124[FLOAT, 256x256x3x3] %onnx::Conv_1127[FLOAT, 256x512x1x1] %onnx::Conv_1130[FLOAT, 256x256x3x3] %onnx::Conv_1133[FLOAT, 256x256x3x3] %onnx::Conv_1136[FLOAT, 256x512x1x1] %onnx::Conv_1139[FLOAT, 256x256x3x3] %onnx::Conv_1142[FLOAT, 256x256x1x1] %onnx::Conv_1145[FLOAT, 256x256x3x3] %onnx::Conv_1148[FLOAT, 256x512x1x1] %onnx::Conv_1151[FLOAT, 256x256x3x3] %onnx::Conv_1154[FLOAT, 256x256x3x3] %onnx::Conv_1157[FLOAT, 256x512x1x1] %onnx::Conv_1160[FLOAT, 256x256x3x3] %onnx::Conv_1163[FLOAT, 256x256x1x1] %onnx::Conv_1166[FLOAT, 256x256x3x3] ) { %onnx::Conv_1167 = Identity(%onnx::Conv_1107) %onnx::Conv_1164 = Identity(%onnx::Conv_1107) %onnx::Conv_1161 = Identity(%onnx::Conv_1107) %onnx::Conv_1158 = Identity(%onnx::Conv_1107) %onnx::Conv_1155 = Identity(%onnx::Conv_1107) %onnx::Conv_1152 = Identity(%onnx::Conv_1107) %onnx::Conv_1149 = Identity(%onnx::Conv_1107) %onnx::Conv_1146 = Identity(%onnx::Conv_1107) %onnx::Conv_1143 = Identity(%onnx::Conv_1107) %onnx::Conv_1140 = Identity(%onnx::Conv_1107) %onnx::Conv_1137 = Identity(%onnx::Conv_1107) %onnx::Conv_1134 = Identity(%onnx::Conv_1107) %onnx::Conv_1131 = Identity(%onnx::Conv_1107) %onnx::Conv_1128 = Identity(%onnx::Conv_1107) %onnx::Conv_1125 = Identity(%onnx::Conv_1107) %onnx::Conv_1122 = Identity(%onnx::Conv_1107) %onnx::Conv_1119 = Identity(%onnx::Conv_1107) %onnx::Conv_1116 = Identity(%onnx::Conv_1107) %onnx::Conv_1113 = Identity(%onnx::Conv_1107) %onnx::Conv_1110 = Identity(%onnx::Conv_1107) %onnx::Conv_1104 = Identity(%onnx::Conv_978) %onnx::Conv_1101 = Identity(%onnx::Conv_978) %onnx::Conv_1098 = Identity(%onnx::Conv_978) %onnx::Conv_1095 = Identity(%onnx::Conv_978) %onnx::Conv_1092 = Identity(%onnx::Conv_978) %onnx::Conv_1089 = Identity(%onnx::Conv_978) %onnx::Conv_1086 = Identity(%onnx::Conv_978) %onnx::Conv_1083 = Identity(%onnx::Conv_978) %onnx::Conv_1080 = Identity(%onnx::Conv_978) %onnx::Conv_1077 = Identity(%onnx::Conv_978) %onnx::Conv_1074 = Identity(%onnx::Conv_978) %onnx::Conv_1071 = Identity(%onnx::Conv_978) %onnx::Conv_1068 = Identity(%onnx::Conv_978) %onnx::Conv_1065 = Identity(%onnx::Conv_978) %onnx::Conv_1062 = Identity(%onnx::Conv_978) %onnx::Conv_1059 = Identity(%onnx::Conv_978) %onnx::Conv_1056 = Identity(%onnx::Conv_978) %onnx::Conv_1053 = Identity(%onnx::Conv_978) %onnx::Conv_1050 = Identity(%onnx::Conv_978) %onnx::Conv_1047 = Identity(%onnx::Conv_978) %onnx::Conv_1044 = Identity(%onnx::Conv_978) %onnx::Conv_1041 = Identity(%onnx::Conv_981) %onnx::Conv_1038 = Identity(%onnx::Conv_981) %onnx::Conv_1035 = Identity(%onnx::Conv_981) %onnx::Conv_1032 = Identity(%onnx::Conv_981) %onnx::Conv_1029 = Identity(%onnx::Conv_981) %onnx::Conv_1026 = Identity(%onnx::Conv_981) %onnx::Conv_1023 = Identity(%onnx::Conv_981) %onnx::Conv_1020 = Identity(%onnx::Conv_981) %onnx::Conv_1017 = Identity(%onnx::Conv_981) %onnx::Conv_1014 = Identity(%onnx::Conv_981) %onnx::Conv_1011 = Identity(%onnx::Conv_981) %onnx::Conv_1008 = Identity(%onnx::Conv_981) %onnx::Conv_1005 = Identity(%onnx::Conv_981) %onnx::Conv_1002 = Identity(%onnx::Conv_981) %onnx::Conv_999 = Identity(%onnx::Conv_981) %onnx::Conv_996 = Identity(%onnx::Conv_981) %onnx::Conv_993 = Identity(%onnx::Conv_981) %onnx::Conv_990 = Identity(%onnx::Conv_981) %onnx::Conv_987 = Identity(%onnx::Conv_981) %onnx::Conv_984 = Identity(%onnx::Conv_981) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_977, %onnx::Conv_978) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_980, %onnx::Conv_981) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_983, %onnx::Conv_984) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_986, %onnx::Conv_987) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_989, %onnx::Conv_990) %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/Add_3_output_0 = Add(%/layers.1/Add_2_output_0, %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_3_output_0, %onnx::Conv_992, %onnx::Conv_993) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_4_output_0 = Add(%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_3_output_0) %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_4_output_0, %onnx::Conv_995, %onnx::Conv_996) %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_5_output_0 = Add(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_4_output_0) %/layers.1/Add_6_output_0 = Add(%/layers.1/Add_5_output_0, %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_6_output_0, %onnx::Conv_998, %onnx::Conv_999) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_1001, %onnx::Conv_1002) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_1004, %onnx::Conv_1005) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_1007, %onnx::Conv_1008) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_1010, %onnx::Conv_1011) %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/Add_3_output_0 = Add(%/layers.2/Add_2_output_0, %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_3_output_0, %onnx::Conv_1013, %onnx::Conv_1014) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_4_output_0 = Add(%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_3_output_0) %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_4_output_0, %onnx::Conv_1016, %onnx::Conv_1017) %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_5_output_0 = Add(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_4_output_0) %/layers.2/Add_6_output_0 = Add(%/layers.2/Add_5_output_0, %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_6_output_0, %onnx::Conv_1019, %onnx::Conv_1020) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_1022, %onnx::Conv_1023) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_1025, %onnx::Conv_1026) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_1028, %onnx::Conv_1029) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_1031, %onnx::Conv_1032) %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/Add_3_output_0 = Add(%/layers.3/Add_2_output_0, %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_3_output_0, %onnx::Conv_1034, %onnx::Conv_1035) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_4_output_0 = Add(%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_3_output_0) %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_4_output_0, %onnx::Conv_1037, %onnx::Conv_1038) %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_5_output_0 = Add(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_4_output_0) %/layers.3/Add_6_output_0 = Add(%/layers.3/Add_5_output_0, %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_6_output_0, %onnx::Conv_1040, %onnx::Conv_1041) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Concat_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_1043, %onnx::Conv_1044) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_1046, %onnx::Conv_1047) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_1049, %onnx::Conv_1050) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_1052, %onnx::Conv_1053) %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/Add_3_output_0 = Add(%/layers.5/Add_2_output_0, %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_3_output_0, %onnx::Conv_1055, %onnx::Conv_1056) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_4_output_0 = Add(%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_3_output_0) %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_4_output_0, %onnx::Conv_1058, %onnx::Conv_1059) %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_5_output_0 = Add(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_4_output_0) %/layers.5/Add_6_output_0 = Add(%/layers.5/Add_5_output_0, %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_6_output_0, %onnx::Conv_1061, %onnx::Conv_1062) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_1064, %onnx::Conv_1065) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_1067, %onnx::Conv_1068) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_1070, %onnx::Conv_1071) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_1073, %onnx::Conv_1074) %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/Add_3_output_0 = Add(%/layers.6/Add_2_output_0, %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_3_output_0, %onnx::Conv_1076, %onnx::Conv_1077) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_4_output_0 = Add(%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_3_output_0) %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_4_output_0, %onnx::Conv_1079, %onnx::Conv_1080) %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_5_output_0 = Add(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_4_output_0) %/layers.6/Add_6_output_0 = Add(%/layers.6/Add_5_output_0, %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_6_output_0, %onnx::Conv_1082, %onnx::Conv_1083) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_1085, %onnx::Conv_1086) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_1088, %onnx::Conv_1089) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_1091, %onnx::Conv_1092) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_1094, %onnx::Conv_1095) %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/Add_3_output_0 = Add(%/layers.7/Add_2_output_0, %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_3_output_0, %onnx::Conv_1097, %onnx::Conv_1098) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_4_output_0 = Add(%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_3_output_0) %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_4_output_0, %onnx::Conv_1100, %onnx::Conv_1101) %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_5_output_0 = Add(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_4_output_0) %/layers.7/Add_6_output_0 = Add(%/layers.7/Add_5_output_0, %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_6_output_0, %onnx::Conv_1103, %onnx::Conv_1104) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Concat_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1106, %onnx::Conv_1107) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_1109, %onnx::Conv_1110) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_1112, %onnx::Conv_1113) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1115, %onnx::Conv_1116) %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/Add_3_output_0 = Add(%/layers.9/Add_2_output_0, %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_3_output_0, %onnx::Conv_1118, %onnx::Conv_1119) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_4_output_0 = Add(%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_3_output_0) %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_4_output_0, %onnx::Conv_1121, %onnx::Conv_1122) %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_5_output_0 = Add(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_4_output_0) %/layers.9/Add_6_output_0 = Add(%/layers.9/Add_5_output_0, %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_6_output_0, %onnx::Conv_1124, %onnx::Conv_1125) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_1127, %onnx::Conv_1128) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_1130, %onnx::Conv_1131) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_1133, %onnx::Conv_1134) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_1136, %onnx::Conv_1137) %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/Add_3_output_0 = Add(%/layers.10/Add_2_output_0, %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_3_output_0, %onnx::Conv_1139, %onnx::Conv_1140) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_4_output_0 = Add(%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_3_output_0) %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_4_output_0, %onnx::Conv_1142, %onnx::Conv_1143) %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_5_output_0 = Add(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_4_output_0) %/layers.10/Add_6_output_0 = Add(%/layers.10/Add_5_output_0, %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_6_output_0, %onnx::Conv_1145, %onnx::Conv_1146) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_1148, %onnx::Conv_1149) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_1151, %onnx::Conv_1152) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_1154, %onnx::Conv_1155) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_1157, %onnx::Conv_1158) %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/Add_3_output_0 = Add(%/layers.11/Add_2_output_0, %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_3_output_0, %onnx::Conv_1160, %onnx::Conv_1161) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_4_output_0 = Add(%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_3_output_0) %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_4_output_0, %onnx::Conv_1163, %onnx::Conv_1164) %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_5_output_0 = Add(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_4_output_0) %/layers.11/Add_6_output_0 = Add(%/layers.11/Add_5_output_0, %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_6_output_0, %onnx::Conv_1166, %onnx::Conv_1167) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Concat_output_0) %975 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %975 }
val_accuracy
91.726762
3,089,246,208
10,443,786
{'zcp_epe_nas': 110.99911874866345, 'zcp_fisher': 228.59054565429688, 'zcp_flops': 49427939328.0, 'zcp_grad_norm': 292.5343322753906, 'zcp_grasp': -96.9326171875, 'zcp_jacov': -16.0667859090112, 'zcp_l2_norm': 1144.3104248046875, 'zcp_nwot': 226.77775206203495, 'zcp_params': 10443786.0, 'zcp_plain': -0.032724067568778, 'zcp_snip': 1720.449462890625, 'zcp_synflow': 181.88681516312252, 'zcp_zen': 125.66860961914062, 'zcp_val_accuracy': 0.635616958141326}
NASBench101_101259
NASBench101
101259
3d4785a1251bcf4dfa218eba6704e7cb
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_896[FLOAT, 128x3x3x3] %onnx::Conv_897[FLOAT, 128] %onnx::Conv_899[FLOAT, 128x128x1x1] %onnx::Conv_902[FLOAT, 128x128x1x1] %onnx::Conv_905[FLOAT, 128x128x1x1] %onnx::Conv_908[FLOAT, 128x128x3x3] %onnx::Conv_911[FLOAT, 128x128x1x1] %onnx::Conv_914[FLOAT, 128x128x1x1] %onnx::Conv_917[FLOAT, 128x128x1x1] %onnx::Conv_920[FLOAT, 128x128x1x1] %onnx::Conv_923[FLOAT, 128x128x1x1] %onnx::Conv_926[FLOAT, 128x128x3x3] %onnx::Conv_929[FLOAT, 128x128x1x1] %onnx::Conv_932[FLOAT, 128x128x1x1] %onnx::Conv_935[FLOAT, 128x128x1x1] %onnx::Conv_938[FLOAT, 128x128x1x1] %onnx::Conv_941[FLOAT, 128x128x1x1] %onnx::Conv_944[FLOAT, 128x128x3x3] %onnx::Conv_947[FLOAT, 128x128x1x1] %onnx::Conv_950[FLOAT, 128x128x1x1] %onnx::Conv_953[FLOAT, 256x128x1x1] %onnx::Conv_954[FLOAT, 256] %onnx::Conv_956[FLOAT, 256x256x1x1] %onnx::Conv_959[FLOAT, 256x128x1x1] %onnx::Conv_962[FLOAT, 256x256x3x3] %onnx::Conv_965[FLOAT, 256x256x1x1] %onnx::Conv_968[FLOAT, 256x128x1x1] %onnx::Conv_971[FLOAT, 256x256x1x1] %onnx::Conv_974[FLOAT, 256x256x1x1] %onnx::Conv_977[FLOAT, 256x256x1x1] %onnx::Conv_980[FLOAT, 256x256x3x3] %onnx::Conv_983[FLOAT, 256x256x1x1] %onnx::Conv_986[FLOAT, 256x256x1x1] %onnx::Conv_989[FLOAT, 256x256x1x1] %onnx::Conv_992[FLOAT, 256x256x1x1] %onnx::Conv_995[FLOAT, 256x256x1x1] %onnx::Conv_998[FLOAT, 256x256x3x3] %onnx::Conv_1001[FLOAT, 256x256x1x1] %onnx::Conv_1004[FLOAT, 256x256x1x1] %onnx::Conv_1007[FLOAT, 512x256x1x1] %onnx::Conv_1008[FLOAT, 512] %onnx::Conv_1010[FLOAT, 512x512x1x1] %onnx::Conv_1013[FLOAT, 512x256x1x1] %onnx::Conv_1016[FLOAT, 512x512x3x3] %onnx::Conv_1019[FLOAT, 512x512x1x1] %onnx::Conv_1022[FLOAT, 512x256x1x1] %onnx::Conv_1025[FLOAT, 512x512x1x1] %onnx::Conv_1028[FLOAT, 512x512x1x1] %onnx::Conv_1031[FLOAT, 512x512x1x1] %onnx::Conv_1034[FLOAT, 512x512x3x3] %onnx::Conv_1037[FLOAT, 512x512x1x1] %onnx::Conv_1040[FLOAT, 512x512x1x1] %onnx::Conv_1043[FLOAT, 512x512x1x1] %onnx::Conv_1046[FLOAT, 512x512x1x1] %onnx::Conv_1049[FLOAT, 512x512x1x1] %onnx::Conv_1052[FLOAT, 512x512x3x3] %onnx::Conv_1055[FLOAT, 512x512x1x1] %onnx::Conv_1058[FLOAT, 512x512x1x1] ) { %onnx::Conv_1059 = Identity(%onnx::Conv_1008) %onnx::Conv_1056 = Identity(%onnx::Conv_1008) %onnx::Conv_1053 = Identity(%onnx::Conv_1008) %onnx::Conv_1050 = Identity(%onnx::Conv_1008) %onnx::Conv_1047 = Identity(%onnx::Conv_1008) %onnx::Conv_1044 = Identity(%onnx::Conv_1008) %onnx::Conv_1041 = Identity(%onnx::Conv_1008) %onnx::Conv_1038 = Identity(%onnx::Conv_1008) %onnx::Conv_1035 = Identity(%onnx::Conv_1008) %onnx::Conv_1032 = Identity(%onnx::Conv_1008) %onnx::Conv_1029 = Identity(%onnx::Conv_1008) %onnx::Conv_1026 = Identity(%onnx::Conv_1008) %onnx::Conv_1023 = Identity(%onnx::Conv_1008) %onnx::Conv_1020 = Identity(%onnx::Conv_1008) %onnx::Conv_1017 = Identity(%onnx::Conv_1008) %onnx::Conv_1014 = Identity(%onnx::Conv_1008) %onnx::Conv_1011 = Identity(%onnx::Conv_1008) %onnx::Conv_1005 = Identity(%onnx::Conv_954) %onnx::Conv_1002 = Identity(%onnx::Conv_954) %onnx::Conv_999 = Identity(%onnx::Conv_954) %onnx::Conv_996 = Identity(%onnx::Conv_954) %onnx::Conv_993 = Identity(%onnx::Conv_954) %onnx::Conv_990 = Identity(%onnx::Conv_954) %onnx::Conv_987 = Identity(%onnx::Conv_954) %onnx::Conv_984 = Identity(%onnx::Conv_954) %onnx::Conv_981 = Identity(%onnx::Conv_954) %onnx::Conv_978 = Identity(%onnx::Conv_954) %onnx::Conv_975 = Identity(%onnx::Conv_954) %onnx::Conv_972 = Identity(%onnx::Conv_954) %onnx::Conv_969 = Identity(%onnx::Conv_954) %onnx::Conv_966 = Identity(%onnx::Conv_954) %onnx::Conv_963 = Identity(%onnx::Conv_954) %onnx::Conv_960 = Identity(%onnx::Conv_954) %onnx::Conv_957 = Identity(%onnx::Conv_954) %onnx::Conv_951 = Identity(%onnx::Conv_897) %onnx::Conv_948 = Identity(%onnx::Conv_897) %onnx::Conv_945 = Identity(%onnx::Conv_897) %onnx::Conv_942 = Identity(%onnx::Conv_897) %onnx::Conv_939 = Identity(%onnx::Conv_897) %onnx::Conv_936 = Identity(%onnx::Conv_897) %onnx::Conv_933 = Identity(%onnx::Conv_897) %onnx::Conv_930 = Identity(%onnx::Conv_897) %onnx::Conv_927 = Identity(%onnx::Conv_897) %onnx::Conv_924 = Identity(%onnx::Conv_897) %onnx::Conv_921 = Identity(%onnx::Conv_897) %onnx::Conv_918 = Identity(%onnx::Conv_897) %onnx::Conv_915 = Identity(%onnx::Conv_897) %onnx::Conv_912 = Identity(%onnx::Conv_897) %onnx::Conv_909 = Identity(%onnx::Conv_897) %onnx::Conv_906 = Identity(%onnx::Conv_897) %onnx::Conv_903 = Identity(%onnx::Conv_897) %onnx::Conv_900 = Identity(%onnx::Conv_897) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_896, %onnx::Conv_897) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_899, %onnx::Conv_900) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_902, %onnx::Conv_903) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_905, %onnx::Conv_906) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_908, %onnx::Conv_909) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_2_output_0, %onnx::Conv_911, %onnx::Conv_912) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_3_output_0 = Add(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_3_output_0) %/layers.1/Add_4_output_0 = Add(%/layers.1/Add_3_output_0, %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_4_output_0) %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_914, %onnx::Conv_915) %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_5_output_0 = Add(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_4_output_0) %/layers.1/Add_6_output_0 = Add(%/layers.1/Add_5_output_0, %/layers.1/vertex_op.4/maxpool/MaxPool_output_0) %/layers.1/Add_7_output_0 = Add(%/layers.1/Add_6_output_0, %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_7_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_917, %onnx::Conv_918) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_920, %onnx::Conv_921) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_923, %onnx::Conv_924) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_926, %onnx::Conv_927) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_2_output_0, %onnx::Conv_929, %onnx::Conv_930) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_3_output_0 = Add(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_3_output_0) %/layers.2/Add_4_output_0 = Add(%/layers.2/Add_3_output_0, %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_4_output_0) %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_932, %onnx::Conv_933) %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_5_output_0 = Add(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_4_output_0) %/layers.2/Add_6_output_0 = Add(%/layers.2/Add_5_output_0, %/layers.2/vertex_op.4/maxpool/MaxPool_output_0) %/layers.2/Add_7_output_0 = Add(%/layers.2/Add_6_output_0, %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_7_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_935, %onnx::Conv_936) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_938, %onnx::Conv_939) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_941, %onnx::Conv_942) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_944, %onnx::Conv_945) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_2_output_0, %onnx::Conv_947, %onnx::Conv_948) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_3_output_0 = Add(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_3_output_0) %/layers.3/Add_4_output_0 = Add(%/layers.3/Add_3_output_0, %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_4_output_0) %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_950, %onnx::Conv_951) %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_5_output_0 = Add(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_4_output_0) %/layers.3/Add_6_output_0 = Add(%/layers.3/Add_5_output_0, %/layers.3/vertex_op.4/maxpool/MaxPool_output_0) %/layers.3/Add_7_output_0 = Add(%/layers.3/Add_6_output_0, %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_7_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/vertex_op.5/maxpool/MaxPool_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_953, %onnx::Conv_954) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_956, %onnx::Conv_957) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_959, %onnx::Conv_960) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_962, %onnx::Conv_963) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_2_output_0, %onnx::Conv_965, %onnx::Conv_966) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_3_output_0 = Add(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_3_output_0) %/layers.5/Add_4_output_0 = Add(%/layers.5/Add_3_output_0, %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_4_output_0) %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_968, %onnx::Conv_969) %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_5_output_0 = Add(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_4_output_0) %/layers.5/Add_6_output_0 = Add(%/layers.5/Add_5_output_0, %/layers.5/vertex_op.4/maxpool/MaxPool_output_0) %/layers.5/Add_7_output_0 = Add(%/layers.5/Add_6_output_0, %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_7_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_971, %onnx::Conv_972) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_974, %onnx::Conv_975) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_977, %onnx::Conv_978) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_980, %onnx::Conv_981) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_2_output_0, %onnx::Conv_983, %onnx::Conv_984) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_3_output_0 = Add(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_3_output_0) %/layers.6/Add_4_output_0 = Add(%/layers.6/Add_3_output_0, %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_4_output_0) %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_986, %onnx::Conv_987) %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_5_output_0 = Add(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_4_output_0) %/layers.6/Add_6_output_0 = Add(%/layers.6/Add_5_output_0, %/layers.6/vertex_op.4/maxpool/MaxPool_output_0) %/layers.6/Add_7_output_0 = Add(%/layers.6/Add_6_output_0, %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_7_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_989, %onnx::Conv_990) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_992, %onnx::Conv_993) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_995, %onnx::Conv_996) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_998, %onnx::Conv_999) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_2_output_0, %onnx::Conv_1001, %onnx::Conv_1002) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_3_output_0 = Add(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_3_output_0) %/layers.7/Add_4_output_0 = Add(%/layers.7/Add_3_output_0, %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_4_output_0) %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_1004, %onnx::Conv_1005) %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_5_output_0 = Add(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_4_output_0) %/layers.7/Add_6_output_0 = Add(%/layers.7/Add_5_output_0, %/layers.7/vertex_op.4/maxpool/MaxPool_output_0) %/layers.7/Add_7_output_0 = Add(%/layers.7/Add_6_output_0, %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_7_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/vertex_op.5/maxpool/MaxPool_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1007, %onnx::Conv_1008) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_1010, %onnx::Conv_1011) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1013, %onnx::Conv_1014) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_1016, %onnx::Conv_1017) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_2_output_0, %onnx::Conv_1019, %onnx::Conv_1020) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_3_output_0 = Add(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_3_output_0) %/layers.9/Add_4_output_0 = Add(%/layers.9/Add_3_output_0, %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_4_output_0) %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1022, %onnx::Conv_1023) %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_5_output_0 = Add(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_4_output_0) %/layers.9/Add_6_output_0 = Add(%/layers.9/Add_5_output_0, %/layers.9/vertex_op.4/maxpool/MaxPool_output_0) %/layers.9/Add_7_output_0 = Add(%/layers.9/Add_6_output_0, %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_7_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_1025, %onnx::Conv_1026) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_1028, %onnx::Conv_1029) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_1031, %onnx::Conv_1032) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_1034, %onnx::Conv_1035) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_2_output_0, %onnx::Conv_1037, %onnx::Conv_1038) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_3_output_0 = Add(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_3_output_0) %/layers.10/Add_4_output_0 = Add(%/layers.10/Add_3_output_0, %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_4_output_0) %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_1040, %onnx::Conv_1041) %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_5_output_0 = Add(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_4_output_0) %/layers.10/Add_6_output_0 = Add(%/layers.10/Add_5_output_0, %/layers.10/vertex_op.4/maxpool/MaxPool_output_0) %/layers.10/Add_7_output_0 = Add(%/layers.10/Add_6_output_0, %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_7_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_1043, %onnx::Conv_1044) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_1046, %onnx::Conv_1047) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_1049, %onnx::Conv_1050) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_1052, %onnx::Conv_1053) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_2_output_0, %onnx::Conv_1055, %onnx::Conv_1056) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_3_output_0 = Add(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_3_output_0) %/layers.11/Add_4_output_0 = Add(%/layers.11/Add_3_output_0, %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_4_output_0) %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_1058, %onnx::Conv_1059) %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_5_output_0 = Add(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_4_output_0) %/layers.11/Add_6_output_0 = Add(%/layers.11/Add_5_output_0, %/layers.11/vertex_op.4/maxpool/MaxPool_output_0) %/layers.11/Add_7_output_0 = Add(%/layers.11/Add_6_output_0, %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_7_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/vertex_op.5/maxpool/MaxPool_output_0) %894 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %894 }
val_accuracy
90.304488
4,168,361,984
14,000,266
{'zcp_epe_nas': 89.3427105836258, 'zcp_fisher': 239.30105590820312, 'zcp_flops': 66693791744.0, 'zcp_grad_norm': 312.0596923828125, 'zcp_grasp': -128.6884765625, 'zcp_jacov': -16.045470949939734, 'zcp_l2_norm': 1226.339599609375, 'zcp_nwot': 235.09631835827466, 'zcp_params': 14000266.0, 'zcp_plain': 0.265094459056854, 'zcp_snip': 2477.389892578125, 'zcp_synflow': 94.26711870202067, 'zcp_zen': 114.15808868408203, 'zcp_val_accuracy': 0.934294879436492}
NASBench101_98764
NASBench101
98764
3bd04785562ba2218ecd1f78488993dc
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_653[FLOAT, 128x3x3x3] %onnx::Conv_654[FLOAT, 128] %onnx::Conv_656[FLOAT, 64x128x1x1] %onnx::Conv_657[FLOAT, 64] %onnx::Conv_659[FLOAT, 64x64x1x1] %onnx::Conv_662[FLOAT, 64x64x3x3] %onnx::Conv_665[FLOAT, 64x64x3x3] %onnx::Conv_668[FLOAT, 64x128x1x1] %onnx::Conv_671[FLOAT, 64x64x1x1] %onnx::Conv_674[FLOAT, 64x64x3x3] %onnx::Conv_677[FLOAT, 64x64x3x3] %onnx::Conv_680[FLOAT, 64x128x1x1] %onnx::Conv_683[FLOAT, 64x64x1x1] %onnx::Conv_686[FLOAT, 64x64x3x3] %onnx::Conv_689[FLOAT, 64x64x3x3] %onnx::Conv_692[FLOAT, 128x128x1x1] %onnx::Conv_695[FLOAT, 128x128x1x1] %onnx::Conv_698[FLOAT, 128x128x3x3] %onnx::Conv_701[FLOAT, 128x128x3x3] %onnx::Conv_704[FLOAT, 128x256x1x1] %onnx::Conv_707[FLOAT, 128x128x1x1] %onnx::Conv_710[FLOAT, 128x128x3x3] %onnx::Conv_713[FLOAT, 128x128x3x3] %onnx::Conv_716[FLOAT, 128x256x1x1] %onnx::Conv_719[FLOAT, 128x128x1x1] %onnx::Conv_722[FLOAT, 128x128x3x3] %onnx::Conv_725[FLOAT, 128x128x3x3] %onnx::Conv_728[FLOAT, 256x256x1x1] %onnx::Conv_729[FLOAT, 256] %onnx::Conv_731[FLOAT, 256x256x1x1] %onnx::Conv_734[FLOAT, 256x256x3x3] %onnx::Conv_737[FLOAT, 256x256x3x3] %onnx::Conv_740[FLOAT, 256x512x1x1] %onnx::Conv_743[FLOAT, 256x256x1x1] %onnx::Conv_746[FLOAT, 256x256x3x3] %onnx::Conv_749[FLOAT, 256x256x3x3] %onnx::Conv_752[FLOAT, 256x512x1x1] %onnx::Conv_755[FLOAT, 256x256x1x1] %onnx::Conv_758[FLOAT, 256x256x3x3] %onnx::Conv_761[FLOAT, 256x256x3x3] ) { %onnx::Conv_762 = Identity(%onnx::Conv_729) %onnx::Conv_759 = Identity(%onnx::Conv_729) %onnx::Conv_756 = Identity(%onnx::Conv_729) %onnx::Conv_753 = Identity(%onnx::Conv_729) %onnx::Conv_750 = Identity(%onnx::Conv_729) %onnx::Conv_747 = Identity(%onnx::Conv_729) %onnx::Conv_744 = Identity(%onnx::Conv_729) %onnx::Conv_741 = Identity(%onnx::Conv_729) %onnx::Conv_738 = Identity(%onnx::Conv_729) %onnx::Conv_735 = Identity(%onnx::Conv_729) %onnx::Conv_732 = Identity(%onnx::Conv_729) %onnx::Conv_726 = Identity(%onnx::Conv_654) %onnx::Conv_723 = Identity(%onnx::Conv_654) %onnx::Conv_720 = Identity(%onnx::Conv_654) %onnx::Conv_717 = Identity(%onnx::Conv_654) %onnx::Conv_714 = Identity(%onnx::Conv_654) %onnx::Conv_711 = Identity(%onnx::Conv_654) %onnx::Conv_708 = Identity(%onnx::Conv_654) %onnx::Conv_705 = Identity(%onnx::Conv_654) %onnx::Conv_702 = Identity(%onnx::Conv_654) %onnx::Conv_699 = Identity(%onnx::Conv_654) %onnx::Conv_696 = Identity(%onnx::Conv_654) %onnx::Conv_693 = Identity(%onnx::Conv_654) %onnx::Conv_690 = Identity(%onnx::Conv_657) %onnx::Conv_687 = Identity(%onnx::Conv_657) %onnx::Conv_684 = Identity(%onnx::Conv_657) %onnx::Conv_681 = Identity(%onnx::Conv_657) %onnx::Conv_678 = Identity(%onnx::Conv_657) %onnx::Conv_675 = Identity(%onnx::Conv_657) %onnx::Conv_672 = Identity(%onnx::Conv_657) %onnx::Conv_669 = Identity(%onnx::Conv_657) %onnx::Conv_666 = Identity(%onnx::Conv_657) %onnx::Conv_663 = Identity(%onnx::Conv_657) %onnx::Conv_660 = Identity(%onnx::Conv_657) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_653, %onnx::Conv_654) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_656, %onnx::Conv_657) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_659, %onnx::Conv_660) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_662, %onnx::Conv_663) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_2_output_0) %/layers.1/Add_3_output_0 = Add(%/layers.1/vertex_op.1/maxpool/MaxPool_output_0, %/layers.1/vertex_op.4/maxpool/MaxPool_output_0) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_3_output_0, %onnx::Conv_665, %onnx::Conv_666) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.1/maxpool/MaxPool_output_0, %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_668, %onnx::Conv_669) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_671, %onnx::Conv_672) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_674, %onnx::Conv_675) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_2_output_0) %/layers.2/Add_3_output_0 = Add(%/layers.2/vertex_op.1/maxpool/MaxPool_output_0, %/layers.2/vertex_op.4/maxpool/MaxPool_output_0) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_3_output_0, %onnx::Conv_677, %onnx::Conv_678) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.1/maxpool/MaxPool_output_0, %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_680, %onnx::Conv_681) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_683, %onnx::Conv_684) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_686, %onnx::Conv_687) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_2_output_0) %/layers.3/Add_3_output_0 = Add(%/layers.3/vertex_op.1/maxpool/MaxPool_output_0, %/layers.3/vertex_op.4/maxpool/MaxPool_output_0) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_3_output_0, %onnx::Conv_689, %onnx::Conv_690) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.1/maxpool/MaxPool_output_0, %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Concat_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_692, %onnx::Conv_693) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_695, %onnx::Conv_696) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_698, %onnx::Conv_699) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_2_output_0) %/layers.5/Add_3_output_0 = Add(%/layers.5/vertex_op.1/maxpool/MaxPool_output_0, %/layers.5/vertex_op.4/maxpool/MaxPool_output_0) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_3_output_0, %onnx::Conv_701, %onnx::Conv_702) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.1/maxpool/MaxPool_output_0, %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_704, %onnx::Conv_705) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_707, %onnx::Conv_708) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_710, %onnx::Conv_711) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_2_output_0) %/layers.6/Add_3_output_0 = Add(%/layers.6/vertex_op.1/maxpool/MaxPool_output_0, %/layers.6/vertex_op.4/maxpool/MaxPool_output_0) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_3_output_0, %onnx::Conv_713, %onnx::Conv_714) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.1/maxpool/MaxPool_output_0, %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_716, %onnx::Conv_717) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_719, %onnx::Conv_720) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_722, %onnx::Conv_723) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_2_output_0) %/layers.7/Add_3_output_0 = Add(%/layers.7/vertex_op.1/maxpool/MaxPool_output_0, %/layers.7/vertex_op.4/maxpool/MaxPool_output_0) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_3_output_0, %onnx::Conv_725, %onnx::Conv_726) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.1/maxpool/MaxPool_output_0, %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Concat_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_728, %onnx::Conv_729) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_731, %onnx::Conv_732) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_734, %onnx::Conv_735) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_2_output_0) %/layers.9/Add_3_output_0 = Add(%/layers.9/vertex_op.1/maxpool/MaxPool_output_0, %/layers.9/vertex_op.4/maxpool/MaxPool_output_0) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_3_output_0, %onnx::Conv_737, %onnx::Conv_738) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.1/maxpool/MaxPool_output_0, %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_740, %onnx::Conv_741) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_743, %onnx::Conv_744) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_746, %onnx::Conv_747) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_2_output_0) %/layers.10/Add_3_output_0 = Add(%/layers.10/vertex_op.1/maxpool/MaxPool_output_0, %/layers.10/vertex_op.4/maxpool/MaxPool_output_0) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_3_output_0, %onnx::Conv_749, %onnx::Conv_750) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.1/maxpool/MaxPool_output_0, %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_752, %onnx::Conv_753) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_755, %onnx::Conv_756) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_758, %onnx::Conv_759) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_2_output_0) %/layers.11/Add_3_output_0 = Add(%/layers.11/vertex_op.1/maxpool/MaxPool_output_0, %/layers.11/vertex_op.4/maxpool/MaxPool_output_0) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_3_output_0, %onnx::Conv_761, %onnx::Conv_762) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.1/maxpool/MaxPool_output_0, %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Concat_output_0) %651 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %651 }
val_accuracy
92.097354
1,587,816,448
5,356,682
{'zcp_epe_nas': 57.9877045780601, 'zcp_fisher': 7.433155536651611, 'zcp_flops': 25405063168.0, 'zcp_grad_norm': 50.743648529052734, 'zcp_grasp': -2.66754150390625, 'zcp_jacov': -16.051278413560986, 'zcp_l2_norm': 648.7264404296875, 'zcp_nwot': 218.17880734624728, 'zcp_params': 5356682.0, 'zcp_plain': 0.075186267495155, 'zcp_snip': 317.146728515625, 'zcp_synflow': 117.11356470051294, 'zcp_zen': 76.45903015136719, 'zcp_val_accuracy': 0.933293282985687}
NASBench101_384319
NASBench101
384319
e8557776efc00f07ae4340347f380d51
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_986[FLOAT, 128x3x3x3] %onnx::Conv_987[FLOAT, 128] %onnx::Conv_989[FLOAT, 128x128x1x1] %onnx::Conv_992[FLOAT, 128x128x3x3] %onnx::Conv_995[FLOAT, 128x128x1x1] %onnx::Conv_998[FLOAT, 128x128x3x3] %onnx::Conv_1001[FLOAT, 128x128x3x3] %onnx::Conv_1004[FLOAT, 128x128x1x1] %onnx::Conv_1007[FLOAT, 128x128x3x3] %onnx::Conv_1010[FLOAT, 128x128x1x1] %onnx::Conv_1013[FLOAT, 128x128x3x3] %onnx::Conv_1016[FLOAT, 128x128x1x1] %onnx::Conv_1019[FLOAT, 128x128x3x3] %onnx::Conv_1022[FLOAT, 128x128x3x3] %onnx::Conv_1025[FLOAT, 128x128x1x1] %onnx::Conv_1028[FLOAT, 128x128x3x3] %onnx::Conv_1031[FLOAT, 128x128x1x1] %onnx::Conv_1034[FLOAT, 128x128x3x3] %onnx::Conv_1037[FLOAT, 128x128x1x1] %onnx::Conv_1040[FLOAT, 128x128x3x3] %onnx::Conv_1043[FLOAT, 128x128x3x3] %onnx::Conv_1046[FLOAT, 128x128x1x1] %onnx::Conv_1049[FLOAT, 128x128x3x3] %onnx::Conv_1052[FLOAT, 256x128x1x1] %onnx::Conv_1053[FLOAT, 256] %onnx::Conv_1055[FLOAT, 256x256x3x3] %onnx::Conv_1058[FLOAT, 256x128x1x1] %onnx::Conv_1061[FLOAT, 256x256x3x3] %onnx::Conv_1064[FLOAT, 256x256x3x3] %onnx::Conv_1067[FLOAT, 256x128x1x1] %onnx::Conv_1070[FLOAT, 256x256x3x3] %onnx::Conv_1073[FLOAT, 256x256x1x1] %onnx::Conv_1076[FLOAT, 256x256x3x3] %onnx::Conv_1079[FLOAT, 256x256x1x1] %onnx::Conv_1082[FLOAT, 256x256x3x3] %onnx::Conv_1085[FLOAT, 256x256x3x3] %onnx::Conv_1088[FLOAT, 256x256x1x1] %onnx::Conv_1091[FLOAT, 256x256x3x3] %onnx::Conv_1094[FLOAT, 256x256x1x1] %onnx::Conv_1097[FLOAT, 256x256x3x3] %onnx::Conv_1100[FLOAT, 256x256x1x1] %onnx::Conv_1103[FLOAT, 256x256x3x3] %onnx::Conv_1106[FLOAT, 256x256x3x3] %onnx::Conv_1109[FLOAT, 256x256x1x1] %onnx::Conv_1112[FLOAT, 256x256x3x3] %onnx::Conv_1115[FLOAT, 512x256x1x1] %onnx::Conv_1116[FLOAT, 512] %onnx::Conv_1118[FLOAT, 512x512x3x3] %onnx::Conv_1121[FLOAT, 512x256x1x1] %onnx::Conv_1124[FLOAT, 512x512x3x3] %onnx::Conv_1127[FLOAT, 512x512x3x3] %onnx::Conv_1130[FLOAT, 512x256x1x1] %onnx::Conv_1133[FLOAT, 512x512x3x3] %onnx::Conv_1136[FLOAT, 512x512x1x1] %onnx::Conv_1139[FLOAT, 512x512x3x3] %onnx::Conv_1142[FLOAT, 512x512x1x1] %onnx::Conv_1145[FLOAT, 512x512x3x3] %onnx::Conv_1148[FLOAT, 512x512x3x3] %onnx::Conv_1151[FLOAT, 512x512x1x1] %onnx::Conv_1154[FLOAT, 512x512x3x3] %onnx::Conv_1157[FLOAT, 512x512x1x1] %onnx::Conv_1160[FLOAT, 512x512x3x3] %onnx::Conv_1163[FLOAT, 512x512x1x1] %onnx::Conv_1166[FLOAT, 512x512x3x3] %onnx::Conv_1169[FLOAT, 512x512x3x3] %onnx::Conv_1172[FLOAT, 512x512x1x1] %onnx::Conv_1175[FLOAT, 512x512x3x3] ) { %onnx::Conv_1176 = Identity(%onnx::Conv_1116) %onnx::Conv_1173 = Identity(%onnx::Conv_1116) %onnx::Conv_1170 = Identity(%onnx::Conv_1116) %onnx::Conv_1167 = Identity(%onnx::Conv_1116) %onnx::Conv_1164 = Identity(%onnx::Conv_1116) %onnx::Conv_1161 = Identity(%onnx::Conv_1116) %onnx::Conv_1158 = Identity(%onnx::Conv_1116) %onnx::Conv_1155 = Identity(%onnx::Conv_1116) %onnx::Conv_1152 = Identity(%onnx::Conv_1116) %onnx::Conv_1149 = Identity(%onnx::Conv_1116) %onnx::Conv_1146 = Identity(%onnx::Conv_1116) %onnx::Conv_1143 = Identity(%onnx::Conv_1116) %onnx::Conv_1140 = Identity(%onnx::Conv_1116) %onnx::Conv_1137 = Identity(%onnx::Conv_1116) %onnx::Conv_1134 = Identity(%onnx::Conv_1116) %onnx::Conv_1131 = Identity(%onnx::Conv_1116) %onnx::Conv_1128 = Identity(%onnx::Conv_1116) %onnx::Conv_1125 = Identity(%onnx::Conv_1116) %onnx::Conv_1122 = Identity(%onnx::Conv_1116) %onnx::Conv_1119 = Identity(%onnx::Conv_1116) %onnx::Conv_1113 = Identity(%onnx::Conv_1053) %onnx::Conv_1110 = Identity(%onnx::Conv_1053) %onnx::Conv_1107 = Identity(%onnx::Conv_1053) %onnx::Conv_1104 = Identity(%onnx::Conv_1053) %onnx::Conv_1101 = Identity(%onnx::Conv_1053) %onnx::Conv_1098 = Identity(%onnx::Conv_1053) %onnx::Conv_1095 = Identity(%onnx::Conv_1053) %onnx::Conv_1092 = Identity(%onnx::Conv_1053) %onnx::Conv_1089 = Identity(%onnx::Conv_1053) %onnx::Conv_1086 = Identity(%onnx::Conv_1053) %onnx::Conv_1083 = Identity(%onnx::Conv_1053) %onnx::Conv_1080 = Identity(%onnx::Conv_1053) %onnx::Conv_1077 = Identity(%onnx::Conv_1053) %onnx::Conv_1074 = Identity(%onnx::Conv_1053) %onnx::Conv_1071 = Identity(%onnx::Conv_1053) %onnx::Conv_1068 = Identity(%onnx::Conv_1053) %onnx::Conv_1065 = Identity(%onnx::Conv_1053) %onnx::Conv_1062 = Identity(%onnx::Conv_1053) %onnx::Conv_1059 = Identity(%onnx::Conv_1053) %onnx::Conv_1056 = Identity(%onnx::Conv_1053) %onnx::Conv_1050 = Identity(%onnx::Conv_987) %onnx::Conv_1047 = Identity(%onnx::Conv_987) %onnx::Conv_1044 = Identity(%onnx::Conv_987) %onnx::Conv_1041 = Identity(%onnx::Conv_987) %onnx::Conv_1038 = Identity(%onnx::Conv_987) %onnx::Conv_1035 = Identity(%onnx::Conv_987) %onnx::Conv_1032 = Identity(%onnx::Conv_987) %onnx::Conv_1029 = Identity(%onnx::Conv_987) %onnx::Conv_1026 = Identity(%onnx::Conv_987) %onnx::Conv_1023 = Identity(%onnx::Conv_987) %onnx::Conv_1020 = Identity(%onnx::Conv_987) %onnx::Conv_1017 = Identity(%onnx::Conv_987) %onnx::Conv_1014 = Identity(%onnx::Conv_987) %onnx::Conv_1011 = Identity(%onnx::Conv_987) %onnx::Conv_1008 = Identity(%onnx::Conv_987) %onnx::Conv_1005 = Identity(%onnx::Conv_987) %onnx::Conv_1002 = Identity(%onnx::Conv_987) %onnx::Conv_999 = Identity(%onnx::Conv_987) %onnx::Conv_996 = Identity(%onnx::Conv_987) %onnx::Conv_993 = Identity(%onnx::Conv_987) %onnx::Conv_990 = Identity(%onnx::Conv_987) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_986, %onnx::Conv_987) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_989, %onnx::Conv_990) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_992, %onnx::Conv_993) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_995, %onnx::Conv_996) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_998, %onnx::Conv_999) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/Add_3_output_0 = Add(%/layers.1/Add_2_output_0, %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_3_output_0, %onnx::Conv_1001, %onnx::Conv_1002) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_4_output_0 = Add(%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_3_output_0) %/layers.1/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_4_output_0) %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1004, %onnx::Conv_1005) %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_5_output_0 = Add(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_4_output_0) %/layers.1/Add_6_output_0 = Add(%/layers.1/Add_5_output_0, %/layers.1/vertex_op.4/maxpool/MaxPool_output_0) %/layers.1/Add_7_output_0 = Add(%/layers.1/Add_6_output_0, %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_7_output_0, %onnx::Conv_1007, %onnx::Conv_1008) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1010, %onnx::Conv_1011) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_1013, %onnx::Conv_1014) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1016, %onnx::Conv_1017) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_1019, %onnx::Conv_1020) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/Add_3_output_0 = Add(%/layers.2/Add_2_output_0, %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_3_output_0, %onnx::Conv_1022, %onnx::Conv_1023) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_4_output_0 = Add(%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_3_output_0) %/layers.2/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_4_output_0) %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1025, %onnx::Conv_1026) %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_5_output_0 = Add(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_4_output_0) %/layers.2/Add_6_output_0 = Add(%/layers.2/Add_5_output_0, %/layers.2/vertex_op.4/maxpool/MaxPool_output_0) %/layers.2/Add_7_output_0 = Add(%/layers.2/Add_6_output_0, %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_7_output_0, %onnx::Conv_1028, %onnx::Conv_1029) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1031, %onnx::Conv_1032) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_1034, %onnx::Conv_1035) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1037, %onnx::Conv_1038) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_1040, %onnx::Conv_1041) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/Add_3_output_0 = Add(%/layers.3/Add_2_output_0, %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_3_output_0, %onnx::Conv_1043, %onnx::Conv_1044) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_4_output_0 = Add(%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_3_output_0) %/layers.3/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_4_output_0) %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1046, %onnx::Conv_1047) %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_5_output_0 = Add(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_4_output_0) %/layers.3/Add_6_output_0 = Add(%/layers.3/Add_5_output_0, %/layers.3/vertex_op.4/maxpool/MaxPool_output_0) %/layers.3/Add_7_output_0 = Add(%/layers.3/Add_6_output_0, %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_7_output_0, %onnx::Conv_1049, %onnx::Conv_1050) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_1052, %onnx::Conv_1053) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_1055, %onnx::Conv_1056) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_1058, %onnx::Conv_1059) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_1061, %onnx::Conv_1062) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/Add_3_output_0 = Add(%/layers.5/Add_2_output_0, %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_3_output_0, %onnx::Conv_1064, %onnx::Conv_1065) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_4_output_0 = Add(%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_3_output_0) %/layers.5/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_4_output_0) %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_1067, %onnx::Conv_1068) %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_5_output_0 = Add(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_4_output_0) %/layers.5/Add_6_output_0 = Add(%/layers.5/Add_5_output_0, %/layers.5/vertex_op.4/maxpool/MaxPool_output_0) %/layers.5/Add_7_output_0 = Add(%/layers.5/Add_6_output_0, %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_7_output_0, %onnx::Conv_1070, %onnx::Conv_1071) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1073, %onnx::Conv_1074) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_1076, %onnx::Conv_1077) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1079, %onnx::Conv_1080) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_1082, %onnx::Conv_1083) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/Add_3_output_0 = Add(%/layers.6/Add_2_output_0, %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_3_output_0, %onnx::Conv_1085, %onnx::Conv_1086) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_4_output_0 = Add(%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_3_output_0) %/layers.6/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_4_output_0) %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1088, %onnx::Conv_1089) %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_5_output_0 = Add(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_4_output_0) %/layers.6/Add_6_output_0 = Add(%/layers.6/Add_5_output_0, %/layers.6/vertex_op.4/maxpool/MaxPool_output_0) %/layers.6/Add_7_output_0 = Add(%/layers.6/Add_6_output_0, %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_7_output_0, %onnx::Conv_1091, %onnx::Conv_1092) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1094, %onnx::Conv_1095) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_1097, %onnx::Conv_1098) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1100, %onnx::Conv_1101) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_1103, %onnx::Conv_1104) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/Add_3_output_0 = Add(%/layers.7/Add_2_output_0, %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_3_output_0, %onnx::Conv_1106, %onnx::Conv_1107) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_4_output_0 = Add(%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_3_output_0) %/layers.7/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_4_output_0) %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1109, %onnx::Conv_1110) %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_5_output_0 = Add(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_4_output_0) %/layers.7/Add_6_output_0 = Add(%/layers.7/Add_5_output_0, %/layers.7/vertex_op.4/maxpool/MaxPool_output_0) %/layers.7/Add_7_output_0 = Add(%/layers.7/Add_6_output_0, %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_7_output_0, %onnx::Conv_1112, %onnx::Conv_1113) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1115, %onnx::Conv_1116) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_1118, %onnx::Conv_1119) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1121, %onnx::Conv_1122) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_1124, %onnx::Conv_1125) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/Add_3_output_0 = Add(%/layers.9/Add_2_output_0, %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_3_output_0, %onnx::Conv_1127, %onnx::Conv_1128) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_4_output_0 = Add(%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_3_output_0) %/layers.9/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_4_output_0) %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1130, %onnx::Conv_1131) %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_5_output_0 = Add(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_4_output_0) %/layers.9/Add_6_output_0 = Add(%/layers.9/Add_5_output_0, %/layers.9/vertex_op.4/maxpool/MaxPool_output_0) %/layers.9/Add_7_output_0 = Add(%/layers.9/Add_6_output_0, %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_7_output_0, %onnx::Conv_1133, %onnx::Conv_1134) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1136, %onnx::Conv_1137) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_1139, %onnx::Conv_1140) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1142, %onnx::Conv_1143) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_1145, %onnx::Conv_1146) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/Add_3_output_0 = Add(%/layers.10/Add_2_output_0, %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_3_output_0, %onnx::Conv_1148, %onnx::Conv_1149) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_4_output_0 = Add(%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_3_output_0) %/layers.10/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_4_output_0) %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1151, %onnx::Conv_1152) %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_5_output_0 = Add(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_4_output_0) %/layers.10/Add_6_output_0 = Add(%/layers.10/Add_5_output_0, %/layers.10/vertex_op.4/maxpool/MaxPool_output_0) %/layers.10/Add_7_output_0 = Add(%/layers.10/Add_6_output_0, %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_7_output_0, %onnx::Conv_1154, %onnx::Conv_1155) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1157, %onnx::Conv_1158) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_1160, %onnx::Conv_1161) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1163, %onnx::Conv_1164) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_1166, %onnx::Conv_1167) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/Add_3_output_0 = Add(%/layers.11/Add_2_output_0, %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_3_output_0, %onnx::Conv_1169, %onnx::Conv_1170) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_4_output_0 = Add(%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_3_output_0) %/layers.11/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_4_output_0) %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1172, %onnx::Conv_1173) %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_5_output_0 = Add(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_4_output_0) %/layers.11/Add_6_output_0 = Add(%/layers.11/Add_5_output_0, %/layers.11/vertex_op.4/maxpool/MaxPool_output_0) %/layers.11/Add_7_output_0 = Add(%/layers.11/Add_6_output_0, %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_7_output_0, %onnx::Conv_1175, %onnx::Conv_1176) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %984 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %984 }
val_accuracy
93.319309
11,723,614,208
39,810,442
{'zcp_epe_nas': 124.00615124525112, 'zcp_fisher': 131.7778778076172, 'zcp_flops': 187577827328.0, 'zcp_grad_norm': 194.7955322265625, 'zcp_grasp': -8.3857421875, 'zcp_jacov': -16.053644161533402, 'zcp_l2_norm': 1438.14990234375, 'zcp_nwot': 236.83886554421764, 'zcp_params': 39810442.0, 'zcp_plain': 0.062819384038448, 'zcp_snip': 1788.0257568359375, 'zcp_synflow': 145.63360503051885, 'zcp_zen': 143.82069396972656, 'zcp_val_accuracy': 0.8809094429016111}
NASBench101_385812
NASBench101
385812
e93ded3f3571988a60c7cf0c0d842fb8
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_635[FLOAT, 128x3x3x3] %onnx::Conv_636[FLOAT, 128] %onnx::Conv_638[FLOAT, 64x128x1x1] %onnx::Conv_639[FLOAT, 64] %onnx::Conv_641[FLOAT, 64x64x1x1] %onnx::Conv_644[FLOAT, 64x128x1x1] %onnx::Conv_647[FLOAT, 64x64x1x1] %onnx::Conv_650[FLOAT, 64x128x1x1] %onnx::Conv_653[FLOAT, 64x64x1x1] %onnx::Conv_656[FLOAT, 64x128x1x1] %onnx::Conv_659[FLOAT, 64x64x1x1] %onnx::Conv_662[FLOAT, 64x128x1x1] %onnx::Conv_665[FLOAT, 64x64x1x1] %onnx::Conv_668[FLOAT, 64x128x1x1] %onnx::Conv_671[FLOAT, 64x64x1x1] %onnx::Conv_674[FLOAT, 128x128x1x1] %onnx::Conv_677[FLOAT, 128x128x1x1] %onnx::Conv_680[FLOAT, 128x128x1x1] %onnx::Conv_683[FLOAT, 128x128x1x1] %onnx::Conv_686[FLOAT, 128x256x1x1] %onnx::Conv_689[FLOAT, 128x128x1x1] %onnx::Conv_692[FLOAT, 128x256x1x1] %onnx::Conv_695[FLOAT, 128x128x1x1] %onnx::Conv_698[FLOAT, 128x256x1x1] %onnx::Conv_701[FLOAT, 128x128x1x1] %onnx::Conv_704[FLOAT, 128x256x1x1] %onnx::Conv_707[FLOAT, 128x128x1x1] %onnx::Conv_710[FLOAT, 256x256x1x1] %onnx::Conv_711[FLOAT, 256] %onnx::Conv_713[FLOAT, 256x256x1x1] %onnx::Conv_716[FLOAT, 256x256x1x1] %onnx::Conv_719[FLOAT, 256x256x1x1] %onnx::Conv_722[FLOAT, 256x512x1x1] %onnx::Conv_725[FLOAT, 256x256x1x1] %onnx::Conv_728[FLOAT, 256x512x1x1] %onnx::Conv_731[FLOAT, 256x256x1x1] %onnx::Conv_734[FLOAT, 256x512x1x1] %onnx::Conv_737[FLOAT, 256x256x1x1] %onnx::Conv_740[FLOAT, 256x512x1x1] %onnx::Conv_743[FLOAT, 256x256x1x1] ) { %onnx::Conv_744 = Identity(%onnx::Conv_711) %onnx::Conv_741 = Identity(%onnx::Conv_711) %onnx::Conv_738 = Identity(%onnx::Conv_711) %onnx::Conv_735 = Identity(%onnx::Conv_711) %onnx::Conv_732 = Identity(%onnx::Conv_711) %onnx::Conv_729 = Identity(%onnx::Conv_711) %onnx::Conv_726 = Identity(%onnx::Conv_711) %onnx::Conv_723 = Identity(%onnx::Conv_711) %onnx::Conv_720 = Identity(%onnx::Conv_711) %onnx::Conv_717 = Identity(%onnx::Conv_711) %onnx::Conv_714 = Identity(%onnx::Conv_711) %onnx::Conv_708 = Identity(%onnx::Conv_636) %onnx::Conv_705 = Identity(%onnx::Conv_636) %onnx::Conv_702 = Identity(%onnx::Conv_636) %onnx::Conv_699 = Identity(%onnx::Conv_636) %onnx::Conv_696 = Identity(%onnx::Conv_636) %onnx::Conv_693 = Identity(%onnx::Conv_636) %onnx::Conv_690 = Identity(%onnx::Conv_636) %onnx::Conv_687 = Identity(%onnx::Conv_636) %onnx::Conv_684 = Identity(%onnx::Conv_636) %onnx::Conv_681 = Identity(%onnx::Conv_636) %onnx::Conv_678 = Identity(%onnx::Conv_636) %onnx::Conv_675 = Identity(%onnx::Conv_636) %onnx::Conv_672 = Identity(%onnx::Conv_639) %onnx::Conv_669 = Identity(%onnx::Conv_639) %onnx::Conv_666 = Identity(%onnx::Conv_639) %onnx::Conv_663 = Identity(%onnx::Conv_639) %onnx::Conv_660 = Identity(%onnx::Conv_639) %onnx::Conv_657 = Identity(%onnx::Conv_639) %onnx::Conv_654 = Identity(%onnx::Conv_639) %onnx::Conv_651 = Identity(%onnx::Conv_639) %onnx::Conv_648 = Identity(%onnx::Conv_639) %onnx::Conv_645 = Identity(%onnx::Conv_639) %onnx::Conv_642 = Identity(%onnx::Conv_639) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_635, %onnx::Conv_636) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_638, %onnx::Conv_639) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0) %/layers.1/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/vertex_op.1/maxpool/MaxPool_output_0) %/layers.1/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/vertex_op.2/maxpool/MaxPool_output_0) %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.3/maxpool/MaxPool_output_0, %onnx::Conv_641, %onnx::Conv_642) %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_644, %onnx::Conv_645) %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.2/maxpool/MaxPool_output_0, %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/Add_2_output_0 = Add(%/layers.1/Add_1_output_0, %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_2_output_0, %onnx::Conv_647, %onnx::Conv_648) %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.1/maxpool/MaxPool_output_0, %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_650, %onnx::Conv_651) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0) %/layers.2/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/vertex_op.1/maxpool/MaxPool_output_0) %/layers.2/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/vertex_op.2/maxpool/MaxPool_output_0) %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.3/maxpool/MaxPool_output_0, %onnx::Conv_653, %onnx::Conv_654) %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_656, %onnx::Conv_657) %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.2/maxpool/MaxPool_output_0, %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/Add_2_output_0 = Add(%/layers.2/Add_1_output_0, %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_2_output_0, %onnx::Conv_659, %onnx::Conv_660) %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.1/maxpool/MaxPool_output_0, %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_662, %onnx::Conv_663) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0) %/layers.3/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/vertex_op.1/maxpool/MaxPool_output_0) %/layers.3/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/vertex_op.2/maxpool/MaxPool_output_0) %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/vertex_op.3/maxpool/MaxPool_output_0, %onnx::Conv_665, %onnx::Conv_666) %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_668, %onnx::Conv_669) %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.2/maxpool/MaxPool_output_0, %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/Add_2_output_0 = Add(%/layers.3/Add_1_output_0, %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_2_output_0, %onnx::Conv_671, %onnx::Conv_672) %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.1/maxpool/MaxPool_output_0, %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Concat_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_674, %onnx::Conv_675) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0) %/layers.5/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/vertex_op.1/maxpool/MaxPool_output_0) %/layers.5/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/vertex_op.2/maxpool/MaxPool_output_0) %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.3/maxpool/MaxPool_output_0, %onnx::Conv_677, %onnx::Conv_678) %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_680, %onnx::Conv_681) %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.2/maxpool/MaxPool_output_0, %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/Add_2_output_0 = Add(%/layers.5/Add_1_output_0, %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_2_output_0, %onnx::Conv_683, %onnx::Conv_684) %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.1/maxpool/MaxPool_output_0, %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_686, %onnx::Conv_687) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0) %/layers.6/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/vertex_op.1/maxpool/MaxPool_output_0) %/layers.6/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/vertex_op.2/maxpool/MaxPool_output_0) %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.3/maxpool/MaxPool_output_0, %onnx::Conv_689, %onnx::Conv_690) %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_692, %onnx::Conv_693) %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.2/maxpool/MaxPool_output_0, %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/Add_2_output_0 = Add(%/layers.6/Add_1_output_0, %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_2_output_0, %onnx::Conv_695, %onnx::Conv_696) %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.1/maxpool/MaxPool_output_0, %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_698, %onnx::Conv_699) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0) %/layers.7/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/vertex_op.1/maxpool/MaxPool_output_0) %/layers.7/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/vertex_op.2/maxpool/MaxPool_output_0) %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/vertex_op.3/maxpool/MaxPool_output_0, %onnx::Conv_701, %onnx::Conv_702) %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_704, %onnx::Conv_705) %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.2/maxpool/MaxPool_output_0, %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/Add_2_output_0 = Add(%/layers.7/Add_1_output_0, %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_2_output_0, %onnx::Conv_707, %onnx::Conv_708) %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.1/maxpool/MaxPool_output_0, %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Concat_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_710, %onnx::Conv_711) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0) %/layers.9/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/vertex_op.1/maxpool/MaxPool_output_0) %/layers.9/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/vertex_op.2/maxpool/MaxPool_output_0) %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.3/maxpool/MaxPool_output_0, %onnx::Conv_713, %onnx::Conv_714) %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_716, %onnx::Conv_717) %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.2/maxpool/MaxPool_output_0, %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/Add_2_output_0 = Add(%/layers.9/Add_1_output_0, %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_2_output_0, %onnx::Conv_719, %onnx::Conv_720) %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.1/maxpool/MaxPool_output_0, %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_722, %onnx::Conv_723) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0) %/layers.10/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/vertex_op.1/maxpool/MaxPool_output_0) %/layers.10/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/vertex_op.2/maxpool/MaxPool_output_0) %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.3/maxpool/MaxPool_output_0, %onnx::Conv_725, %onnx::Conv_726) %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_728, %onnx::Conv_729) %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.2/maxpool/MaxPool_output_0, %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/Add_2_output_0 = Add(%/layers.10/Add_1_output_0, %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_2_output_0, %onnx::Conv_731, %onnx::Conv_732) %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.1/maxpool/MaxPool_output_0, %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_734, %onnx::Conv_735) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0) %/layers.11/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/vertex_op.1/maxpool/MaxPool_output_0) %/layers.11/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/vertex_op.2/maxpool/MaxPool_output_0) %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/vertex_op.3/maxpool/MaxPool_output_0, %onnx::Conv_737, %onnx::Conv_738) %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_740, %onnx::Conv_741) %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.2/maxpool/MaxPool_output_0, %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/Add_2_output_0 = Add(%/layers.11/Add_1_output_0, %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_2_output_0, %onnx::Conv_743, %onnx::Conv_744) %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.1/maxpool/MaxPool_output_0, %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Concat_output_0) %633 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %633 }
val_accuracy
89.372998
438,577,152
1,404,042
{'zcp_epe_nas': 138.6698960088769, 'zcp_fisher': 2.077092885971069, 'zcp_flops': 7017234432.0, 'zcp_grad_norm': 30.583463668823242, 'zcp_grasp': 2.7574462890625, 'zcp_jacov': -16.0475124795392, 'zcp_l2_norm': 693.5776977539062, 'zcp_nwot': 217.75913325977345, 'zcp_params': 1404042.0, 'zcp_plain': -0.118743814527988, 'zcp_snip': 167.1083221435547, 'zcp_synflow': 75.68334810581463, 'zcp_zen': 59.996986389160156, 'zcp_val_accuracy': 0.9408053159713741}
NASBench101_2576
NASBench101
2576
01946f33a66ca026d57b15c5c681b9f5
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_1076[FLOAT, 128x3x3x3] %onnx::Conv_1077[FLOAT, 128] %onnx::Conv_1079[FLOAT, 64x128x1x1] %onnx::Conv_1080[FLOAT, 64] %onnx::Conv_1082[FLOAT, 64x64x1x1] %onnx::Conv_1085[FLOAT, 64x64x1x1] %onnx::Conv_1088[FLOAT, 64x128x1x1] %onnx::Conv_1091[FLOAT, 64x64x3x3] %onnx::Conv_1094[FLOAT, 64x64x1x1] %onnx::Conv_1097[FLOAT, 64x128x1x1] %onnx::Conv_1100[FLOAT, 64x64x3x3] %onnx::Conv_1103[FLOAT, 64x128x1x1] %onnx::Conv_1106[FLOAT, 64x64x1x1] %onnx::Conv_1109[FLOAT, 64x64x1x1] %onnx::Conv_1112[FLOAT, 64x128x1x1] %onnx::Conv_1115[FLOAT, 64x64x3x3] %onnx::Conv_1118[FLOAT, 64x64x1x1] %onnx::Conv_1121[FLOAT, 64x128x1x1] %onnx::Conv_1124[FLOAT, 64x64x3x3] %onnx::Conv_1127[FLOAT, 64x128x1x1] %onnx::Conv_1130[FLOAT, 64x64x1x1] %onnx::Conv_1133[FLOAT, 64x64x1x1] %onnx::Conv_1136[FLOAT, 64x128x1x1] %onnx::Conv_1139[FLOAT, 64x64x3x3] %onnx::Conv_1142[FLOAT, 64x64x1x1] %onnx::Conv_1145[FLOAT, 64x128x1x1] %onnx::Conv_1148[FLOAT, 64x64x3x3] %onnx::Conv_1151[FLOAT, 128x128x1x1] %onnx::Conv_1154[FLOAT, 128x128x1x1] %onnx::Conv_1157[FLOAT, 128x128x1x1] %onnx::Conv_1160[FLOAT, 128x128x1x1] %onnx::Conv_1163[FLOAT, 128x128x3x3] %onnx::Conv_1166[FLOAT, 128x128x1x1] %onnx::Conv_1169[FLOAT, 128x128x1x1] %onnx::Conv_1172[FLOAT, 128x128x3x3] %onnx::Conv_1175[FLOAT, 128x256x1x1] %onnx::Conv_1178[FLOAT, 128x128x1x1] %onnx::Conv_1181[FLOAT, 128x128x1x1] %onnx::Conv_1184[FLOAT, 128x256x1x1] %onnx::Conv_1187[FLOAT, 128x128x3x3] %onnx::Conv_1190[FLOAT, 128x128x1x1] %onnx::Conv_1193[FLOAT, 128x256x1x1] %onnx::Conv_1196[FLOAT, 128x128x3x3] %onnx::Conv_1199[FLOAT, 128x256x1x1] %onnx::Conv_1202[FLOAT, 128x128x1x1] %onnx::Conv_1205[FLOAT, 128x128x1x1] %onnx::Conv_1208[FLOAT, 128x256x1x1] %onnx::Conv_1211[FLOAT, 128x128x3x3] %onnx::Conv_1214[FLOAT, 128x128x1x1] %onnx::Conv_1217[FLOAT, 128x256x1x1] %onnx::Conv_1220[FLOAT, 128x128x3x3] %onnx::Conv_1223[FLOAT, 256x256x1x1] %onnx::Conv_1224[FLOAT, 256] %onnx::Conv_1226[FLOAT, 256x256x1x1] %onnx::Conv_1229[FLOAT, 256x256x1x1] %onnx::Conv_1232[FLOAT, 256x256x1x1] %onnx::Conv_1235[FLOAT, 256x256x3x3] %onnx::Conv_1238[FLOAT, 256x256x1x1] %onnx::Conv_1241[FLOAT, 256x256x1x1] %onnx::Conv_1244[FLOAT, 256x256x3x3] %onnx::Conv_1247[FLOAT, 256x512x1x1] %onnx::Conv_1250[FLOAT, 256x256x1x1] %onnx::Conv_1253[FLOAT, 256x256x1x1] %onnx::Conv_1256[FLOAT, 256x512x1x1] %onnx::Conv_1259[FLOAT, 256x256x3x3] %onnx::Conv_1262[FLOAT, 256x256x1x1] %onnx::Conv_1265[FLOAT, 256x512x1x1] %onnx::Conv_1268[FLOAT, 256x256x3x3] %onnx::Conv_1271[FLOAT, 256x512x1x1] %onnx::Conv_1274[FLOAT, 256x256x1x1] %onnx::Conv_1277[FLOAT, 256x256x1x1] %onnx::Conv_1280[FLOAT, 256x512x1x1] %onnx::Conv_1283[FLOAT, 256x256x3x3] %onnx::Conv_1286[FLOAT, 256x256x1x1] %onnx::Conv_1289[FLOAT, 256x512x1x1] %onnx::Conv_1292[FLOAT, 256x256x3x3] ) { %onnx::Conv_1293 = Identity(%onnx::Conv_1224) %onnx::Conv_1290 = Identity(%onnx::Conv_1224) %onnx::Conv_1287 = Identity(%onnx::Conv_1224) %onnx::Conv_1284 = Identity(%onnx::Conv_1224) %onnx::Conv_1281 = Identity(%onnx::Conv_1224) %onnx::Conv_1278 = Identity(%onnx::Conv_1224) %onnx::Conv_1275 = Identity(%onnx::Conv_1224) %onnx::Conv_1272 = Identity(%onnx::Conv_1224) %onnx::Conv_1269 = Identity(%onnx::Conv_1224) %onnx::Conv_1266 = Identity(%onnx::Conv_1224) %onnx::Conv_1263 = Identity(%onnx::Conv_1224) %onnx::Conv_1260 = Identity(%onnx::Conv_1224) %onnx::Conv_1257 = Identity(%onnx::Conv_1224) %onnx::Conv_1254 = Identity(%onnx::Conv_1224) %onnx::Conv_1251 = Identity(%onnx::Conv_1224) %onnx::Conv_1248 = Identity(%onnx::Conv_1224) %onnx::Conv_1245 = Identity(%onnx::Conv_1224) %onnx::Conv_1242 = Identity(%onnx::Conv_1224) %onnx::Conv_1239 = Identity(%onnx::Conv_1224) %onnx::Conv_1236 = Identity(%onnx::Conv_1224) %onnx::Conv_1233 = Identity(%onnx::Conv_1224) %onnx::Conv_1230 = Identity(%onnx::Conv_1224) %onnx::Conv_1227 = Identity(%onnx::Conv_1224) %onnx::Conv_1221 = Identity(%onnx::Conv_1077) %onnx::Conv_1218 = Identity(%onnx::Conv_1077) %onnx::Conv_1215 = Identity(%onnx::Conv_1077) %onnx::Conv_1212 = Identity(%onnx::Conv_1077) %onnx::Conv_1209 = Identity(%onnx::Conv_1077) %onnx::Conv_1206 = Identity(%onnx::Conv_1077) %onnx::Conv_1203 = Identity(%onnx::Conv_1077) %onnx::Conv_1200 = Identity(%onnx::Conv_1077) %onnx::Conv_1197 = Identity(%onnx::Conv_1077) %onnx::Conv_1194 = Identity(%onnx::Conv_1077) %onnx::Conv_1191 = Identity(%onnx::Conv_1077) %onnx::Conv_1188 = Identity(%onnx::Conv_1077) %onnx::Conv_1185 = Identity(%onnx::Conv_1077) %onnx::Conv_1182 = Identity(%onnx::Conv_1077) %onnx::Conv_1179 = Identity(%onnx::Conv_1077) %onnx::Conv_1176 = Identity(%onnx::Conv_1077) %onnx::Conv_1173 = Identity(%onnx::Conv_1077) %onnx::Conv_1170 = Identity(%onnx::Conv_1077) %onnx::Conv_1167 = Identity(%onnx::Conv_1077) %onnx::Conv_1164 = Identity(%onnx::Conv_1077) %onnx::Conv_1161 = Identity(%onnx::Conv_1077) %onnx::Conv_1158 = Identity(%onnx::Conv_1077) %onnx::Conv_1155 = Identity(%onnx::Conv_1077) %onnx::Conv_1152 = Identity(%onnx::Conv_1077) %onnx::Conv_1149 = Identity(%onnx::Conv_1080) %onnx::Conv_1146 = Identity(%onnx::Conv_1080) %onnx::Conv_1143 = Identity(%onnx::Conv_1080) %onnx::Conv_1140 = Identity(%onnx::Conv_1080) %onnx::Conv_1137 = Identity(%onnx::Conv_1080) %onnx::Conv_1134 = Identity(%onnx::Conv_1080) %onnx::Conv_1131 = Identity(%onnx::Conv_1080) %onnx::Conv_1128 = Identity(%onnx::Conv_1080) %onnx::Conv_1125 = Identity(%onnx::Conv_1080) %onnx::Conv_1122 = Identity(%onnx::Conv_1080) %onnx::Conv_1119 = Identity(%onnx::Conv_1080) %onnx::Conv_1116 = Identity(%onnx::Conv_1080) %onnx::Conv_1113 = Identity(%onnx::Conv_1080) %onnx::Conv_1110 = Identity(%onnx::Conv_1080) %onnx::Conv_1107 = Identity(%onnx::Conv_1080) %onnx::Conv_1104 = Identity(%onnx::Conv_1080) %onnx::Conv_1101 = Identity(%onnx::Conv_1080) %onnx::Conv_1098 = Identity(%onnx::Conv_1080) %onnx::Conv_1095 = Identity(%onnx::Conv_1080) %onnx::Conv_1092 = Identity(%onnx::Conv_1080) %onnx::Conv_1089 = Identity(%onnx::Conv_1080) %onnx::Conv_1086 = Identity(%onnx::Conv_1080) %onnx::Conv_1083 = Identity(%onnx::Conv_1080) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_1076, %onnx::Conv_1077) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1079, %onnx::Conv_1080) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_1082, %onnx::Conv_1083) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_1085, %onnx::Conv_1086) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1088, %onnx::Conv_1089) %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/Add_3_output_0 = Add(%/layers.1/Add_2_output_0, %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_3_output_0, %onnx::Conv_1091, %onnx::Conv_1092) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_4_output_0 = Add(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_3_output_0) %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_4_output_0, %onnx::Conv_1094, %onnx::Conv_1095) %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1097, %onnx::Conv_1098) %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_5_output_0 = Add(%/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_4_output_0) %/layers.1/Add_6_output_0 = Add(%/layers.1/Add_5_output_0, %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_6_output_0, %onnx::Conv_1100, %onnx::Conv_1101) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_1103, %onnx::Conv_1104) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_1106, %onnx::Conv_1107) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_1109, %onnx::Conv_1110) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_1112, %onnx::Conv_1113) %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/Add_3_output_0 = Add(%/layers.2/Add_2_output_0, %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_3_output_0, %onnx::Conv_1115, %onnx::Conv_1116) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_4_output_0 = Add(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_3_output_0) %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_4_output_0, %onnx::Conv_1118, %onnx::Conv_1119) %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_1121, %onnx::Conv_1122) %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_5_output_0 = Add(%/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_4_output_0) %/layers.2/Add_6_output_0 = Add(%/layers.2/Add_5_output_0, %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_6_output_0, %onnx::Conv_1124, %onnx::Conv_1125) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_1127, %onnx::Conv_1128) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_1130, %onnx::Conv_1131) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_1133, %onnx::Conv_1134) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_1136, %onnx::Conv_1137) %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/Add_3_output_0 = Add(%/layers.3/Add_2_output_0, %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_3_output_0, %onnx::Conv_1139, %onnx::Conv_1140) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_4_output_0 = Add(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_3_output_0) %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_4_output_0, %onnx::Conv_1142, %onnx::Conv_1143) %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_1145, %onnx::Conv_1146) %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_5_output_0 = Add(%/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_4_output_0) %/layers.3/Add_6_output_0 = Add(%/layers.3/Add_5_output_0, %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_6_output_0, %onnx::Conv_1148, %onnx::Conv_1149) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Concat_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_1151, %onnx::Conv_1152) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_1154, %onnx::Conv_1155) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_1157, %onnx::Conv_1158) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_1160, %onnx::Conv_1161) %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/Add_3_output_0 = Add(%/layers.5/Add_2_output_0, %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_3_output_0, %onnx::Conv_1163, %onnx::Conv_1164) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_4_output_0 = Add(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_3_output_0) %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_4_output_0, %onnx::Conv_1166, %onnx::Conv_1167) %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_1169, %onnx::Conv_1170) %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_5_output_0 = Add(%/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_4_output_0) %/layers.5/Add_6_output_0 = Add(%/layers.5/Add_5_output_0, %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_6_output_0, %onnx::Conv_1172, %onnx::Conv_1173) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_1175, %onnx::Conv_1176) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_1178, %onnx::Conv_1179) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_1181, %onnx::Conv_1182) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_1184, %onnx::Conv_1185) %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/Add_3_output_0 = Add(%/layers.6/Add_2_output_0, %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_3_output_0, %onnx::Conv_1187, %onnx::Conv_1188) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_4_output_0 = Add(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_3_output_0) %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_4_output_0, %onnx::Conv_1190, %onnx::Conv_1191) %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_1193, %onnx::Conv_1194) %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_5_output_0 = Add(%/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_4_output_0) %/layers.6/Add_6_output_0 = Add(%/layers.6/Add_5_output_0, %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_6_output_0, %onnx::Conv_1196, %onnx::Conv_1197) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_1199, %onnx::Conv_1200) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_1202, %onnx::Conv_1203) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_1205, %onnx::Conv_1206) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_1208, %onnx::Conv_1209) %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/Add_3_output_0 = Add(%/layers.7/Add_2_output_0, %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_3_output_0, %onnx::Conv_1211, %onnx::Conv_1212) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_4_output_0 = Add(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_3_output_0) %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_4_output_0, %onnx::Conv_1214, %onnx::Conv_1215) %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_1217, %onnx::Conv_1218) %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_5_output_0 = Add(%/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_4_output_0) %/layers.7/Add_6_output_0 = Add(%/layers.7/Add_5_output_0, %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_6_output_0, %onnx::Conv_1220, %onnx::Conv_1221) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Concat_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1223, %onnx::Conv_1224) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_1226, %onnx::Conv_1227) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_1229, %onnx::Conv_1230) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1232, %onnx::Conv_1233) %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/Add_3_output_0 = Add(%/layers.9/Add_2_output_0, %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_3_output_0, %onnx::Conv_1235, %onnx::Conv_1236) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_4_output_0 = Add(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_3_output_0) %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_4_output_0, %onnx::Conv_1238, %onnx::Conv_1239) %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1241, %onnx::Conv_1242) %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_5_output_0 = Add(%/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_4_output_0) %/layers.9/Add_6_output_0 = Add(%/layers.9/Add_5_output_0, %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_6_output_0, %onnx::Conv_1244, %onnx::Conv_1245) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_1247, %onnx::Conv_1248) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_1250, %onnx::Conv_1251) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_1253, %onnx::Conv_1254) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_1256, %onnx::Conv_1257) %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/Add_3_output_0 = Add(%/layers.10/Add_2_output_0, %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_3_output_0, %onnx::Conv_1259, %onnx::Conv_1260) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_4_output_0 = Add(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_3_output_0) %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_4_output_0, %onnx::Conv_1262, %onnx::Conv_1263) %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_1265, %onnx::Conv_1266) %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_5_output_0 = Add(%/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_4_output_0) %/layers.10/Add_6_output_0 = Add(%/layers.10/Add_5_output_0, %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_6_output_0, %onnx::Conv_1268, %onnx::Conv_1269) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_1271, %onnx::Conv_1272) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_1274, %onnx::Conv_1275) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_1277, %onnx::Conv_1278) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_1280, %onnx::Conv_1281) %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/Add_3_output_0 = Add(%/layers.11/Add_2_output_0, %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_3_output_0, %onnx::Conv_1283, %onnx::Conv_1284) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_4_output_0 = Add(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_3_output_0) %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_4_output_0, %onnx::Conv_1286, %onnx::Conv_1287) %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_1289, %onnx::Conv_1290) %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_5_output_0 = Add(%/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_4_output_0) %/layers.11/Add_6_output_0 = Add(%/layers.11/Add_5_output_0, %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_6_output_0, %onnx::Conv_1292, %onnx::Conv_1293) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Concat_output_0) %1074 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %1074 }
val_accuracy
93.589741
2,018,256,896
6,751,882
{'zcp_epe_nas': 112.95538320515647, 'zcp_fisher': 8.209942817687988, 'zcp_flops': 32292110336.0, 'zcp_grad_norm': 67.51055145263672, 'zcp_grasp': -2.2366943359375, 'zcp_jacov': -16.04026428805407, 'zcp_l2_norm': 1340.0899658203125, 'zcp_nwot': 228.92838229682533, 'zcp_params': 6751882.0, 'zcp_plain': -0.013208885677158002, 'zcp_snip': 398.93548583984375, 'zcp_synflow': 113.28011884038379, 'zcp_zen': 119.20164489746094, 'zcp_val_accuracy': 0.8957331776618951}
NASBench101_375625
NASBench101
375625
e3129ba17b9131fd49bab7162df422e2
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_491[FLOAT, 128x3x3x3] %onnx::Conv_492[FLOAT, 128] %onnx::Conv_494[FLOAT, 43x128x1x1] %onnx::Conv_495[FLOAT, 43] %onnx::Conv_497[FLOAT, 42x42x3x3] %onnx::Conv_498[FLOAT, 42] %onnx::Conv_500[FLOAT, 43x128x1x1] %onnx::Conv_503[FLOAT, 42x42x3x3] %onnx::Conv_506[FLOAT, 43x128x1x1] %onnx::Conv_509[FLOAT, 42x42x3x3] %onnx::Conv_512[FLOAT, 86x128x1x1] %onnx::Conv_513[FLOAT, 86] %onnx::Conv_515[FLOAT, 85x85x3x3] %onnx::Conv_516[FLOAT, 85] %onnx::Conv_518[FLOAT, 86x256x1x1] %onnx::Conv_521[FLOAT, 85x85x3x3] %onnx::Conv_524[FLOAT, 86x256x1x1] %onnx::Conv_527[FLOAT, 85x85x3x3] %onnx::Conv_530[FLOAT, 171x256x1x1] %onnx::Conv_531[FLOAT, 171] %onnx::Conv_533[FLOAT, 170x170x3x3] %onnx::Conv_534[FLOAT, 170] %onnx::Conv_536[FLOAT, 171x512x1x1] %onnx::Conv_539[FLOAT, 170x170x3x3] %onnx::Conv_542[FLOAT, 171x512x1x1] %onnx::Conv_545[FLOAT, 170x170x3x3] ) { %onnx::Conv_546 = Identity(%onnx::Conv_534) %onnx::Conv_543 = Identity(%onnx::Conv_531) %onnx::Conv_540 = Identity(%onnx::Conv_534) %onnx::Conv_537 = Identity(%onnx::Conv_531) %onnx::Conv_528 = Identity(%onnx::Conv_516) %onnx::Conv_525 = Identity(%onnx::Conv_513) %onnx::Conv_522 = Identity(%onnx::Conv_516) %onnx::Conv_519 = Identity(%onnx::Conv_513) %onnx::Conv_510 = Identity(%onnx::Conv_498) %onnx::Conv_507 = Identity(%onnx::Conv_495) %onnx::Conv_504 = Identity(%onnx::Conv_498) %onnx::Conv_501 = Identity(%onnx::Conv_495) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_491, %onnx::Conv_492) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_494, %onnx::Conv_495) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0) %/layers.1/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/vertex_op.1/maxpool/MaxPool_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.1/Slice_output_0 = Slice(%/layers.1/vertex_op.2/maxpool/MaxPool_output_0, %/layers.1/Constant_2_output_0, %/layers.1/Constant_3_output_0, %/layers.1/Constant_1_output_0, %/layers.1/Constant_4_output_0) %/layers.1/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Slice_output_0) %/layers.1/Add_1_output_0 = Add(%/layers.1/Slice_output_0, %/layers.1/vertex_op.4/maxpool/MaxPool_output_0) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_497, %onnx::Conv_498) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.2/maxpool/MaxPool_output_0, %/layers.1/vertex_op.2/maxpool/MaxPool_output_0, %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_500, %onnx::Conv_501) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0) %/layers.2/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/vertex_op.1/maxpool/MaxPool_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.2/Slice_output_0 = Slice(%/layers.2/vertex_op.2/maxpool/MaxPool_output_0, %/layers.2/Constant_2_output_0, %/layers.2/Constant_3_output_0, %/layers.2/Constant_1_output_0, %/layers.2/Constant_4_output_0) %/layers.2/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Slice_output_0) %/layers.2/Add_1_output_0 = Add(%/layers.2/Slice_output_0, %/layers.2/vertex_op.4/maxpool/MaxPool_output_0) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_503, %onnx::Conv_504) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.2/maxpool/MaxPool_output_0, %/layers.2/vertex_op.2/maxpool/MaxPool_output_0, %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_506, %onnx::Conv_507) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0) %/layers.3/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/vertex_op.1/maxpool/MaxPool_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.3/Slice_output_0 = Slice(%/layers.3/vertex_op.2/maxpool/MaxPool_output_0, %/layers.3/Constant_2_output_0, %/layers.3/Constant_3_output_0, %/layers.3/Constant_1_output_0, %/layers.3/Constant_4_output_0) %/layers.3/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Slice_output_0) %/layers.3/Add_1_output_0 = Add(%/layers.3/Slice_output_0, %/layers.3/vertex_op.4/maxpool/MaxPool_output_0) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_509, %onnx::Conv_510) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.2/maxpool/MaxPool_output_0, %/layers.3/vertex_op.2/maxpool/MaxPool_output_0, %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Concat_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_512, %onnx::Conv_513) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0) %/layers.5/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/vertex_op.1/maxpool/MaxPool_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.5/Slice_output_0 = Slice(%/layers.5/vertex_op.1/maxpool/MaxPool_output_0, %/layers.5/Constant_2_output_0, %/layers.5/Constant_3_output_0, %/layers.5/Constant_1_output_0, %/layers.5/Constant_4_output_0) %/layers.5/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Slice_output_0) %/layers.5/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_8_output_0 = Constant[value = <Tensor>]() %/layers.5/Slice_1_output_0 = Slice(%/layers.5/vertex_op.2/maxpool/MaxPool_output_0, %/layers.5/Constant_6_output_0, %/layers.5/Constant_7_output_0, %/layers.5/Constant_5_output_0, %/layers.5/Constant_8_output_0) %/layers.5/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Slice_1_output_0) %/layers.5/Add_1_output_0 = Add(%/layers.5/Slice_1_output_0, %/layers.5/vertex_op.4/maxpool/MaxPool_output_0) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_515, %onnx::Conv_516) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.2/maxpool/MaxPool_output_0, %/layers.5/vertex_op.3/maxpool/MaxPool_output_0, %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_518, %onnx::Conv_519) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0) %/layers.6/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/vertex_op.1/maxpool/MaxPool_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.6/Slice_output_0 = Slice(%/layers.6/vertex_op.1/maxpool/MaxPool_output_0, %/layers.6/Constant_2_output_0, %/layers.6/Constant_3_output_0, %/layers.6/Constant_1_output_0, %/layers.6/Constant_4_output_0) %/layers.6/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Slice_output_0) %/layers.6/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_8_output_0 = Constant[value = <Tensor>]() %/layers.6/Slice_1_output_0 = Slice(%/layers.6/vertex_op.2/maxpool/MaxPool_output_0, %/layers.6/Constant_6_output_0, %/layers.6/Constant_7_output_0, %/layers.6/Constant_5_output_0, %/layers.6/Constant_8_output_0) %/layers.6/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Slice_1_output_0) %/layers.6/Add_1_output_0 = Add(%/layers.6/Slice_1_output_0, %/layers.6/vertex_op.4/maxpool/MaxPool_output_0) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_521, %onnx::Conv_522) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.2/maxpool/MaxPool_output_0, %/layers.6/vertex_op.3/maxpool/MaxPool_output_0, %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_524, %onnx::Conv_525) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0) %/layers.7/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/vertex_op.1/maxpool/MaxPool_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.7/Slice_output_0 = Slice(%/layers.7/vertex_op.1/maxpool/MaxPool_output_0, %/layers.7/Constant_2_output_0, %/layers.7/Constant_3_output_0, %/layers.7/Constant_1_output_0, %/layers.7/Constant_4_output_0) %/layers.7/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Slice_output_0) %/layers.7/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_8_output_0 = Constant[value = <Tensor>]() %/layers.7/Slice_1_output_0 = Slice(%/layers.7/vertex_op.2/maxpool/MaxPool_output_0, %/layers.7/Constant_6_output_0, %/layers.7/Constant_7_output_0, %/layers.7/Constant_5_output_0, %/layers.7/Constant_8_output_0) %/layers.7/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Slice_1_output_0) %/layers.7/Add_1_output_0 = Add(%/layers.7/Slice_1_output_0, %/layers.7/vertex_op.4/maxpool/MaxPool_output_0) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_527, %onnx::Conv_528) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.2/maxpool/MaxPool_output_0, %/layers.7/vertex_op.3/maxpool/MaxPool_output_0, %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Concat_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_530, %onnx::Conv_531) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0) %/layers.9/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/vertex_op.1/maxpool/MaxPool_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.9/Slice_output_0 = Slice(%/layers.9/vertex_op.2/maxpool/MaxPool_output_0, %/layers.9/Constant_2_output_0, %/layers.9/Constant_3_output_0, %/layers.9/Constant_1_output_0, %/layers.9/Constant_4_output_0) %/layers.9/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Slice_output_0) %/layers.9/Add_1_output_0 = Add(%/layers.9/Slice_output_0, %/layers.9/vertex_op.4/maxpool/MaxPool_output_0) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_533, %onnx::Conv_534) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.2/maxpool/MaxPool_output_0, %/layers.9/vertex_op.2/maxpool/MaxPool_output_0, %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_536, %onnx::Conv_537) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0) %/layers.10/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/vertex_op.1/maxpool/MaxPool_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.10/Slice_output_0 = Slice(%/layers.10/vertex_op.2/maxpool/MaxPool_output_0, %/layers.10/Constant_2_output_0, %/layers.10/Constant_3_output_0, %/layers.10/Constant_1_output_0, %/layers.10/Constant_4_output_0) %/layers.10/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Slice_output_0) %/layers.10/Add_1_output_0 = Add(%/layers.10/Slice_output_0, %/layers.10/vertex_op.4/maxpool/MaxPool_output_0) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_539, %onnx::Conv_540) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.2/maxpool/MaxPool_output_0, %/layers.10/vertex_op.2/maxpool/MaxPool_output_0, %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_542, %onnx::Conv_543) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0) %/layers.11/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/vertex_op.1/maxpool/MaxPool_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.11/Slice_output_0 = Slice(%/layers.11/vertex_op.2/maxpool/MaxPool_output_0, %/layers.11/Constant_2_output_0, %/layers.11/Constant_3_output_0, %/layers.11/Constant_1_output_0, %/layers.11/Constant_4_output_0) %/layers.11/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Slice_output_0) %/layers.11/Add_1_output_0 = Add(%/layers.11/Slice_output_0, %/layers.11/vertex_op.4/maxpool/MaxPool_output_0) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_545, %onnx::Conv_546) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.2/maxpool/MaxPool_output_0, %/layers.11/vertex_op.2/maxpool/MaxPool_output_0, %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Concat_output_0) %489 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %489 }
val_accuracy
87.620193
399,112,704
1,325,859
{'zcp_epe_nas': 76.02409330224555, 'zcp_fisher': 2.83387279510498, 'zcp_flops': 6385803264.0, 'zcp_grad_norm': 25.0013427734375, 'zcp_grasp': -4.120841979980469, 'zcp_jacov': -16.04678578009024, 'zcp_l2_norm': 320.74029541015625, 'zcp_nwot': 202.88875132719497, 'zcp_params': 1325859.0, 'zcp_plain': 0.075464092195034, 'zcp_snip': 123.98362731933594, 'zcp_synflow': 63.54253424295804, 'zcp_zen': 45.85833740234375, 'zcp_val_accuracy': 0.924479186534881}
NASBench101_132147
NASBench101
132147
4fe61dd48da49d192897b6d5002a0058
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_860[FLOAT, 128x3x3x3] %onnx::Conv_861[FLOAT, 128] %onnx::Conv_863[FLOAT, 128x128x1x1] %onnx::Conv_866[FLOAT, 128x128x3x3] %onnx::Conv_869[FLOAT, 128x128x3x3] %onnx::Conv_872[FLOAT, 128x128x1x1] %onnx::Conv_875[FLOAT, 128x128x1x1] %onnx::Conv_878[FLOAT, 128x128x3x3] %onnx::Conv_881[FLOAT, 128x128x1x1] %onnx::Conv_884[FLOAT, 128x128x3x3] %onnx::Conv_887[FLOAT, 128x128x3x3] %onnx::Conv_890[FLOAT, 128x128x1x1] %onnx::Conv_893[FLOAT, 128x128x1x1] %onnx::Conv_896[FLOAT, 128x128x3x3] %onnx::Conv_899[FLOAT, 128x128x1x1] %onnx::Conv_902[FLOAT, 128x128x3x3] %onnx::Conv_905[FLOAT, 128x128x3x3] %onnx::Conv_908[FLOAT, 128x128x1x1] %onnx::Conv_911[FLOAT, 128x128x1x1] %onnx::Conv_914[FLOAT, 128x128x3x3] %onnx::Conv_917[FLOAT, 256x128x1x1] %onnx::Conv_918[FLOAT, 256] %onnx::Conv_920[FLOAT, 256x256x3x3] %onnx::Conv_923[FLOAT, 256x256x3x3] %onnx::Conv_926[FLOAT, 256x256x1x1] %onnx::Conv_929[FLOAT, 256x256x1x1] %onnx::Conv_932[FLOAT, 256x256x3x3] %onnx::Conv_935[FLOAT, 256x256x1x1] %onnx::Conv_938[FLOAT, 256x256x3x3] %onnx::Conv_941[FLOAT, 256x256x3x3] %onnx::Conv_944[FLOAT, 256x256x1x1] %onnx::Conv_947[FLOAT, 256x256x1x1] %onnx::Conv_950[FLOAT, 256x256x3x3] %onnx::Conv_953[FLOAT, 256x256x1x1] %onnx::Conv_956[FLOAT, 256x256x3x3] %onnx::Conv_959[FLOAT, 256x256x3x3] %onnx::Conv_962[FLOAT, 256x256x1x1] %onnx::Conv_965[FLOAT, 256x256x1x1] %onnx::Conv_968[FLOAT, 256x256x3x3] %onnx::Conv_971[FLOAT, 512x256x1x1] %onnx::Conv_972[FLOAT, 512] %onnx::Conv_974[FLOAT, 512x512x3x3] %onnx::Conv_977[FLOAT, 512x512x3x3] %onnx::Conv_980[FLOAT, 512x512x1x1] %onnx::Conv_983[FLOAT, 512x512x1x1] %onnx::Conv_986[FLOAT, 512x512x3x3] %onnx::Conv_989[FLOAT, 512x512x1x1] %onnx::Conv_992[FLOAT, 512x512x3x3] %onnx::Conv_995[FLOAT, 512x512x3x3] %onnx::Conv_998[FLOAT, 512x512x1x1] %onnx::Conv_1001[FLOAT, 512x512x1x1] %onnx::Conv_1004[FLOAT, 512x512x3x3] %onnx::Conv_1007[FLOAT, 512x512x1x1] %onnx::Conv_1010[FLOAT, 512x512x3x3] %onnx::Conv_1013[FLOAT, 512x512x3x3] %onnx::Conv_1016[FLOAT, 512x512x1x1] %onnx::Conv_1019[FLOAT, 512x512x1x1] %onnx::Conv_1022[FLOAT, 512x512x3x3] ) { %onnx::Conv_1023 = Identity(%onnx::Conv_972) %onnx::Conv_1020 = Identity(%onnx::Conv_972) %onnx::Conv_1017 = Identity(%onnx::Conv_972) %onnx::Conv_1014 = Identity(%onnx::Conv_972) %onnx::Conv_1011 = Identity(%onnx::Conv_972) %onnx::Conv_1008 = Identity(%onnx::Conv_972) %onnx::Conv_1005 = Identity(%onnx::Conv_972) %onnx::Conv_1002 = Identity(%onnx::Conv_972) %onnx::Conv_999 = Identity(%onnx::Conv_972) %onnx::Conv_996 = Identity(%onnx::Conv_972) %onnx::Conv_993 = Identity(%onnx::Conv_972) %onnx::Conv_990 = Identity(%onnx::Conv_972) %onnx::Conv_987 = Identity(%onnx::Conv_972) %onnx::Conv_984 = Identity(%onnx::Conv_972) %onnx::Conv_981 = Identity(%onnx::Conv_972) %onnx::Conv_978 = Identity(%onnx::Conv_972) %onnx::Conv_975 = Identity(%onnx::Conv_972) %onnx::Conv_969 = Identity(%onnx::Conv_918) %onnx::Conv_966 = Identity(%onnx::Conv_918) %onnx::Conv_963 = Identity(%onnx::Conv_918) %onnx::Conv_960 = Identity(%onnx::Conv_918) %onnx::Conv_957 = Identity(%onnx::Conv_918) %onnx::Conv_954 = Identity(%onnx::Conv_918) %onnx::Conv_951 = Identity(%onnx::Conv_918) %onnx::Conv_948 = Identity(%onnx::Conv_918) %onnx::Conv_945 = Identity(%onnx::Conv_918) %onnx::Conv_942 = Identity(%onnx::Conv_918) %onnx::Conv_939 = Identity(%onnx::Conv_918) %onnx::Conv_936 = Identity(%onnx::Conv_918) %onnx::Conv_933 = Identity(%onnx::Conv_918) %onnx::Conv_930 = Identity(%onnx::Conv_918) %onnx::Conv_927 = Identity(%onnx::Conv_918) %onnx::Conv_924 = Identity(%onnx::Conv_918) %onnx::Conv_921 = Identity(%onnx::Conv_918) %onnx::Conv_915 = Identity(%onnx::Conv_861) %onnx::Conv_912 = Identity(%onnx::Conv_861) %onnx::Conv_909 = Identity(%onnx::Conv_861) %onnx::Conv_906 = Identity(%onnx::Conv_861) %onnx::Conv_903 = Identity(%onnx::Conv_861) %onnx::Conv_900 = Identity(%onnx::Conv_861) %onnx::Conv_897 = Identity(%onnx::Conv_861) %onnx::Conv_894 = Identity(%onnx::Conv_861) %onnx::Conv_891 = Identity(%onnx::Conv_861) %onnx::Conv_888 = Identity(%onnx::Conv_861) %onnx::Conv_885 = Identity(%onnx::Conv_861) %onnx::Conv_882 = Identity(%onnx::Conv_861) %onnx::Conv_879 = Identity(%onnx::Conv_861) %onnx::Conv_876 = Identity(%onnx::Conv_861) %onnx::Conv_873 = Identity(%onnx::Conv_861) %onnx::Conv_870 = Identity(%onnx::Conv_861) %onnx::Conv_867 = Identity(%onnx::Conv_861) %onnx::Conv_864 = Identity(%onnx::Conv_861) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_860, %onnx::Conv_861) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_863, %onnx::Conv_864) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_866, %onnx::Conv_867) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_869, %onnx::Conv_870) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_2_output_0, %onnx::Conv_872, %onnx::Conv_873) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_3_output_0 = Add(%/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_3_output_0) %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_3_output_0, %onnx::Conv_875, %onnx::Conv_876) %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_4_output_0 = Add(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_4_output_0) %/layers.1/Add_5_output_0 = Add(%/layers.1/Add_4_output_0, %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_5_output_0, %onnx::Conv_878, %onnx::Conv_879) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_881, %onnx::Conv_882) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_884, %onnx::Conv_885) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_887, %onnx::Conv_888) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_2_output_0, %onnx::Conv_890, %onnx::Conv_891) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_3_output_0 = Add(%/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_3_output_0) %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_3_output_0, %onnx::Conv_893, %onnx::Conv_894) %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_4_output_0 = Add(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_4_output_0) %/layers.2/Add_5_output_0 = Add(%/layers.2/Add_4_output_0, %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_5_output_0, %onnx::Conv_896, %onnx::Conv_897) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_899, %onnx::Conv_900) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_902, %onnx::Conv_903) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_905, %onnx::Conv_906) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_2_output_0, %onnx::Conv_908, %onnx::Conv_909) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_3_output_0 = Add(%/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_3_output_0) %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_3_output_0, %onnx::Conv_911, %onnx::Conv_912) %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_4_output_0 = Add(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_4_output_0) %/layers.3/Add_5_output_0 = Add(%/layers.3/Add_4_output_0, %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_5_output_0, %onnx::Conv_914, %onnx::Conv_915) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_917, %onnx::Conv_918) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_920, %onnx::Conv_921) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_923, %onnx::Conv_924) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_2_output_0, %onnx::Conv_926, %onnx::Conv_927) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_3_output_0 = Add(%/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_3_output_0) %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_3_output_0, %onnx::Conv_929, %onnx::Conv_930) %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_4_output_0 = Add(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_4_output_0) %/layers.5/Add_5_output_0 = Add(%/layers.5/Add_4_output_0, %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_5_output_0, %onnx::Conv_932, %onnx::Conv_933) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_935, %onnx::Conv_936) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_938, %onnx::Conv_939) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_941, %onnx::Conv_942) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_2_output_0, %onnx::Conv_944, %onnx::Conv_945) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_3_output_0 = Add(%/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_3_output_0) %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_3_output_0, %onnx::Conv_947, %onnx::Conv_948) %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_4_output_0 = Add(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_4_output_0) %/layers.6/Add_5_output_0 = Add(%/layers.6/Add_4_output_0, %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_5_output_0, %onnx::Conv_950, %onnx::Conv_951) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_953, %onnx::Conv_954) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_956, %onnx::Conv_957) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_959, %onnx::Conv_960) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_2_output_0, %onnx::Conv_962, %onnx::Conv_963) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_3_output_0 = Add(%/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_3_output_0) %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_3_output_0, %onnx::Conv_965, %onnx::Conv_966) %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_4_output_0 = Add(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_4_output_0) %/layers.7/Add_5_output_0 = Add(%/layers.7/Add_4_output_0, %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_5_output_0, %onnx::Conv_968, %onnx::Conv_969) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_971, %onnx::Conv_972) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_974, %onnx::Conv_975) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_977, %onnx::Conv_978) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_2_output_0, %onnx::Conv_980, %onnx::Conv_981) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_3_output_0 = Add(%/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_3_output_0) %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_3_output_0, %onnx::Conv_983, %onnx::Conv_984) %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_4_output_0 = Add(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_4_output_0) %/layers.9/Add_5_output_0 = Add(%/layers.9/Add_4_output_0, %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_5_output_0, %onnx::Conv_986, %onnx::Conv_987) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_989, %onnx::Conv_990) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_992, %onnx::Conv_993) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_995, %onnx::Conv_996) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_2_output_0, %onnx::Conv_998, %onnx::Conv_999) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_3_output_0 = Add(%/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_3_output_0) %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_3_output_0, %onnx::Conv_1001, %onnx::Conv_1002) %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_4_output_0 = Add(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_4_output_0) %/layers.10/Add_5_output_0 = Add(%/layers.10/Add_4_output_0, %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_5_output_0, %onnx::Conv_1004, %onnx::Conv_1005) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1007, %onnx::Conv_1008) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_1010, %onnx::Conv_1011) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_1013, %onnx::Conv_1014) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_2_output_0, %onnx::Conv_1016, %onnx::Conv_1017) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_3_output_0 = Add(%/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_3_output_0) %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_3_output_0, %onnx::Conv_1019, %onnx::Conv_1020) %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_4_output_0 = Add(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_4_output_0) %/layers.11/Add_5_output_0 = Add(%/layers.11/Add_4_output_0, %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_5_output_0, %onnx::Conv_1022, %onnx::Conv_1023) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %858 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %858 }
val_accuracy
90.104169
9,067,309,056
30,843,018
{'zcp_epe_nas': 105.05696107294605, 'zcp_fisher': 3426.00830078125, 'zcp_flops': 145076944896.0, 'zcp_grad_norm': 999.13916015625, 'zcp_grasp': -12899.265625, 'zcp_jacov': -16.05851481454801, 'zcp_l2_norm': 1258.4912109375, 'zcp_nwot': 235.0642329824843, 'zcp_params': 30843018.0, 'zcp_plain': -0.022614043205976, 'zcp_snip': 7587.455078125, 'zcp_synflow': 190.95430374141333, 'zcp_zen': 115.53564453125, 'zcp_val_accuracy': 0.913661837577819}
NASBench101_338523
NASBench101
338523
ccb2cff06bdf5d739eb8a30438ebe758
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_878[FLOAT, 128x3x3x3] %onnx::Conv_879[FLOAT, 128] %onnx::Conv_881[FLOAT, 64x128x1x1] %onnx::Conv_882[FLOAT, 64] %onnx::Conv_884[FLOAT, 64x128x1x1] %onnx::Conv_887[FLOAT, 64x64x1x1] %onnx::Conv_890[FLOAT, 64x128x1x1] %onnx::Conv_893[FLOAT, 64x64x3x3] %onnx::Conv_896[FLOAT, 64x64x3x3] %onnx::Conv_899[FLOAT, 64x128x1x1] %onnx::Conv_902[FLOAT, 64x128x1x1] %onnx::Conv_905[FLOAT, 64x64x1x1] %onnx::Conv_908[FLOAT, 64x128x1x1] %onnx::Conv_911[FLOAT, 64x64x3x3] %onnx::Conv_914[FLOAT, 64x64x3x3] %onnx::Conv_917[FLOAT, 64x128x1x1] %onnx::Conv_920[FLOAT, 64x128x1x1] %onnx::Conv_923[FLOAT, 64x64x1x1] %onnx::Conv_926[FLOAT, 64x128x1x1] %onnx::Conv_929[FLOAT, 64x64x3x3] %onnx::Conv_932[FLOAT, 64x64x3x3] %onnx::Conv_935[FLOAT, 128x128x1x1] %onnx::Conv_938[FLOAT, 128x128x1x1] %onnx::Conv_941[FLOAT, 128x128x1x1] %onnx::Conv_944[FLOAT, 128x128x1x1] %onnx::Conv_947[FLOAT, 128x128x3x3] %onnx::Conv_950[FLOAT, 128x128x3x3] %onnx::Conv_953[FLOAT, 128x256x1x1] %onnx::Conv_956[FLOAT, 128x256x1x1] %onnx::Conv_959[FLOAT, 128x128x1x1] %onnx::Conv_962[FLOAT, 128x256x1x1] %onnx::Conv_965[FLOAT, 128x128x3x3] %onnx::Conv_968[FLOAT, 128x128x3x3] %onnx::Conv_971[FLOAT, 128x256x1x1] %onnx::Conv_974[FLOAT, 128x256x1x1] %onnx::Conv_977[FLOAT, 128x128x1x1] %onnx::Conv_980[FLOAT, 128x256x1x1] %onnx::Conv_983[FLOAT, 128x128x3x3] %onnx::Conv_986[FLOAT, 128x128x3x3] %onnx::Conv_989[FLOAT, 256x256x1x1] %onnx::Conv_990[FLOAT, 256] %onnx::Conv_992[FLOAT, 256x256x1x1] %onnx::Conv_995[FLOAT, 256x256x1x1] %onnx::Conv_998[FLOAT, 256x256x1x1] %onnx::Conv_1001[FLOAT, 256x256x3x3] %onnx::Conv_1004[FLOAT, 256x256x3x3] %onnx::Conv_1007[FLOAT, 256x512x1x1] %onnx::Conv_1010[FLOAT, 256x512x1x1] %onnx::Conv_1013[FLOAT, 256x256x1x1] %onnx::Conv_1016[FLOAT, 256x512x1x1] %onnx::Conv_1019[FLOAT, 256x256x3x3] %onnx::Conv_1022[FLOAT, 256x256x3x3] %onnx::Conv_1025[FLOAT, 256x512x1x1] %onnx::Conv_1028[FLOAT, 256x512x1x1] %onnx::Conv_1031[FLOAT, 256x256x1x1] %onnx::Conv_1034[FLOAT, 256x512x1x1] %onnx::Conv_1037[FLOAT, 256x256x3x3] %onnx::Conv_1040[FLOAT, 256x256x3x3] ) { %onnx::Conv_1041 = Identity(%onnx::Conv_990) %onnx::Conv_1038 = Identity(%onnx::Conv_990) %onnx::Conv_1035 = Identity(%onnx::Conv_990) %onnx::Conv_1032 = Identity(%onnx::Conv_990) %onnx::Conv_1029 = Identity(%onnx::Conv_990) %onnx::Conv_1026 = Identity(%onnx::Conv_990) %onnx::Conv_1023 = Identity(%onnx::Conv_990) %onnx::Conv_1020 = Identity(%onnx::Conv_990) %onnx::Conv_1017 = Identity(%onnx::Conv_990) %onnx::Conv_1014 = Identity(%onnx::Conv_990) %onnx::Conv_1011 = Identity(%onnx::Conv_990) %onnx::Conv_1008 = Identity(%onnx::Conv_990) %onnx::Conv_1005 = Identity(%onnx::Conv_990) %onnx::Conv_1002 = Identity(%onnx::Conv_990) %onnx::Conv_999 = Identity(%onnx::Conv_990) %onnx::Conv_996 = Identity(%onnx::Conv_990) %onnx::Conv_993 = Identity(%onnx::Conv_990) %onnx::Conv_987 = Identity(%onnx::Conv_879) %onnx::Conv_984 = Identity(%onnx::Conv_879) %onnx::Conv_981 = Identity(%onnx::Conv_879) %onnx::Conv_978 = Identity(%onnx::Conv_879) %onnx::Conv_975 = Identity(%onnx::Conv_879) %onnx::Conv_972 = Identity(%onnx::Conv_879) %onnx::Conv_969 = Identity(%onnx::Conv_879) %onnx::Conv_966 = Identity(%onnx::Conv_879) %onnx::Conv_963 = Identity(%onnx::Conv_879) %onnx::Conv_960 = Identity(%onnx::Conv_879) %onnx::Conv_957 = Identity(%onnx::Conv_879) %onnx::Conv_954 = Identity(%onnx::Conv_879) %onnx::Conv_951 = Identity(%onnx::Conv_879) %onnx::Conv_948 = Identity(%onnx::Conv_879) %onnx::Conv_945 = Identity(%onnx::Conv_879) %onnx::Conv_942 = Identity(%onnx::Conv_879) %onnx::Conv_939 = Identity(%onnx::Conv_879) %onnx::Conv_936 = Identity(%onnx::Conv_879) %onnx::Conv_933 = Identity(%onnx::Conv_882) %onnx::Conv_930 = Identity(%onnx::Conv_882) %onnx::Conv_927 = Identity(%onnx::Conv_882) %onnx::Conv_924 = Identity(%onnx::Conv_882) %onnx::Conv_921 = Identity(%onnx::Conv_882) %onnx::Conv_918 = Identity(%onnx::Conv_882) %onnx::Conv_915 = Identity(%onnx::Conv_882) %onnx::Conv_912 = Identity(%onnx::Conv_882) %onnx::Conv_909 = Identity(%onnx::Conv_882) %onnx::Conv_906 = Identity(%onnx::Conv_882) %onnx::Conv_903 = Identity(%onnx::Conv_882) %onnx::Conv_900 = Identity(%onnx::Conv_882) %onnx::Conv_897 = Identity(%onnx::Conv_882) %onnx::Conv_894 = Identity(%onnx::Conv_882) %onnx::Conv_891 = Identity(%onnx::Conv_882) %onnx::Conv_888 = Identity(%onnx::Conv_882) %onnx::Conv_885 = Identity(%onnx::Conv_882) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_878, %onnx::Conv_879) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_881, %onnx::Conv_882) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_884, %onnx::Conv_885) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_887, %onnx::Conv_888) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_890, %onnx::Conv_891) %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/Add_3_output_0 = Add(%/layers.1/Add_2_output_0, %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_3_output_0, %onnx::Conv_893, %onnx::Conv_894) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Add_4_output_0 = Add(%/layers.1/vertex_op.1/maxpool/MaxPool_output_0, %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_4_output_0, %onnx::Conv_896, %onnx::Conv_897) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_5_output_0 = Add(%/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_3_output_0) %/layers.1/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_5_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.5/maxpool/MaxPool_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_899, %onnx::Conv_900) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_902, %onnx::Conv_903) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_905, %onnx::Conv_906) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_908, %onnx::Conv_909) %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/Add_3_output_0 = Add(%/layers.2/Add_2_output_0, %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_3_output_0, %onnx::Conv_911, %onnx::Conv_912) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Add_4_output_0 = Add(%/layers.2/vertex_op.1/maxpool/MaxPool_output_0, %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_4_output_0, %onnx::Conv_914, %onnx::Conv_915) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_5_output_0 = Add(%/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_3_output_0) %/layers.2/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_5_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.5/maxpool/MaxPool_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_917, %onnx::Conv_918) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_920, %onnx::Conv_921) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_923, %onnx::Conv_924) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_926, %onnx::Conv_927) %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/Add_3_output_0 = Add(%/layers.3/Add_2_output_0, %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_3_output_0, %onnx::Conv_929, %onnx::Conv_930) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Add_4_output_0 = Add(%/layers.3/vertex_op.1/maxpool/MaxPool_output_0, %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_4_output_0, %onnx::Conv_932, %onnx::Conv_933) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_5_output_0 = Add(%/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_3_output_0) %/layers.3/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_5_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.5/maxpool/MaxPool_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Concat_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_935, %onnx::Conv_936) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_938, %onnx::Conv_939) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_941, %onnx::Conv_942) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_944, %onnx::Conv_945) %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/Add_3_output_0 = Add(%/layers.5/Add_2_output_0, %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_3_output_0, %onnx::Conv_947, %onnx::Conv_948) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Add_4_output_0 = Add(%/layers.5/vertex_op.1/maxpool/MaxPool_output_0, %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_4_output_0, %onnx::Conv_950, %onnx::Conv_951) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_5_output_0 = Add(%/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_3_output_0) %/layers.5/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_5_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.5/maxpool/MaxPool_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_953, %onnx::Conv_954) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_956, %onnx::Conv_957) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_959, %onnx::Conv_960) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_962, %onnx::Conv_963) %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/Add_3_output_0 = Add(%/layers.6/Add_2_output_0, %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_3_output_0, %onnx::Conv_965, %onnx::Conv_966) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Add_4_output_0 = Add(%/layers.6/vertex_op.1/maxpool/MaxPool_output_0, %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_4_output_0, %onnx::Conv_968, %onnx::Conv_969) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_5_output_0 = Add(%/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_3_output_0) %/layers.6/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_5_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.5/maxpool/MaxPool_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_971, %onnx::Conv_972) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_974, %onnx::Conv_975) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_977, %onnx::Conv_978) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_980, %onnx::Conv_981) %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/Add_3_output_0 = Add(%/layers.7/Add_2_output_0, %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_3_output_0, %onnx::Conv_983, %onnx::Conv_984) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Add_4_output_0 = Add(%/layers.7/vertex_op.1/maxpool/MaxPool_output_0, %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_4_output_0, %onnx::Conv_986, %onnx::Conv_987) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_5_output_0 = Add(%/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_3_output_0) %/layers.7/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_5_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.5/maxpool/MaxPool_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Concat_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_989, %onnx::Conv_990) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_992, %onnx::Conv_993) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_995, %onnx::Conv_996) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_998, %onnx::Conv_999) %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/Add_3_output_0 = Add(%/layers.9/Add_2_output_0, %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_3_output_0, %onnx::Conv_1001, %onnx::Conv_1002) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Add_4_output_0 = Add(%/layers.9/vertex_op.1/maxpool/MaxPool_output_0, %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_4_output_0, %onnx::Conv_1004, %onnx::Conv_1005) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_5_output_0 = Add(%/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_3_output_0) %/layers.9/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_5_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.5/maxpool/MaxPool_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_1007, %onnx::Conv_1008) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_1010, %onnx::Conv_1011) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_1013, %onnx::Conv_1014) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_1016, %onnx::Conv_1017) %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/Add_3_output_0 = Add(%/layers.10/Add_2_output_0, %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_3_output_0, %onnx::Conv_1019, %onnx::Conv_1020) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Add_4_output_0 = Add(%/layers.10/vertex_op.1/maxpool/MaxPool_output_0, %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_4_output_0, %onnx::Conv_1022, %onnx::Conv_1023) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_5_output_0 = Add(%/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_3_output_0) %/layers.10/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_5_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.5/maxpool/MaxPool_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_1025, %onnx::Conv_1026) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_1028, %onnx::Conv_1029) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_1031, %onnx::Conv_1032) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_1034, %onnx::Conv_1035) %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/Add_3_output_0 = Add(%/layers.11/Add_2_output_0, %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_3_output_0, %onnx::Conv_1037, %onnx::Conv_1038) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Add_4_output_0 = Add(%/layers.11/vertex_op.1/maxpool/MaxPool_output_0, %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_4_output_0, %onnx::Conv_1040, %onnx::Conv_1041) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_5_output_0 = Add(%/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_3_output_0) %/layers.11/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_5_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.5/maxpool/MaxPool_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Concat_output_0) %876 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %876 }
val_accuracy
91.816908
1,861,756,928
6,230,410
{'zcp_epe_nas': 114.07896503283017, 'zcp_fisher': 37.286651611328125, 'zcp_flops': 29788110848.0, 'zcp_grad_norm': 118.45325469970703, 'zcp_grasp': -5.805908203125, 'zcp_jacov': -16.052173733420275, 'zcp_l2_norm': 1040.4940185546875, 'zcp_nwot': 223.85796566413183, 'zcp_params': 6230410.0, 'zcp_plain': 0.030643461272120004, 'zcp_snip': 725.5144653320312, 'zcp_synflow': 123.85302818025468, 'zcp_zen': 103.866943359375, 'zcp_val_accuracy': 0.9260817170143121}
NASBench101_159621
NASBench101
159621
609fc0a94228f734c886b42e9426ad34
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_770[FLOAT, 128x3x3x3] %onnx::Conv_771[FLOAT, 128] %onnx::Conv_773[FLOAT, 64x128x1x1] %onnx::Conv_774[FLOAT, 64] %onnx::Conv_776[FLOAT, 64x64x1x1] %onnx::Conv_779[FLOAT, 64x64x3x3] %onnx::Conv_782[FLOAT, 64x64x3x3] %onnx::Conv_785[FLOAT, 64x64x1x1] %onnx::Conv_788[FLOAT, 64x128x1x1] %onnx::Conv_791[FLOAT, 64x64x1x1] %onnx::Conv_794[FLOAT, 64x64x3x3] %onnx::Conv_797[FLOAT, 64x64x3x3] %onnx::Conv_800[FLOAT, 64x64x1x1] %onnx::Conv_803[FLOAT, 64x128x1x1] %onnx::Conv_806[FLOAT, 64x64x1x1] %onnx::Conv_809[FLOAT, 64x64x3x3] %onnx::Conv_812[FLOAT, 64x64x3x3] %onnx::Conv_815[FLOAT, 64x64x1x1] %onnx::Conv_818[FLOAT, 128x128x1x1] %onnx::Conv_821[FLOAT, 128x128x1x1] %onnx::Conv_824[FLOAT, 128x128x3x3] %onnx::Conv_827[FLOAT, 128x128x3x3] %onnx::Conv_830[FLOAT, 128x128x1x1] %onnx::Conv_833[FLOAT, 128x256x1x1] %onnx::Conv_836[FLOAT, 128x128x1x1] %onnx::Conv_839[FLOAT, 128x128x3x3] %onnx::Conv_842[FLOAT, 128x128x3x3] %onnx::Conv_845[FLOAT, 128x128x1x1] %onnx::Conv_848[FLOAT, 128x256x1x1] %onnx::Conv_851[FLOAT, 128x128x1x1] %onnx::Conv_854[FLOAT, 128x128x3x3] %onnx::Conv_857[FLOAT, 128x128x3x3] %onnx::Conv_860[FLOAT, 128x128x1x1] %onnx::Conv_863[FLOAT, 256x256x1x1] %onnx::Conv_864[FLOAT, 256] %onnx::Conv_866[FLOAT, 256x256x1x1] %onnx::Conv_869[FLOAT, 256x256x3x3] %onnx::Conv_872[FLOAT, 256x256x3x3] %onnx::Conv_875[FLOAT, 256x256x1x1] %onnx::Conv_878[FLOAT, 256x512x1x1] %onnx::Conv_881[FLOAT, 256x256x1x1] %onnx::Conv_884[FLOAT, 256x256x3x3] %onnx::Conv_887[FLOAT, 256x256x3x3] %onnx::Conv_890[FLOAT, 256x256x1x1] %onnx::Conv_893[FLOAT, 256x512x1x1] %onnx::Conv_896[FLOAT, 256x256x1x1] %onnx::Conv_899[FLOAT, 256x256x3x3] %onnx::Conv_902[FLOAT, 256x256x3x3] %onnx::Conv_905[FLOAT, 256x256x1x1] ) { %onnx::Conv_906 = Identity(%onnx::Conv_864) %onnx::Conv_903 = Identity(%onnx::Conv_864) %onnx::Conv_900 = Identity(%onnx::Conv_864) %onnx::Conv_897 = Identity(%onnx::Conv_864) %onnx::Conv_894 = Identity(%onnx::Conv_864) %onnx::Conv_891 = Identity(%onnx::Conv_864) %onnx::Conv_888 = Identity(%onnx::Conv_864) %onnx::Conv_885 = Identity(%onnx::Conv_864) %onnx::Conv_882 = Identity(%onnx::Conv_864) %onnx::Conv_879 = Identity(%onnx::Conv_864) %onnx::Conv_876 = Identity(%onnx::Conv_864) %onnx::Conv_873 = Identity(%onnx::Conv_864) %onnx::Conv_870 = Identity(%onnx::Conv_864) %onnx::Conv_867 = Identity(%onnx::Conv_864) %onnx::Conv_861 = Identity(%onnx::Conv_771) %onnx::Conv_858 = Identity(%onnx::Conv_771) %onnx::Conv_855 = Identity(%onnx::Conv_771) %onnx::Conv_852 = Identity(%onnx::Conv_771) %onnx::Conv_849 = Identity(%onnx::Conv_771) %onnx::Conv_846 = Identity(%onnx::Conv_771) %onnx::Conv_843 = Identity(%onnx::Conv_771) %onnx::Conv_840 = Identity(%onnx::Conv_771) %onnx::Conv_837 = Identity(%onnx::Conv_771) %onnx::Conv_834 = Identity(%onnx::Conv_771) %onnx::Conv_831 = Identity(%onnx::Conv_771) %onnx::Conv_828 = Identity(%onnx::Conv_771) %onnx::Conv_825 = Identity(%onnx::Conv_771) %onnx::Conv_822 = Identity(%onnx::Conv_771) %onnx::Conv_819 = Identity(%onnx::Conv_771) %onnx::Conv_816 = Identity(%onnx::Conv_774) %onnx::Conv_813 = Identity(%onnx::Conv_774) %onnx::Conv_810 = Identity(%onnx::Conv_774) %onnx::Conv_807 = Identity(%onnx::Conv_774) %onnx::Conv_804 = Identity(%onnx::Conv_774) %onnx::Conv_801 = Identity(%onnx::Conv_774) %onnx::Conv_798 = Identity(%onnx::Conv_774) %onnx::Conv_795 = Identity(%onnx::Conv_774) %onnx::Conv_792 = Identity(%onnx::Conv_774) %onnx::Conv_789 = Identity(%onnx::Conv_774) %onnx::Conv_786 = Identity(%onnx::Conv_774) %onnx::Conv_783 = Identity(%onnx::Conv_774) %onnx::Conv_780 = Identity(%onnx::Conv_774) %onnx::Conv_777 = Identity(%onnx::Conv_774) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_770, %onnx::Conv_771) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_773, %onnx::Conv_774) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_776, %onnx::Conv_777) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_1_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/Add_3_output_0 = Add(%/layers.1/Add_2_output_0, %/layers.1/vertex_op.2/maxpool/MaxPool_output_0) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_3_output_0, %onnx::Conv_779, %onnx::Conv_780) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_4_output_0 = Add(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_3_output_0) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_4_output_0, %onnx::Conv_782, %onnx::Conv_783) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Add_5_output_0 = Add(%/layers.1/vertex_op.2/maxpool/MaxPool_output_0, %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_5_output_0, %onnx::Conv_785, %onnx::Conv_786) %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_788, %onnx::Conv_789) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_791, %onnx::Conv_792) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_1_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/Add_3_output_0 = Add(%/layers.2/Add_2_output_0, %/layers.2/vertex_op.2/maxpool/MaxPool_output_0) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_3_output_0, %onnx::Conv_794, %onnx::Conv_795) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_4_output_0 = Add(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_3_output_0) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_4_output_0, %onnx::Conv_797, %onnx::Conv_798) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Add_5_output_0 = Add(%/layers.2/vertex_op.2/maxpool/MaxPool_output_0, %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_5_output_0, %onnx::Conv_800, %onnx::Conv_801) %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_803, %onnx::Conv_804) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_806, %onnx::Conv_807) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_1_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/Add_3_output_0 = Add(%/layers.3/Add_2_output_0, %/layers.3/vertex_op.2/maxpool/MaxPool_output_0) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_3_output_0, %onnx::Conv_809, %onnx::Conv_810) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_4_output_0 = Add(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_3_output_0) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_4_output_0, %onnx::Conv_812, %onnx::Conv_813) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Add_5_output_0 = Add(%/layers.3/vertex_op.2/maxpool/MaxPool_output_0, %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_5_output_0, %onnx::Conv_815, %onnx::Conv_816) %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Concat_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_818, %onnx::Conv_819) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_821, %onnx::Conv_822) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_1_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/Add_3_output_0 = Add(%/layers.5/Add_2_output_0, %/layers.5/vertex_op.2/maxpool/MaxPool_output_0) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_3_output_0, %onnx::Conv_824, %onnx::Conv_825) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_4_output_0 = Add(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_3_output_0) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_4_output_0, %onnx::Conv_827, %onnx::Conv_828) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Add_5_output_0 = Add(%/layers.5/vertex_op.2/maxpool/MaxPool_output_0, %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_5_output_0, %onnx::Conv_830, %onnx::Conv_831) %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_833, %onnx::Conv_834) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_836, %onnx::Conv_837) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_1_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/Add_3_output_0 = Add(%/layers.6/Add_2_output_0, %/layers.6/vertex_op.2/maxpool/MaxPool_output_0) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_3_output_0, %onnx::Conv_839, %onnx::Conv_840) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_4_output_0 = Add(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_3_output_0) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_4_output_0, %onnx::Conv_842, %onnx::Conv_843) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Add_5_output_0 = Add(%/layers.6/vertex_op.2/maxpool/MaxPool_output_0, %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_5_output_0, %onnx::Conv_845, %onnx::Conv_846) %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_848, %onnx::Conv_849) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_851, %onnx::Conv_852) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_1_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/Add_3_output_0 = Add(%/layers.7/Add_2_output_0, %/layers.7/vertex_op.2/maxpool/MaxPool_output_0) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_3_output_0, %onnx::Conv_854, %onnx::Conv_855) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_4_output_0 = Add(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_3_output_0) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_4_output_0, %onnx::Conv_857, %onnx::Conv_858) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Add_5_output_0 = Add(%/layers.7/vertex_op.2/maxpool/MaxPool_output_0, %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_5_output_0, %onnx::Conv_860, %onnx::Conv_861) %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Concat_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_863, %onnx::Conv_864) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_866, %onnx::Conv_867) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_1_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/Add_3_output_0 = Add(%/layers.9/Add_2_output_0, %/layers.9/vertex_op.2/maxpool/MaxPool_output_0) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_3_output_0, %onnx::Conv_869, %onnx::Conv_870) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_4_output_0 = Add(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_3_output_0) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_4_output_0, %onnx::Conv_872, %onnx::Conv_873) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Add_5_output_0 = Add(%/layers.9/vertex_op.2/maxpool/MaxPool_output_0, %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_5_output_0, %onnx::Conv_875, %onnx::Conv_876) %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_878, %onnx::Conv_879) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_881, %onnx::Conv_882) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_1_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/Add_3_output_0 = Add(%/layers.10/Add_2_output_0, %/layers.10/vertex_op.2/maxpool/MaxPool_output_0) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_3_output_0, %onnx::Conv_884, %onnx::Conv_885) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_4_output_0 = Add(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_3_output_0) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_4_output_0, %onnx::Conv_887, %onnx::Conv_888) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Add_5_output_0 = Add(%/layers.10/vertex_op.2/maxpool/MaxPool_output_0, %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_5_output_0, %onnx::Conv_890, %onnx::Conv_891) %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_893, %onnx::Conv_894) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_896, %onnx::Conv_897) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_1_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/Add_3_output_0 = Add(%/layers.11/Add_2_output_0, %/layers.11/vertex_op.2/maxpool/MaxPool_output_0) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_3_output_0, %onnx::Conv_899, %onnx::Conv_900) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_4_output_0 = Add(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_3_output_0) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_4_output_0, %onnx::Conv_902, %onnx::Conv_903) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Add_5_output_0 = Add(%/layers.11/vertex_op.2/maxpool/MaxPool_output_0, %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_5_output_0, %onnx::Conv_905, %onnx::Conv_906) %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Concat_output_0) %768 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %768 }
val_accuracy
91.656649
1,666,066,432
5,617,418
{'zcp_epe_nas': 113.8894512260456, 'zcp_fisher': 39.79288101196289, 'zcp_flops': 26657062912.0, 'zcp_grad_norm': 122.52128601074219, 'zcp_grasp': -22.2783203125, 'zcp_jacov': -16.05737962083291, 'zcp_l2_norm': 798.4573364257812, 'zcp_nwot': 221.91459328355634, 'zcp_params': 5617418.0, 'zcp_plain': 0.005561128258705, 'zcp_snip': 703.7146606445312, 'zcp_synflow': 108.51265071323652, 'zcp_zen': 88.75955200195312, 'zcp_val_accuracy': 0.9082531929016111}
NASBench101_272166
NASBench101
272166
a4d5306a339ff116b309cc804950a5c4
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_812[FLOAT, 128x3x3x3] %onnx::Conv_813[FLOAT, 128] %onnx::Conv_815[FLOAT, 43x128x1x1] %onnx::Conv_816[FLOAT, 43] %onnx::Conv_818[FLOAT, 43x43x3x3] %onnx::Conv_821[FLOAT, 43x43x1x1] %onnx::Conv_824[FLOAT, 42x42x1x1] %onnx::Conv_825[FLOAT, 42] %onnx::Conv_827[FLOAT, 128x128x1x1] %onnx::Conv_830[FLOAT, 43x128x1x1] %onnx::Conv_833[FLOAT, 43x43x3x3] %onnx::Conv_836[FLOAT, 43x43x1x1] %onnx::Conv_839[FLOAT, 42x42x1x1] %onnx::Conv_842[FLOAT, 128x128x1x1] %onnx::Conv_845[FLOAT, 43x128x1x1] %onnx::Conv_848[FLOAT, 43x43x3x3] %onnx::Conv_851[FLOAT, 43x43x1x1] %onnx::Conv_854[FLOAT, 42x42x1x1] %onnx::Conv_857[FLOAT, 128x128x1x1] %onnx::Conv_860[FLOAT, 86x128x1x1] %onnx::Conv_861[FLOAT, 86] %onnx::Conv_863[FLOAT, 86x86x3x3] %onnx::Conv_866[FLOAT, 85x85x1x1] %onnx::Conv_867[FLOAT, 85] %onnx::Conv_869[FLOAT, 85x85x1x1] %onnx::Conv_872[FLOAT, 256x128x1x1] %onnx::Conv_873[FLOAT, 256] %onnx::Conv_875[FLOAT, 86x256x1x1] %onnx::Conv_878[FLOAT, 86x86x3x3] %onnx::Conv_881[FLOAT, 85x85x1x1] %onnx::Conv_884[FLOAT, 85x85x1x1] %onnx::Conv_887[FLOAT, 256x256x1x1] %onnx::Conv_890[FLOAT, 86x256x1x1] %onnx::Conv_893[FLOAT, 86x86x3x3] %onnx::Conv_896[FLOAT, 85x85x1x1] %onnx::Conv_899[FLOAT, 85x85x1x1] %onnx::Conv_902[FLOAT, 256x256x1x1] %onnx::Conv_905[FLOAT, 171x256x1x1] %onnx::Conv_906[FLOAT, 171] %onnx::Conv_908[FLOAT, 171x171x3x3] %onnx::Conv_911[FLOAT, 171x171x1x1] %onnx::Conv_914[FLOAT, 170x170x1x1] %onnx::Conv_915[FLOAT, 170] %onnx::Conv_917[FLOAT, 512x256x1x1] %onnx::Conv_918[FLOAT, 512] %onnx::Conv_920[FLOAT, 171x512x1x1] %onnx::Conv_923[FLOAT, 171x171x3x3] %onnx::Conv_926[FLOAT, 171x171x1x1] %onnx::Conv_929[FLOAT, 170x170x1x1] %onnx::Conv_932[FLOAT, 512x512x1x1] %onnx::Conv_935[FLOAT, 171x512x1x1] %onnx::Conv_938[FLOAT, 171x171x3x3] %onnx::Conv_941[FLOAT, 171x171x1x1] %onnx::Conv_944[FLOAT, 170x170x1x1] %onnx::Conv_947[FLOAT, 512x512x1x1] ) { %onnx::Conv_948 = Identity(%onnx::Conv_918) %onnx::Conv_945 = Identity(%onnx::Conv_915) %onnx::Conv_942 = Identity(%onnx::Conv_906) %onnx::Conv_939 = Identity(%onnx::Conv_906) %onnx::Conv_936 = Identity(%onnx::Conv_906) %onnx::Conv_933 = Identity(%onnx::Conv_918) %onnx::Conv_930 = Identity(%onnx::Conv_915) %onnx::Conv_927 = Identity(%onnx::Conv_906) %onnx::Conv_924 = Identity(%onnx::Conv_906) %onnx::Conv_921 = Identity(%onnx::Conv_906) %onnx::Conv_912 = Identity(%onnx::Conv_906) %onnx::Conv_909 = Identity(%onnx::Conv_906) %onnx::Conv_903 = Identity(%onnx::Conv_873) %onnx::Conv_900 = Identity(%onnx::Conv_867) %onnx::Conv_897 = Identity(%onnx::Conv_867) %onnx::Conv_894 = Identity(%onnx::Conv_861) %onnx::Conv_891 = Identity(%onnx::Conv_861) %onnx::Conv_888 = Identity(%onnx::Conv_873) %onnx::Conv_885 = Identity(%onnx::Conv_867) %onnx::Conv_882 = Identity(%onnx::Conv_867) %onnx::Conv_879 = Identity(%onnx::Conv_861) %onnx::Conv_876 = Identity(%onnx::Conv_861) %onnx::Conv_870 = Identity(%onnx::Conv_867) %onnx::Conv_864 = Identity(%onnx::Conv_861) %onnx::Conv_858 = Identity(%onnx::Conv_813) %onnx::Conv_855 = Identity(%onnx::Conv_825) %onnx::Conv_852 = Identity(%onnx::Conv_816) %onnx::Conv_849 = Identity(%onnx::Conv_816) %onnx::Conv_846 = Identity(%onnx::Conv_816) %onnx::Conv_843 = Identity(%onnx::Conv_813) %onnx::Conv_840 = Identity(%onnx::Conv_825) %onnx::Conv_837 = Identity(%onnx::Conv_816) %onnx::Conv_834 = Identity(%onnx::Conv_816) %onnx::Conv_831 = Identity(%onnx::Conv_816) %onnx::Conv_828 = Identity(%onnx::Conv_813) %onnx::Conv_822 = Identity(%onnx::Conv_816) %onnx::Conv_819 = Identity(%onnx::Conv_816) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_812, %onnx::Conv_813) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_815, %onnx::Conv_816) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_818, %onnx::Conv_819) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_1_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/Add_3_output_0 = Add(%/layers.1/Add_2_output_0, %/layers.1/vertex_op.2/maxpool/MaxPool_output_0) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_3_output_0, %onnx::Conv_821, %onnx::Conv_822) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.1/Slice_output_0 = Slice(%/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_4_output_0, %/layers.1/Constant_5_output_0, %/layers.1/Constant_3_output_0, %/layers.1/Constant_6_output_0) %/layers.1/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_4_output_0 = Add(%/layers.1/Slice_output_0, %/layers.1/Constant_7_output_0) %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_4_output_0, %onnx::Conv_824, %onnx::Conv_825) %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_827, %onnx::Conv_828) %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Add_5_output_0 = Add(%/layers.1/Concat_output_0, %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_5_output_0, %onnx::Conv_830, %onnx::Conv_831) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_833, %onnx::Conv_834) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_1_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/Add_3_output_0 = Add(%/layers.2/Add_2_output_0, %/layers.2/vertex_op.2/maxpool/MaxPool_output_0) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_3_output_0, %onnx::Conv_836, %onnx::Conv_837) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.2/Slice_output_0 = Slice(%/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_4_output_0, %/layers.2/Constant_5_output_0, %/layers.2/Constant_3_output_0, %/layers.2/Constant_6_output_0) %/layers.2/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_4_output_0 = Add(%/layers.2/Slice_output_0, %/layers.2/Constant_7_output_0) %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_4_output_0, %onnx::Conv_839, %onnx::Conv_840) %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_5_output_0, %onnx::Conv_842, %onnx::Conv_843) %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Add_5_output_0 = Add(%/layers.2/Concat_output_0, %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_5_output_0, %onnx::Conv_845, %onnx::Conv_846) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_848, %onnx::Conv_849) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_1_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/Add_3_output_0 = Add(%/layers.3/Add_2_output_0, %/layers.3/vertex_op.2/maxpool/MaxPool_output_0) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_3_output_0, %onnx::Conv_851, %onnx::Conv_852) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.3/Slice_output_0 = Slice(%/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_4_output_0, %/layers.3/Constant_5_output_0, %/layers.3/Constant_3_output_0, %/layers.3/Constant_6_output_0) %/layers.3/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_4_output_0 = Add(%/layers.3/Slice_output_0, %/layers.3/Constant_7_output_0) %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_4_output_0, %onnx::Conv_854, %onnx::Conv_855) %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_5_output_0, %onnx::Conv_857, %onnx::Conv_858) %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Add_5_output_0 = Add(%/layers.3/Concat_output_0, %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Add_5_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_860, %onnx::Conv_861) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_863, %onnx::Conv_864) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.5/Slice_output_0 = Slice(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0, %/layers.5/Constant_3_output_0, %/layers.5/Constant_1_output_0, %/layers.5/Constant_4_output_0) %/layers.5/Constant_5_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/Slice_output_0, %/layers.5/Constant_5_output_0) %/layers.5/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_1_output_0) %/layers.5/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_8_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_9_output_0 = Constant[value = <Tensor>]() %/layers.5/Slice_1_output_0 = Slice(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_7_output_0, %/layers.5/Constant_8_output_0, %/layers.5/Constant_6_output_0, %/layers.5/Constant_9_output_0) %/layers.5/Constant_10_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/Slice_1_output_0, %/layers.5/Constant_10_output_0) %/layers.5/Add_3_output_0 = Add(%/layers.5/Add_2_output_0, %/layers.5/vertex_op.2/maxpool/MaxPool_output_0) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_3_output_0, %onnx::Conv_866, %onnx::Conv_867) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_11_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_4_output_0 = Add(%/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_11_output_0) %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_4_output_0, %onnx::Conv_869, %onnx::Conv_870) %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_872, %onnx::Conv_873) %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Add_5_output_0 = Add(%/layers.5/Concat_output_0, %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_5_output_0, %onnx::Conv_875, %onnx::Conv_876) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_878, %onnx::Conv_879) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.6/Slice_output_0 = Slice(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0, %/layers.6/Constant_3_output_0, %/layers.6/Constant_1_output_0, %/layers.6/Constant_4_output_0) %/layers.6/Constant_5_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/Slice_output_0, %/layers.6/Constant_5_output_0) %/layers.6/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_1_output_0) %/layers.6/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_8_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_9_output_0 = Constant[value = <Tensor>]() %/layers.6/Slice_1_output_0 = Slice(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_7_output_0, %/layers.6/Constant_8_output_0, %/layers.6/Constant_6_output_0, %/layers.6/Constant_9_output_0) %/layers.6/Constant_10_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/Slice_1_output_0, %/layers.6/Constant_10_output_0) %/layers.6/Add_3_output_0 = Add(%/layers.6/Add_2_output_0, %/layers.6/vertex_op.2/maxpool/MaxPool_output_0) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_3_output_0, %onnx::Conv_881, %onnx::Conv_882) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_11_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_4_output_0 = Add(%/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_11_output_0) %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_4_output_0, %onnx::Conv_884, %onnx::Conv_885) %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_5_output_0, %onnx::Conv_887, %onnx::Conv_888) %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Add_5_output_0 = Add(%/layers.6/Concat_output_0, %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_5_output_0, %onnx::Conv_890, %onnx::Conv_891) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_893, %onnx::Conv_894) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.7/Slice_output_0 = Slice(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0, %/layers.7/Constant_3_output_0, %/layers.7/Constant_1_output_0, %/layers.7/Constant_4_output_0) %/layers.7/Constant_5_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/Slice_output_0, %/layers.7/Constant_5_output_0) %/layers.7/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_1_output_0) %/layers.7/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_8_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_9_output_0 = Constant[value = <Tensor>]() %/layers.7/Slice_1_output_0 = Slice(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_7_output_0, %/layers.7/Constant_8_output_0, %/layers.7/Constant_6_output_0, %/layers.7/Constant_9_output_0) %/layers.7/Constant_10_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/Slice_1_output_0, %/layers.7/Constant_10_output_0) %/layers.7/Add_3_output_0 = Add(%/layers.7/Add_2_output_0, %/layers.7/vertex_op.2/maxpool/MaxPool_output_0) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_3_output_0, %onnx::Conv_896, %onnx::Conv_897) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_11_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_4_output_0 = Add(%/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_11_output_0) %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_4_output_0, %onnx::Conv_899, %onnx::Conv_900) %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_5_output_0, %onnx::Conv_902, %onnx::Conv_903) %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Add_5_output_0 = Add(%/layers.7/Concat_output_0, %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Add_5_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_905, %onnx::Conv_906) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_908, %onnx::Conv_909) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_1_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/Add_3_output_0 = Add(%/layers.9/Add_2_output_0, %/layers.9/vertex_op.2/maxpool/MaxPool_output_0) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_3_output_0, %onnx::Conv_911, %onnx::Conv_912) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.9/Slice_output_0 = Slice(%/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_4_output_0, %/layers.9/Constant_5_output_0, %/layers.9/Constant_3_output_0, %/layers.9/Constant_6_output_0) %/layers.9/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_4_output_0 = Add(%/layers.9/Slice_output_0, %/layers.9/Constant_7_output_0) %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_4_output_0, %onnx::Conv_914, %onnx::Conv_915) %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_917, %onnx::Conv_918) %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Add_5_output_0 = Add(%/layers.9/Concat_output_0, %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_5_output_0, %onnx::Conv_920, %onnx::Conv_921) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_923, %onnx::Conv_924) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_1_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/Add_3_output_0 = Add(%/layers.10/Add_2_output_0, %/layers.10/vertex_op.2/maxpool/MaxPool_output_0) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_3_output_0, %onnx::Conv_926, %onnx::Conv_927) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.10/Slice_output_0 = Slice(%/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_4_output_0, %/layers.10/Constant_5_output_0, %/layers.10/Constant_3_output_0, %/layers.10/Constant_6_output_0) %/layers.10/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_4_output_0 = Add(%/layers.10/Slice_output_0, %/layers.10/Constant_7_output_0) %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_4_output_0, %onnx::Conv_929, %onnx::Conv_930) %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_5_output_0, %onnx::Conv_932, %onnx::Conv_933) %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Add_5_output_0 = Add(%/layers.10/Concat_output_0, %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_5_output_0, %onnx::Conv_935, %onnx::Conv_936) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_938, %onnx::Conv_939) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_1_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/Add_3_output_0 = Add(%/layers.11/Add_2_output_0, %/layers.11/vertex_op.2/maxpool/MaxPool_output_0) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_3_output_0, %onnx::Conv_941, %onnx::Conv_942) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.11/Slice_output_0 = Slice(%/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_4_output_0, %/layers.11/Constant_5_output_0, %/layers.11/Constant_3_output_0, %/layers.11/Constant_6_output_0) %/layers.11/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_4_output_0 = Add(%/layers.11/Slice_output_0, %/layers.11/Constant_7_output_0) %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_4_output_0, %onnx::Conv_944, %onnx::Conv_945) %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_5_output_0, %onnx::Conv_947, %onnx::Conv_948) %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Add_5_output_0 = Add(%/layers.11/Concat_output_0, %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Add_5_output_0) %810 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %810 }
val_accuracy
92.948717
751,704,832
2,447,912
{'zcp_epe_nas': 89.22940390362768, 'zcp_fisher': 3.744400978088379, 'zcp_flops': 12027277312.0, 'zcp_grad_norm': 38.70025634765625, 'zcp_grasp': -1.494659423828125, 'zcp_jacov': -16.056075991361148, 'zcp_l2_norm': 762.488525390625, 'zcp_nwot': 220.96525053867077, 'zcp_params': 2447912.0, 'zcp_plain': 0.040669485926628, 'zcp_snip': 211.82705688476562, 'zcp_synflow': 107.0031541890923, 'zcp_zen': 76.05393981933594, 'zcp_val_accuracy': 0.9271835088729851}
NASBench101_105033
NASBench101
105033
3f87201c7f51a5680319c6c16a4684bf
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_851[FLOAT, 128x3x3x3] %onnx::Conv_852[FLOAT, 128] %onnx::Conv_854[FLOAT, 64x128x1x1] %onnx::Conv_855[FLOAT, 64] %onnx::Conv_857[FLOAT, 64x64x3x3] %onnx::Conv_860[FLOAT, 64x64x1x1] %onnx::Conv_863[FLOAT, 64x64x1x1] %onnx::Conv_866[FLOAT, 64x128x1x1] %onnx::Conv_869[FLOAT, 64x64x3x3] %onnx::Conv_872[FLOAT, 64x128x1x1] %onnx::Conv_875[FLOAT, 64x64x3x3] %onnx::Conv_878[FLOAT, 64x64x1x1] %onnx::Conv_881[FLOAT, 64x64x1x1] %onnx::Conv_884[FLOAT, 64x128x1x1] %onnx::Conv_887[FLOAT, 64x64x3x3] %onnx::Conv_890[FLOAT, 64x128x1x1] %onnx::Conv_893[FLOAT, 64x64x3x3] %onnx::Conv_896[FLOAT, 64x64x1x1] %onnx::Conv_899[FLOAT, 64x64x1x1] %onnx::Conv_902[FLOAT, 64x128x1x1] %onnx::Conv_905[FLOAT, 64x64x3x3] %onnx::Conv_908[FLOAT, 128x128x1x1] %onnx::Conv_911[FLOAT, 128x128x3x3] %onnx::Conv_914[FLOAT, 128x128x1x1] %onnx::Conv_917[FLOAT, 128x128x1x1] %onnx::Conv_920[FLOAT, 128x128x1x1] %onnx::Conv_923[FLOAT, 128x128x3x3] %onnx::Conv_926[FLOAT, 128x256x1x1] %onnx::Conv_929[FLOAT, 128x128x3x3] %onnx::Conv_932[FLOAT, 128x128x1x1] %onnx::Conv_935[FLOAT, 128x128x1x1] %onnx::Conv_938[FLOAT, 128x256x1x1] %onnx::Conv_941[FLOAT, 128x128x3x3] %onnx::Conv_944[FLOAT, 128x256x1x1] %onnx::Conv_947[FLOAT, 128x128x3x3] %onnx::Conv_950[FLOAT, 128x128x1x1] %onnx::Conv_953[FLOAT, 128x128x1x1] %onnx::Conv_956[FLOAT, 128x256x1x1] %onnx::Conv_959[FLOAT, 128x128x3x3] %onnx::Conv_962[FLOAT, 256x256x1x1] %onnx::Conv_963[FLOAT, 256] %onnx::Conv_965[FLOAT, 256x256x3x3] %onnx::Conv_968[FLOAT, 256x256x1x1] %onnx::Conv_971[FLOAT, 256x256x1x1] %onnx::Conv_974[FLOAT, 256x256x1x1] %onnx::Conv_977[FLOAT, 256x256x3x3] %onnx::Conv_980[FLOAT, 256x512x1x1] %onnx::Conv_983[FLOAT, 256x256x3x3] %onnx::Conv_986[FLOAT, 256x256x1x1] %onnx::Conv_989[FLOAT, 256x256x1x1] %onnx::Conv_992[FLOAT, 256x512x1x1] %onnx::Conv_995[FLOAT, 256x256x3x3] %onnx::Conv_998[FLOAT, 256x512x1x1] %onnx::Conv_1001[FLOAT, 256x256x3x3] %onnx::Conv_1004[FLOAT, 256x256x1x1] %onnx::Conv_1007[FLOAT, 256x256x1x1] %onnx::Conv_1010[FLOAT, 256x512x1x1] %onnx::Conv_1013[FLOAT, 256x256x3x3] ) { %onnx::Conv_1014 = Identity(%onnx::Conv_963) %onnx::Conv_1011 = Identity(%onnx::Conv_963) %onnx::Conv_1008 = Identity(%onnx::Conv_963) %onnx::Conv_1005 = Identity(%onnx::Conv_963) %onnx::Conv_1002 = Identity(%onnx::Conv_963) %onnx::Conv_999 = Identity(%onnx::Conv_963) %onnx::Conv_996 = Identity(%onnx::Conv_963) %onnx::Conv_993 = Identity(%onnx::Conv_963) %onnx::Conv_990 = Identity(%onnx::Conv_963) %onnx::Conv_987 = Identity(%onnx::Conv_963) %onnx::Conv_984 = Identity(%onnx::Conv_963) %onnx::Conv_981 = Identity(%onnx::Conv_963) %onnx::Conv_978 = Identity(%onnx::Conv_963) %onnx::Conv_975 = Identity(%onnx::Conv_963) %onnx::Conv_972 = Identity(%onnx::Conv_963) %onnx::Conv_969 = Identity(%onnx::Conv_963) %onnx::Conv_966 = Identity(%onnx::Conv_963) %onnx::Conv_960 = Identity(%onnx::Conv_852) %onnx::Conv_957 = Identity(%onnx::Conv_852) %onnx::Conv_954 = Identity(%onnx::Conv_852) %onnx::Conv_951 = Identity(%onnx::Conv_852) %onnx::Conv_948 = Identity(%onnx::Conv_852) %onnx::Conv_945 = Identity(%onnx::Conv_852) %onnx::Conv_942 = Identity(%onnx::Conv_852) %onnx::Conv_939 = Identity(%onnx::Conv_852) %onnx::Conv_936 = Identity(%onnx::Conv_852) %onnx::Conv_933 = Identity(%onnx::Conv_852) %onnx::Conv_930 = Identity(%onnx::Conv_852) %onnx::Conv_927 = Identity(%onnx::Conv_852) %onnx::Conv_924 = Identity(%onnx::Conv_852) %onnx::Conv_921 = Identity(%onnx::Conv_852) %onnx::Conv_918 = Identity(%onnx::Conv_852) %onnx::Conv_915 = Identity(%onnx::Conv_852) %onnx::Conv_912 = Identity(%onnx::Conv_852) %onnx::Conv_909 = Identity(%onnx::Conv_852) %onnx::Conv_906 = Identity(%onnx::Conv_855) %onnx::Conv_903 = Identity(%onnx::Conv_855) %onnx::Conv_900 = Identity(%onnx::Conv_855) %onnx::Conv_897 = Identity(%onnx::Conv_855) %onnx::Conv_894 = Identity(%onnx::Conv_855) %onnx::Conv_891 = Identity(%onnx::Conv_855) %onnx::Conv_888 = Identity(%onnx::Conv_855) %onnx::Conv_885 = Identity(%onnx::Conv_855) %onnx::Conv_882 = Identity(%onnx::Conv_855) %onnx::Conv_879 = Identity(%onnx::Conv_855) %onnx::Conv_876 = Identity(%onnx::Conv_855) %onnx::Conv_873 = Identity(%onnx::Conv_855) %onnx::Conv_870 = Identity(%onnx::Conv_855) %onnx::Conv_867 = Identity(%onnx::Conv_855) %onnx::Conv_864 = Identity(%onnx::Conv_855) %onnx::Conv_861 = Identity(%onnx::Conv_855) %onnx::Conv_858 = Identity(%onnx::Conv_855) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_851, %onnx::Conv_852) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_854, %onnx::Conv_855) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_857, %onnx::Conv_858) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_1_output_0) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_860, %onnx::Conv_861) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_2_output_0, %onnx::Conv_863, %onnx::Conv_864) %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_866, %onnx::Conv_867) %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Add_3_output_0 = Add(%/layers.1/vertex_op.2/maxpool/MaxPool_output_0, %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/Add_4_output_0 = Add(%/layers.1/Add_3_output_0, %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_4_output_0, %onnx::Conv_869, %onnx::Conv_870) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.2/maxpool/MaxPool_output_0, %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_872, %onnx::Conv_873) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_875, %onnx::Conv_876) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_1_output_0) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_878, %onnx::Conv_879) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_2_output_0, %onnx::Conv_881, %onnx::Conv_882) %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_884, %onnx::Conv_885) %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Add_3_output_0 = Add(%/layers.2/vertex_op.2/maxpool/MaxPool_output_0, %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/Add_4_output_0 = Add(%/layers.2/Add_3_output_0, %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_4_output_0, %onnx::Conv_887, %onnx::Conv_888) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.2/maxpool/MaxPool_output_0, %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_890, %onnx::Conv_891) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_893, %onnx::Conv_894) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_1_output_0) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_896, %onnx::Conv_897) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_2_output_0, %onnx::Conv_899, %onnx::Conv_900) %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_902, %onnx::Conv_903) %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Add_3_output_0 = Add(%/layers.3/vertex_op.2/maxpool/MaxPool_output_0, %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/Add_4_output_0 = Add(%/layers.3/Add_3_output_0, %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_4_output_0, %onnx::Conv_905, %onnx::Conv_906) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.2/maxpool/MaxPool_output_0, %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Concat_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_908, %onnx::Conv_909) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_911, %onnx::Conv_912) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_1_output_0) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_914, %onnx::Conv_915) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_2_output_0, %onnx::Conv_917, %onnx::Conv_918) %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_920, %onnx::Conv_921) %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Add_3_output_0 = Add(%/layers.5/vertex_op.2/maxpool/MaxPool_output_0, %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/Add_4_output_0 = Add(%/layers.5/Add_3_output_0, %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_4_output_0, %onnx::Conv_923, %onnx::Conv_924) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.2/maxpool/MaxPool_output_0, %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_926, %onnx::Conv_927) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_929, %onnx::Conv_930) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_1_output_0) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_932, %onnx::Conv_933) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_2_output_0, %onnx::Conv_935, %onnx::Conv_936) %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_938, %onnx::Conv_939) %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Add_3_output_0 = Add(%/layers.6/vertex_op.2/maxpool/MaxPool_output_0, %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/Add_4_output_0 = Add(%/layers.6/Add_3_output_0, %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_4_output_0, %onnx::Conv_941, %onnx::Conv_942) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.2/maxpool/MaxPool_output_0, %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_944, %onnx::Conv_945) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_947, %onnx::Conv_948) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_1_output_0) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_950, %onnx::Conv_951) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_2_output_0, %onnx::Conv_953, %onnx::Conv_954) %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_956, %onnx::Conv_957) %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Add_3_output_0 = Add(%/layers.7/vertex_op.2/maxpool/MaxPool_output_0, %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/Add_4_output_0 = Add(%/layers.7/Add_3_output_0, %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_4_output_0, %onnx::Conv_959, %onnx::Conv_960) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.2/maxpool/MaxPool_output_0, %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Concat_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_962, %onnx::Conv_963) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_965, %onnx::Conv_966) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_1_output_0) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_968, %onnx::Conv_969) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_2_output_0, %onnx::Conv_971, %onnx::Conv_972) %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_974, %onnx::Conv_975) %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Add_3_output_0 = Add(%/layers.9/vertex_op.2/maxpool/MaxPool_output_0, %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/Add_4_output_0 = Add(%/layers.9/Add_3_output_0, %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_4_output_0, %onnx::Conv_977, %onnx::Conv_978) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.2/maxpool/MaxPool_output_0, %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_980, %onnx::Conv_981) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_983, %onnx::Conv_984) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_1_output_0) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_986, %onnx::Conv_987) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_2_output_0, %onnx::Conv_989, %onnx::Conv_990) %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_992, %onnx::Conv_993) %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Add_3_output_0 = Add(%/layers.10/vertex_op.2/maxpool/MaxPool_output_0, %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/Add_4_output_0 = Add(%/layers.10/Add_3_output_0, %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_4_output_0, %onnx::Conv_995, %onnx::Conv_996) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.2/maxpool/MaxPool_output_0, %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_998, %onnx::Conv_999) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_1001, %onnx::Conv_1002) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_1_output_0) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_1004, %onnx::Conv_1005) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_2_output_0, %onnx::Conv_1007, %onnx::Conv_1008) %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_1010, %onnx::Conv_1011) %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Add_3_output_0 = Add(%/layers.11/vertex_op.2/maxpool/MaxPool_output_0, %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/Add_4_output_0 = Add(%/layers.11/Add_3_output_0, %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_4_output_0, %onnx::Conv_1013, %onnx::Conv_1014) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.2/maxpool/MaxPool_output_0, %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Concat_output_0) %849 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %849 }
val_accuracy
92.357773
1,803,036,672
6,054,282
{'zcp_epe_nas': 118.59127613637021, 'zcp_fisher': 63.476810455322266, 'zcp_flops': 28848586752.0, 'zcp_grad_norm': 133.79052734375, 'zcp_grasp': 7.938720703125, 'zcp_jacov': -16.049608054837133, 'zcp_l2_norm': 994.0147094726562, 'zcp_nwot': 224.42370013105983, 'zcp_params': 6054282.0, 'zcp_plain': 0.023971995338797, 'zcp_snip': 814.0525512695312, 'zcp_synflow': 140.32866203816434, 'zcp_zen': 100.80682373046875, 'zcp_val_accuracy': 0.882411837577819}
NASBench101_34862
NASBench101
34862
15222ade1461bf490f84e75a635a1a97
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_698[FLOAT, 128x3x3x3] %onnx::Conv_699[FLOAT, 128] %onnx::Conv_701[FLOAT, 128x128x1x1] %onnx::Conv_704[FLOAT, 128x128x1x1] %onnx::Conv_707[FLOAT, 128x128x3x3] %onnx::Conv_710[FLOAT, 128x128x3x3] %onnx::Conv_713[FLOAT, 128x128x1x1] %onnx::Conv_716[FLOAT, 128x128x1x1] %onnx::Conv_719[FLOAT, 128x128x3x3] %onnx::Conv_722[FLOAT, 128x128x3x3] %onnx::Conv_725[FLOAT, 128x128x1x1] %onnx::Conv_728[FLOAT, 128x128x1x1] %onnx::Conv_731[FLOAT, 128x128x3x3] %onnx::Conv_734[FLOAT, 128x128x3x3] %onnx::Conv_737[FLOAT, 256x128x1x1] %onnx::Conv_738[FLOAT, 256] %onnx::Conv_740[FLOAT, 256x256x1x1] %onnx::Conv_743[FLOAT, 256x256x3x3] %onnx::Conv_746[FLOAT, 256x256x3x3] %onnx::Conv_749[FLOAT, 256x256x1x1] %onnx::Conv_752[FLOAT, 256x256x1x1] %onnx::Conv_755[FLOAT, 256x256x3x3] %onnx::Conv_758[FLOAT, 256x256x3x3] %onnx::Conv_761[FLOAT, 256x256x1x1] %onnx::Conv_764[FLOAT, 256x256x1x1] %onnx::Conv_767[FLOAT, 256x256x3x3] %onnx::Conv_770[FLOAT, 256x256x3x3] %onnx::Conv_773[FLOAT, 512x256x1x1] %onnx::Conv_774[FLOAT, 512] %onnx::Conv_776[FLOAT, 512x512x1x1] %onnx::Conv_779[FLOAT, 512x512x3x3] %onnx::Conv_782[FLOAT, 512x512x3x3] %onnx::Conv_785[FLOAT, 512x512x1x1] %onnx::Conv_788[FLOAT, 512x512x1x1] %onnx::Conv_791[FLOAT, 512x512x3x3] %onnx::Conv_794[FLOAT, 512x512x3x3] %onnx::Conv_797[FLOAT, 512x512x1x1] %onnx::Conv_800[FLOAT, 512x512x1x1] %onnx::Conv_803[FLOAT, 512x512x3x3] %onnx::Conv_806[FLOAT, 512x512x3x3] ) { %onnx::Conv_807 = Identity(%onnx::Conv_774) %onnx::Conv_804 = Identity(%onnx::Conv_774) %onnx::Conv_801 = Identity(%onnx::Conv_774) %onnx::Conv_798 = Identity(%onnx::Conv_774) %onnx::Conv_795 = Identity(%onnx::Conv_774) %onnx::Conv_792 = Identity(%onnx::Conv_774) %onnx::Conv_789 = Identity(%onnx::Conv_774) %onnx::Conv_786 = Identity(%onnx::Conv_774) %onnx::Conv_783 = Identity(%onnx::Conv_774) %onnx::Conv_780 = Identity(%onnx::Conv_774) %onnx::Conv_777 = Identity(%onnx::Conv_774) %onnx::Conv_771 = Identity(%onnx::Conv_738) %onnx::Conv_768 = Identity(%onnx::Conv_738) %onnx::Conv_765 = Identity(%onnx::Conv_738) %onnx::Conv_762 = Identity(%onnx::Conv_738) %onnx::Conv_759 = Identity(%onnx::Conv_738) %onnx::Conv_756 = Identity(%onnx::Conv_738) %onnx::Conv_753 = Identity(%onnx::Conv_738) %onnx::Conv_750 = Identity(%onnx::Conv_738) %onnx::Conv_747 = Identity(%onnx::Conv_738) %onnx::Conv_744 = Identity(%onnx::Conv_738) %onnx::Conv_741 = Identity(%onnx::Conv_738) %onnx::Conv_735 = Identity(%onnx::Conv_699) %onnx::Conv_732 = Identity(%onnx::Conv_699) %onnx::Conv_729 = Identity(%onnx::Conv_699) %onnx::Conv_726 = Identity(%onnx::Conv_699) %onnx::Conv_723 = Identity(%onnx::Conv_699) %onnx::Conv_720 = Identity(%onnx::Conv_699) %onnx::Conv_717 = Identity(%onnx::Conv_699) %onnx::Conv_714 = Identity(%onnx::Conv_699) %onnx::Conv_711 = Identity(%onnx::Conv_699) %onnx::Conv_708 = Identity(%onnx::Conv_699) %onnx::Conv_705 = Identity(%onnx::Conv_699) %onnx::Conv_702 = Identity(%onnx::Conv_699) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_698, %onnx::Conv_699) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_701, %onnx::Conv_702) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_704, %onnx::Conv_705) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_707, %onnx::Conv_708) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_2_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_3_output_0 = Add(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_3_output_0) %/layers.1/Add_4_output_0 = Add(%/layers.1/Add_3_output_0, %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/Add_5_output_0 = Add(%/layers.1/Add_4_output_0, %/layers.1/vertex_op.3/maxpool/MaxPool_output_0) %/layers.1/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_5_output_0) %/layers.1/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_6_output_0 = Add(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_4_output_0) %/layers.1/Add_7_output_0 = Add(%/layers.1/Add_6_output_0, %/layers.1/vertex_op.4/maxpool/MaxPool_output_0) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_7_output_0, %onnx::Conv_710, %onnx::Conv_711) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_713, %onnx::Conv_714) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_716, %onnx::Conv_717) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_719, %onnx::Conv_720) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_2_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_3_output_0 = Add(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_3_output_0) %/layers.2/Add_4_output_0 = Add(%/layers.2/Add_3_output_0, %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/Add_5_output_0 = Add(%/layers.2/Add_4_output_0, %/layers.2/vertex_op.3/maxpool/MaxPool_output_0) %/layers.2/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_5_output_0) %/layers.2/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_6_output_0 = Add(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_4_output_0) %/layers.2/Add_7_output_0 = Add(%/layers.2/Add_6_output_0, %/layers.2/vertex_op.4/maxpool/MaxPool_output_0) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_7_output_0, %onnx::Conv_722, %onnx::Conv_723) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_725, %onnx::Conv_726) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_728, %onnx::Conv_729) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_731, %onnx::Conv_732) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_2_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_3_output_0 = Add(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_3_output_0) %/layers.3/Add_4_output_0 = Add(%/layers.3/Add_3_output_0, %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/Add_5_output_0 = Add(%/layers.3/Add_4_output_0, %/layers.3/vertex_op.3/maxpool/MaxPool_output_0) %/layers.3/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_5_output_0) %/layers.3/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_6_output_0 = Add(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_4_output_0) %/layers.3/Add_7_output_0 = Add(%/layers.3/Add_6_output_0, %/layers.3/vertex_op.4/maxpool/MaxPool_output_0) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_7_output_0, %onnx::Conv_734, %onnx::Conv_735) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_737, %onnx::Conv_738) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_740, %onnx::Conv_741) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_743, %onnx::Conv_744) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_2_output_0) %/layers.5/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_3_output_0 = Add(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_3_output_0) %/layers.5/Add_4_output_0 = Add(%/layers.5/Add_3_output_0, %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/Add_5_output_0 = Add(%/layers.5/Add_4_output_0, %/layers.5/vertex_op.3/maxpool/MaxPool_output_0) %/layers.5/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_5_output_0) %/layers.5/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_6_output_0 = Add(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_4_output_0) %/layers.5/Add_7_output_0 = Add(%/layers.5/Add_6_output_0, %/layers.5/vertex_op.4/maxpool/MaxPool_output_0) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_7_output_0, %onnx::Conv_746, %onnx::Conv_747) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_749, %onnx::Conv_750) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_752, %onnx::Conv_753) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_755, %onnx::Conv_756) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_2_output_0) %/layers.6/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_3_output_0 = Add(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_3_output_0) %/layers.6/Add_4_output_0 = Add(%/layers.6/Add_3_output_0, %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/Add_5_output_0 = Add(%/layers.6/Add_4_output_0, %/layers.6/vertex_op.3/maxpool/MaxPool_output_0) %/layers.6/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_5_output_0) %/layers.6/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_6_output_0 = Add(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_4_output_0) %/layers.6/Add_7_output_0 = Add(%/layers.6/Add_6_output_0, %/layers.6/vertex_op.4/maxpool/MaxPool_output_0) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_7_output_0, %onnx::Conv_758, %onnx::Conv_759) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_761, %onnx::Conv_762) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_764, %onnx::Conv_765) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_767, %onnx::Conv_768) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_2_output_0) %/layers.7/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_3_output_0 = Add(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_3_output_0) %/layers.7/Add_4_output_0 = Add(%/layers.7/Add_3_output_0, %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/Add_5_output_0 = Add(%/layers.7/Add_4_output_0, %/layers.7/vertex_op.3/maxpool/MaxPool_output_0) %/layers.7/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_5_output_0) %/layers.7/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_6_output_0 = Add(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_4_output_0) %/layers.7/Add_7_output_0 = Add(%/layers.7/Add_6_output_0, %/layers.7/vertex_op.4/maxpool/MaxPool_output_0) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_7_output_0, %onnx::Conv_770, %onnx::Conv_771) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_773, %onnx::Conv_774) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_776, %onnx::Conv_777) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_779, %onnx::Conv_780) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_2_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_3_output_0 = Add(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_3_output_0) %/layers.9/Add_4_output_0 = Add(%/layers.9/Add_3_output_0, %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/Add_5_output_0 = Add(%/layers.9/Add_4_output_0, %/layers.9/vertex_op.3/maxpool/MaxPool_output_0) %/layers.9/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_5_output_0) %/layers.9/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_6_output_0 = Add(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_4_output_0) %/layers.9/Add_7_output_0 = Add(%/layers.9/Add_6_output_0, %/layers.9/vertex_op.4/maxpool/MaxPool_output_0) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_7_output_0, %onnx::Conv_782, %onnx::Conv_783) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_785, %onnx::Conv_786) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_788, %onnx::Conv_789) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_791, %onnx::Conv_792) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_2_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_3_output_0 = Add(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_3_output_0) %/layers.10/Add_4_output_0 = Add(%/layers.10/Add_3_output_0, %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/Add_5_output_0 = Add(%/layers.10/Add_4_output_0, %/layers.10/vertex_op.3/maxpool/MaxPool_output_0) %/layers.10/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_5_output_0) %/layers.10/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_6_output_0 = Add(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_4_output_0) %/layers.10/Add_7_output_0 = Add(%/layers.10/Add_6_output_0, %/layers.10/vertex_op.4/maxpool/MaxPool_output_0) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_7_output_0, %onnx::Conv_794, %onnx::Conv_795) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_797, %onnx::Conv_798) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_800, %onnx::Conv_801) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_803, %onnx::Conv_804) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_2_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_3_output_0 = Add(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_3_output_0) %/layers.11/Add_4_output_0 = Add(%/layers.11/Add_3_output_0, %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/Add_5_output_0 = Add(%/layers.11/Add_4_output_0, %/layers.11/vertex_op.3/maxpool/MaxPool_output_0) %/layers.11/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_5_output_0) %/layers.11/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_6_output_0 = Add(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_4_output_0) %/layers.11/Add_7_output_0 = Add(%/layers.11/Add_6_output_0, %/layers.11/vertex_op.4/maxpool/MaxPool_output_0) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_7_output_0, %onnx::Conv_806, %onnx::Conv_807) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %696 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %696 }
val_accuracy
89.813703
6,036,400,128
20,510,346
{'zcp_epe_nas': 88.73122784703388, 'zcp_fisher': 179.71389770507812, 'zcp_flops': 96582402048.0, 'zcp_grad_norm': 170.5731964111328, 'zcp_grasp': 13.39404296875, 'zcp_jacov': -16.059862843473276, 'zcp_l2_norm': 834.8515014648438, 'zcp_nwot': 228.45908483615585, 'zcp_params': 20510346.0, 'zcp_plain': -0.038947749882936006, 'zcp_snip': 1500.00244140625, 'zcp_synflow': 139.40765903041276, 'zcp_zen': 89.27717590332031, 'zcp_val_accuracy': 0.8440504670143121}
NASBench101_90
NASBench101
90
000e8fd298548d5f1281ee0543413335
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_653[FLOAT, 128x3x3x3] %onnx::Conv_654[FLOAT, 128] %onnx::Conv_656[FLOAT, 64x128x1x1] %onnx::Conv_657[FLOAT, 64] %onnx::Conv_659[FLOAT, 64x64x1x1] %onnx::Conv_662[FLOAT, 64x128x1x1] %onnx::Conv_665[FLOAT, 64x64x3x3] %onnx::Conv_668[FLOAT, 64x128x1x1] %onnx::Conv_671[FLOAT, 64x64x1x1] %onnx::Conv_674[FLOAT, 64x128x1x1] %onnx::Conv_677[FLOAT, 64x64x3x3] %onnx::Conv_680[FLOAT, 64x128x1x1] %onnx::Conv_683[FLOAT, 64x64x1x1] %onnx::Conv_686[FLOAT, 64x128x1x1] %onnx::Conv_689[FLOAT, 64x64x3x3] %onnx::Conv_692[FLOAT, 128x128x1x1] %onnx::Conv_695[FLOAT, 128x128x1x1] %onnx::Conv_698[FLOAT, 128x128x1x1] %onnx::Conv_701[FLOAT, 128x128x3x3] %onnx::Conv_704[FLOAT, 128x256x1x1] %onnx::Conv_707[FLOAT, 128x128x1x1] %onnx::Conv_710[FLOAT, 128x256x1x1] %onnx::Conv_713[FLOAT, 128x128x3x3] %onnx::Conv_716[FLOAT, 128x256x1x1] %onnx::Conv_719[FLOAT, 128x128x1x1] %onnx::Conv_722[FLOAT, 128x256x1x1] %onnx::Conv_725[FLOAT, 128x128x3x3] %onnx::Conv_728[FLOAT, 256x256x1x1] %onnx::Conv_729[FLOAT, 256] %onnx::Conv_731[FLOAT, 256x256x1x1] %onnx::Conv_734[FLOAT, 256x256x1x1] %onnx::Conv_737[FLOAT, 256x256x3x3] %onnx::Conv_740[FLOAT, 256x512x1x1] %onnx::Conv_743[FLOAT, 256x256x1x1] %onnx::Conv_746[FLOAT, 256x512x1x1] %onnx::Conv_749[FLOAT, 256x256x3x3] %onnx::Conv_752[FLOAT, 256x512x1x1] %onnx::Conv_755[FLOAT, 256x256x1x1] %onnx::Conv_758[FLOAT, 256x512x1x1] %onnx::Conv_761[FLOAT, 256x256x3x3] ) { %onnx::Conv_762 = Identity(%onnx::Conv_729) %onnx::Conv_759 = Identity(%onnx::Conv_729) %onnx::Conv_756 = Identity(%onnx::Conv_729) %onnx::Conv_753 = Identity(%onnx::Conv_729) %onnx::Conv_750 = Identity(%onnx::Conv_729) %onnx::Conv_747 = Identity(%onnx::Conv_729) %onnx::Conv_744 = Identity(%onnx::Conv_729) %onnx::Conv_741 = Identity(%onnx::Conv_729) %onnx::Conv_738 = Identity(%onnx::Conv_729) %onnx::Conv_735 = Identity(%onnx::Conv_729) %onnx::Conv_732 = Identity(%onnx::Conv_729) %onnx::Conv_726 = Identity(%onnx::Conv_654) %onnx::Conv_723 = Identity(%onnx::Conv_654) %onnx::Conv_720 = Identity(%onnx::Conv_654) %onnx::Conv_717 = Identity(%onnx::Conv_654) %onnx::Conv_714 = Identity(%onnx::Conv_654) %onnx::Conv_711 = Identity(%onnx::Conv_654) %onnx::Conv_708 = Identity(%onnx::Conv_654) %onnx::Conv_705 = Identity(%onnx::Conv_654) %onnx::Conv_702 = Identity(%onnx::Conv_654) %onnx::Conv_699 = Identity(%onnx::Conv_654) %onnx::Conv_696 = Identity(%onnx::Conv_654) %onnx::Conv_693 = Identity(%onnx::Conv_654) %onnx::Conv_690 = Identity(%onnx::Conv_657) %onnx::Conv_687 = Identity(%onnx::Conv_657) %onnx::Conv_684 = Identity(%onnx::Conv_657) %onnx::Conv_681 = Identity(%onnx::Conv_657) %onnx::Conv_678 = Identity(%onnx::Conv_657) %onnx::Conv_675 = Identity(%onnx::Conv_657) %onnx::Conv_672 = Identity(%onnx::Conv_657) %onnx::Conv_669 = Identity(%onnx::Conv_657) %onnx::Conv_666 = Identity(%onnx::Conv_657) %onnx::Conv_663 = Identity(%onnx::Conv_657) %onnx::Conv_660 = Identity(%onnx::Conv_657) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_653, %onnx::Conv_654) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_656, %onnx::Conv_657) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0) %/layers.1/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/vertex_op.1/maxpool/MaxPool_output_0) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_659, %onnx::Conv_660) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_662, %onnx::Conv_663) %/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/Add_2_output_0 = Add(%/layers.1/Add_1_output_0, %/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_2_output_0, %onnx::Conv_665, %onnx::Conv_666) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Add_3_output_0 = Add(%/layers.1/vertex_op.1/maxpool/MaxPool_output_0, %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_3_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.1/maxpool/MaxPool_output_0, %/layers.1/vertex_op.5/maxpool/MaxPool_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_668, %onnx::Conv_669) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0) %/layers.2/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/vertex_op.1/maxpool/MaxPool_output_0) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_671, %onnx::Conv_672) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_674, %onnx::Conv_675) %/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/Add_2_output_0 = Add(%/layers.2/Add_1_output_0, %/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_2_output_0, %onnx::Conv_677, %onnx::Conv_678) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Add_3_output_0 = Add(%/layers.2/vertex_op.1/maxpool/MaxPool_output_0, %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_3_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.1/maxpool/MaxPool_output_0, %/layers.2/vertex_op.5/maxpool/MaxPool_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_680, %onnx::Conv_681) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0) %/layers.3/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/vertex_op.1/maxpool/MaxPool_output_0) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_683, %onnx::Conv_684) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_686, %onnx::Conv_687) %/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/Add_2_output_0 = Add(%/layers.3/Add_1_output_0, %/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_2_output_0, %onnx::Conv_689, %onnx::Conv_690) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Add_3_output_0 = Add(%/layers.3/vertex_op.1/maxpool/MaxPool_output_0, %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_3_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.1/maxpool/MaxPool_output_0, %/layers.3/vertex_op.5/maxpool/MaxPool_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Concat_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_692, %onnx::Conv_693) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0) %/layers.5/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/vertex_op.1/maxpool/MaxPool_output_0) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_695, %onnx::Conv_696) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_698, %onnx::Conv_699) %/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/Add_2_output_0 = Add(%/layers.5/Add_1_output_0, %/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_2_output_0, %onnx::Conv_701, %onnx::Conv_702) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Add_3_output_0 = Add(%/layers.5/vertex_op.1/maxpool/MaxPool_output_0, %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_3_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.1/maxpool/MaxPool_output_0, %/layers.5/vertex_op.5/maxpool/MaxPool_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_704, %onnx::Conv_705) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0) %/layers.6/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/vertex_op.1/maxpool/MaxPool_output_0) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_707, %onnx::Conv_708) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_710, %onnx::Conv_711) %/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/Add_2_output_0 = Add(%/layers.6/Add_1_output_0, %/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_2_output_0, %onnx::Conv_713, %onnx::Conv_714) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Add_3_output_0 = Add(%/layers.6/vertex_op.1/maxpool/MaxPool_output_0, %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_3_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.1/maxpool/MaxPool_output_0, %/layers.6/vertex_op.5/maxpool/MaxPool_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_716, %onnx::Conv_717) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0) %/layers.7/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/vertex_op.1/maxpool/MaxPool_output_0) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_719, %onnx::Conv_720) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_722, %onnx::Conv_723) %/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/Add_2_output_0 = Add(%/layers.7/Add_1_output_0, %/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_2_output_0, %onnx::Conv_725, %onnx::Conv_726) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Add_3_output_0 = Add(%/layers.7/vertex_op.1/maxpool/MaxPool_output_0, %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_3_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.1/maxpool/MaxPool_output_0, %/layers.7/vertex_op.5/maxpool/MaxPool_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Concat_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_728, %onnx::Conv_729) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0) %/layers.9/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/vertex_op.1/maxpool/MaxPool_output_0) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_731, %onnx::Conv_732) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_734, %onnx::Conv_735) %/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/Add_2_output_0 = Add(%/layers.9/Add_1_output_0, %/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_2_output_0, %onnx::Conv_737, %onnx::Conv_738) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Add_3_output_0 = Add(%/layers.9/vertex_op.1/maxpool/MaxPool_output_0, %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_3_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.1/maxpool/MaxPool_output_0, %/layers.9/vertex_op.5/maxpool/MaxPool_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_740, %onnx::Conv_741) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0) %/layers.10/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/vertex_op.1/maxpool/MaxPool_output_0) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_743, %onnx::Conv_744) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_746, %onnx::Conv_747) %/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/Add_2_output_0 = Add(%/layers.10/Add_1_output_0, %/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_2_output_0, %onnx::Conv_749, %onnx::Conv_750) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Add_3_output_0 = Add(%/layers.10/vertex_op.1/maxpool/MaxPool_output_0, %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_3_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.1/maxpool/MaxPool_output_0, %/layers.10/vertex_op.5/maxpool/MaxPool_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_752, %onnx::Conv_753) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0) %/layers.11/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/vertex_op.1/maxpool/MaxPool_output_0) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_755, %onnx::Conv_756) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_758, %onnx::Conv_759) %/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/Add_2_output_0 = Add(%/layers.11/Add_1_output_0, %/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_2_output_0, %onnx::Conv_761, %onnx::Conv_762) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Add_3_output_0 = Add(%/layers.11/vertex_op.1/maxpool/MaxPool_output_0, %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_3_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.1/maxpool/MaxPool_output_0, %/layers.11/vertex_op.5/maxpool/MaxPool_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Concat_output_0) %651 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %651 }
val_accuracy
90.945512
1,042,556,928
3,468,426
{'zcp_epe_nas': 114.41032346834875, 'zcp_fisher': 9.83593463897705, 'zcp_flops': 16680910848.0, 'zcp_grad_norm': 58.28530502319336, 'zcp_grasp': -1.268707275390625, 'zcp_jacov': -16.0454284890831, 'zcp_l2_norm': 694.1682739257812, 'zcp_nwot': 218.13866383570988, 'zcp_params': 3468426.0, 'zcp_plain': 0.008286044932901, 'zcp_snip': 355.1019592285156, 'zcp_synflow': 84.95926809212163, 'zcp_zen': 71.96656036376953, 'zcp_val_accuracy': 0.9251803159713741}
NASBench101_142478
NASBench101
142478
562edc6ae22fba196f4b42c5247d2b0a
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_860[FLOAT, 128x3x3x3] %onnx::Conv_861[FLOAT, 128] %onnx::Conv_863[FLOAT, 64x128x1x1] %onnx::Conv_864[FLOAT, 64] %onnx::Conv_866[FLOAT, 64x64x1x1] %onnx::Conv_869[FLOAT, 64x128x1x1] %onnx::Conv_872[FLOAT, 64x64x3x3] %onnx::Conv_875[FLOAT, 64x64x3x3] %onnx::Conv_878[FLOAT, 64x64x1x1] %onnx::Conv_881[FLOAT, 64x128x1x1] %onnx::Conv_884[FLOAT, 64x64x1x1] %onnx::Conv_887[FLOAT, 64x128x1x1] %onnx::Conv_890[FLOAT, 64x64x3x3] %onnx::Conv_893[FLOAT, 64x64x3x3] %onnx::Conv_896[FLOAT, 64x64x1x1] %onnx::Conv_899[FLOAT, 64x128x1x1] %onnx::Conv_902[FLOAT, 64x64x1x1] %onnx::Conv_905[FLOAT, 64x128x1x1] %onnx::Conv_908[FLOAT, 64x64x3x3] %onnx::Conv_911[FLOAT, 64x64x3x3] %onnx::Conv_914[FLOAT, 64x64x1x1] %onnx::Conv_917[FLOAT, 128x128x1x1] %onnx::Conv_920[FLOAT, 128x128x1x1] %onnx::Conv_923[FLOAT, 128x128x1x1] %onnx::Conv_926[FLOAT, 128x128x3x3] %onnx::Conv_929[FLOAT, 128x128x3x3] %onnx::Conv_932[FLOAT, 128x128x1x1] %onnx::Conv_935[FLOAT, 128x256x1x1] %onnx::Conv_938[FLOAT, 128x128x1x1] %onnx::Conv_941[FLOAT, 128x256x1x1] %onnx::Conv_944[FLOAT, 128x128x3x3] %onnx::Conv_947[FLOAT, 128x128x3x3] %onnx::Conv_950[FLOAT, 128x128x1x1] %onnx::Conv_953[FLOAT, 128x256x1x1] %onnx::Conv_956[FLOAT, 128x128x1x1] %onnx::Conv_959[FLOAT, 128x256x1x1] %onnx::Conv_962[FLOAT, 128x128x3x3] %onnx::Conv_965[FLOAT, 128x128x3x3] %onnx::Conv_968[FLOAT, 128x128x1x1] %onnx::Conv_971[FLOAT, 256x256x1x1] %onnx::Conv_972[FLOAT, 256] %onnx::Conv_974[FLOAT, 256x256x1x1] %onnx::Conv_977[FLOAT, 256x256x1x1] %onnx::Conv_980[FLOAT, 256x256x3x3] %onnx::Conv_983[FLOAT, 256x256x3x3] %onnx::Conv_986[FLOAT, 256x256x1x1] %onnx::Conv_989[FLOAT, 256x512x1x1] %onnx::Conv_992[FLOAT, 256x256x1x1] %onnx::Conv_995[FLOAT, 256x512x1x1] %onnx::Conv_998[FLOAT, 256x256x3x3] %onnx::Conv_1001[FLOAT, 256x256x3x3] %onnx::Conv_1004[FLOAT, 256x256x1x1] %onnx::Conv_1007[FLOAT, 256x512x1x1] %onnx::Conv_1010[FLOAT, 256x256x1x1] %onnx::Conv_1013[FLOAT, 256x512x1x1] %onnx::Conv_1016[FLOAT, 256x256x3x3] %onnx::Conv_1019[FLOAT, 256x256x3x3] %onnx::Conv_1022[FLOAT, 256x256x1x1] ) { %onnx::Conv_1023 = Identity(%onnx::Conv_972) %onnx::Conv_1020 = Identity(%onnx::Conv_972) %onnx::Conv_1017 = Identity(%onnx::Conv_972) %onnx::Conv_1014 = Identity(%onnx::Conv_972) %onnx::Conv_1011 = Identity(%onnx::Conv_972) %onnx::Conv_1008 = Identity(%onnx::Conv_972) %onnx::Conv_1005 = Identity(%onnx::Conv_972) %onnx::Conv_1002 = Identity(%onnx::Conv_972) %onnx::Conv_999 = Identity(%onnx::Conv_972) %onnx::Conv_996 = Identity(%onnx::Conv_972) %onnx::Conv_993 = Identity(%onnx::Conv_972) %onnx::Conv_990 = Identity(%onnx::Conv_972) %onnx::Conv_987 = Identity(%onnx::Conv_972) %onnx::Conv_984 = Identity(%onnx::Conv_972) %onnx::Conv_981 = Identity(%onnx::Conv_972) %onnx::Conv_978 = Identity(%onnx::Conv_972) %onnx::Conv_975 = Identity(%onnx::Conv_972) %onnx::Conv_969 = Identity(%onnx::Conv_861) %onnx::Conv_966 = Identity(%onnx::Conv_861) %onnx::Conv_963 = Identity(%onnx::Conv_861) %onnx::Conv_960 = Identity(%onnx::Conv_861) %onnx::Conv_957 = Identity(%onnx::Conv_861) %onnx::Conv_954 = Identity(%onnx::Conv_861) %onnx::Conv_951 = Identity(%onnx::Conv_861) %onnx::Conv_948 = Identity(%onnx::Conv_861) %onnx::Conv_945 = Identity(%onnx::Conv_861) %onnx::Conv_942 = Identity(%onnx::Conv_861) %onnx::Conv_939 = Identity(%onnx::Conv_861) %onnx::Conv_936 = Identity(%onnx::Conv_861) %onnx::Conv_933 = Identity(%onnx::Conv_861) %onnx::Conv_930 = Identity(%onnx::Conv_861) %onnx::Conv_927 = Identity(%onnx::Conv_861) %onnx::Conv_924 = Identity(%onnx::Conv_861) %onnx::Conv_921 = Identity(%onnx::Conv_861) %onnx::Conv_918 = Identity(%onnx::Conv_861) %onnx::Conv_915 = Identity(%onnx::Conv_864) %onnx::Conv_912 = Identity(%onnx::Conv_864) %onnx::Conv_909 = Identity(%onnx::Conv_864) %onnx::Conv_906 = Identity(%onnx::Conv_864) %onnx::Conv_903 = Identity(%onnx::Conv_864) %onnx::Conv_900 = Identity(%onnx::Conv_864) %onnx::Conv_897 = Identity(%onnx::Conv_864) %onnx::Conv_894 = Identity(%onnx::Conv_864) %onnx::Conv_891 = Identity(%onnx::Conv_864) %onnx::Conv_888 = Identity(%onnx::Conv_864) %onnx::Conv_885 = Identity(%onnx::Conv_864) %onnx::Conv_882 = Identity(%onnx::Conv_864) %onnx::Conv_879 = Identity(%onnx::Conv_864) %onnx::Conv_876 = Identity(%onnx::Conv_864) %onnx::Conv_873 = Identity(%onnx::Conv_864) %onnx::Conv_870 = Identity(%onnx::Conv_864) %onnx::Conv_867 = Identity(%onnx::Conv_864) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_860, %onnx::Conv_861) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_863, %onnx::Conv_864) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_866, %onnx::Conv_867) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_869, %onnx::Conv_870) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/Add_2_output_0 = Add(%/layers.1/Add_1_output_0, %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_2_output_0) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_872, %onnx::Conv_873) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_3_output_0 = Add(%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_3_output_0, %onnx::Conv_875, %onnx::Conv_876) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_4_output_0 = Add(%/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_3_output_0) %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_4_output_0, %onnx::Conv_878, %onnx::Conv_879) %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_881, %onnx::Conv_882) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_884, %onnx::Conv_885) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_887, %onnx::Conv_888) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/Add_2_output_0 = Add(%/layers.2/Add_1_output_0, %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_2_output_0) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_890, %onnx::Conv_891) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_3_output_0 = Add(%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_3_output_0, %onnx::Conv_893, %onnx::Conv_894) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_4_output_0 = Add(%/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_3_output_0) %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_4_output_0, %onnx::Conv_896, %onnx::Conv_897) %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_899, %onnx::Conv_900) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_902, %onnx::Conv_903) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_905, %onnx::Conv_906) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/Add_2_output_0 = Add(%/layers.3/Add_1_output_0, %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_2_output_0) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_908, %onnx::Conv_909) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_3_output_0 = Add(%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_3_output_0, %onnx::Conv_911, %onnx::Conv_912) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_4_output_0 = Add(%/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_3_output_0) %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_4_output_0, %onnx::Conv_914, %onnx::Conv_915) %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Concat_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_917, %onnx::Conv_918) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_920, %onnx::Conv_921) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_923, %onnx::Conv_924) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/Add_2_output_0 = Add(%/layers.5/Add_1_output_0, %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_2_output_0) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_926, %onnx::Conv_927) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_3_output_0 = Add(%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_3_output_0, %onnx::Conv_929, %onnx::Conv_930) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_4_output_0 = Add(%/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_3_output_0) %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_4_output_0, %onnx::Conv_932, %onnx::Conv_933) %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_935, %onnx::Conv_936) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_938, %onnx::Conv_939) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_941, %onnx::Conv_942) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/Add_2_output_0 = Add(%/layers.6/Add_1_output_0, %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_2_output_0) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_944, %onnx::Conv_945) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_3_output_0 = Add(%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_3_output_0, %onnx::Conv_947, %onnx::Conv_948) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_4_output_0 = Add(%/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_3_output_0) %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_4_output_0, %onnx::Conv_950, %onnx::Conv_951) %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_953, %onnx::Conv_954) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_956, %onnx::Conv_957) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_959, %onnx::Conv_960) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/Add_2_output_0 = Add(%/layers.7/Add_1_output_0, %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_2_output_0) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_962, %onnx::Conv_963) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_3_output_0 = Add(%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_3_output_0, %onnx::Conv_965, %onnx::Conv_966) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_4_output_0 = Add(%/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_3_output_0) %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_4_output_0, %onnx::Conv_968, %onnx::Conv_969) %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Concat_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_971, %onnx::Conv_972) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_974, %onnx::Conv_975) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_977, %onnx::Conv_978) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/Add_2_output_0 = Add(%/layers.9/Add_1_output_0, %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_2_output_0) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_980, %onnx::Conv_981) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_3_output_0 = Add(%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_3_output_0, %onnx::Conv_983, %onnx::Conv_984) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_4_output_0 = Add(%/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_3_output_0) %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_4_output_0, %onnx::Conv_986, %onnx::Conv_987) %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_989, %onnx::Conv_990) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_992, %onnx::Conv_993) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_995, %onnx::Conv_996) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/Add_2_output_0 = Add(%/layers.10/Add_1_output_0, %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_2_output_0) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_998, %onnx::Conv_999) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_3_output_0 = Add(%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_3_output_0, %onnx::Conv_1001, %onnx::Conv_1002) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_4_output_0 = Add(%/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_3_output_0) %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_4_output_0, %onnx::Conv_1004, %onnx::Conv_1005) %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_1007, %onnx::Conv_1008) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_1010, %onnx::Conv_1011) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_1013, %onnx::Conv_1014) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/Add_2_output_0 = Add(%/layers.11/Add_1_output_0, %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_2_output_0) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_1016, %onnx::Conv_1017) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_3_output_0 = Add(%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_3_output_0, %onnx::Conv_1019, %onnx::Conv_1020) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_4_output_0 = Add(%/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_3_output_0) %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_4_output_0, %onnx::Conv_1022, %onnx::Conv_1023) %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Concat_output_0) %858 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %858 }
val_accuracy
90.174282
1,803,036,672
6,054,282
{'zcp_epe_nas': 91.69720960220187, 'zcp_fisher': 344.0552673339844, 'zcp_flops': 28848586752.0, 'zcp_grad_norm': 285.63311767578125, 'zcp_grasp': -344.0478515625, 'zcp_jacov': -16.055244640096504, 'zcp_l2_norm': 994.4368286132812, 'zcp_nwot': 223.58842356446394, 'zcp_params': 6054282.0, 'zcp_plain': 0.021340005099773, 'zcp_snip': 1627.158447265625, 'zcp_synflow': 140.80046434684053, 'zcp_zen': 95.89414978027344, 'zcp_val_accuracy': 0.912660241127014}
NASBench101_119504
NASBench101
119504
482d9427c4fabe3bb6908f1bd45e47d7
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_986[FLOAT, 128x3x3x3] %onnx::Conv_987[FLOAT, 128] %onnx::Conv_989[FLOAT, 64x128x1x1] %onnx::Conv_990[FLOAT, 64] %onnx::Conv_992[FLOAT, 64x64x1x1] %onnx::Conv_995[FLOAT, 64x128x1x1] %onnx::Conv_998[FLOAT, 64x64x1x1] %onnx::Conv_1001[FLOAT, 64x64x1x1] %onnx::Conv_1004[FLOAT, 64x128x1x1] %onnx::Conv_1007[FLOAT, 64x64x3x3] %onnx::Conv_1010[FLOAT, 64x128x1x1] %onnx::Conv_1013[FLOAT, 64x64x1x1] %onnx::Conv_1016[FLOAT, 64x128x1x1] %onnx::Conv_1019[FLOAT, 64x64x1x1] %onnx::Conv_1022[FLOAT, 64x64x1x1] %onnx::Conv_1025[FLOAT, 64x128x1x1] %onnx::Conv_1028[FLOAT, 64x64x3x3] %onnx::Conv_1031[FLOAT, 64x128x1x1] %onnx::Conv_1034[FLOAT, 64x64x1x1] %onnx::Conv_1037[FLOAT, 64x128x1x1] %onnx::Conv_1040[FLOAT, 64x64x1x1] %onnx::Conv_1043[FLOAT, 64x64x1x1] %onnx::Conv_1046[FLOAT, 64x128x1x1] %onnx::Conv_1049[FLOAT, 64x64x3x3] %onnx::Conv_1052[FLOAT, 128x128x1x1] %onnx::Conv_1055[FLOAT, 128x128x1x1] %onnx::Conv_1058[FLOAT, 128x128x1x1] %onnx::Conv_1061[FLOAT, 128x128x1x1] %onnx::Conv_1064[FLOAT, 128x128x1x1] %onnx::Conv_1067[FLOAT, 128x128x1x1] %onnx::Conv_1070[FLOAT, 128x128x3x3] %onnx::Conv_1073[FLOAT, 128x256x1x1] %onnx::Conv_1076[FLOAT, 128x128x1x1] %onnx::Conv_1079[FLOAT, 128x256x1x1] %onnx::Conv_1082[FLOAT, 128x128x1x1] %onnx::Conv_1085[FLOAT, 128x128x1x1] %onnx::Conv_1088[FLOAT, 128x256x1x1] %onnx::Conv_1091[FLOAT, 128x128x3x3] %onnx::Conv_1094[FLOAT, 128x256x1x1] %onnx::Conv_1097[FLOAT, 128x128x1x1] %onnx::Conv_1100[FLOAT, 128x256x1x1] %onnx::Conv_1103[FLOAT, 128x128x1x1] %onnx::Conv_1106[FLOAT, 128x128x1x1] %onnx::Conv_1109[FLOAT, 128x256x1x1] %onnx::Conv_1112[FLOAT, 128x128x3x3] %onnx::Conv_1115[FLOAT, 256x256x1x1] %onnx::Conv_1116[FLOAT, 256] %onnx::Conv_1118[FLOAT, 256x256x1x1] %onnx::Conv_1121[FLOAT, 256x256x1x1] %onnx::Conv_1124[FLOAT, 256x256x1x1] %onnx::Conv_1127[FLOAT, 256x256x1x1] %onnx::Conv_1130[FLOAT, 256x256x1x1] %onnx::Conv_1133[FLOAT, 256x256x3x3] %onnx::Conv_1136[FLOAT, 256x512x1x1] %onnx::Conv_1139[FLOAT, 256x256x1x1] %onnx::Conv_1142[FLOAT, 256x512x1x1] %onnx::Conv_1145[FLOAT, 256x256x1x1] %onnx::Conv_1148[FLOAT, 256x256x1x1] %onnx::Conv_1151[FLOAT, 256x512x1x1] %onnx::Conv_1154[FLOAT, 256x256x3x3] %onnx::Conv_1157[FLOAT, 256x512x1x1] %onnx::Conv_1160[FLOAT, 256x256x1x1] %onnx::Conv_1163[FLOAT, 256x512x1x1] %onnx::Conv_1166[FLOAT, 256x256x1x1] %onnx::Conv_1169[FLOAT, 256x256x1x1] %onnx::Conv_1172[FLOAT, 256x512x1x1] %onnx::Conv_1175[FLOAT, 256x256x3x3] ) { %onnx::Conv_1176 = Identity(%onnx::Conv_1116) %onnx::Conv_1173 = Identity(%onnx::Conv_1116) %onnx::Conv_1170 = Identity(%onnx::Conv_1116) %onnx::Conv_1167 = Identity(%onnx::Conv_1116) %onnx::Conv_1164 = Identity(%onnx::Conv_1116) %onnx::Conv_1161 = Identity(%onnx::Conv_1116) %onnx::Conv_1158 = Identity(%onnx::Conv_1116) %onnx::Conv_1155 = Identity(%onnx::Conv_1116) %onnx::Conv_1152 = Identity(%onnx::Conv_1116) %onnx::Conv_1149 = Identity(%onnx::Conv_1116) %onnx::Conv_1146 = Identity(%onnx::Conv_1116) %onnx::Conv_1143 = Identity(%onnx::Conv_1116) %onnx::Conv_1140 = Identity(%onnx::Conv_1116) %onnx::Conv_1137 = Identity(%onnx::Conv_1116) %onnx::Conv_1134 = Identity(%onnx::Conv_1116) %onnx::Conv_1131 = Identity(%onnx::Conv_1116) %onnx::Conv_1128 = Identity(%onnx::Conv_1116) %onnx::Conv_1125 = Identity(%onnx::Conv_1116) %onnx::Conv_1122 = Identity(%onnx::Conv_1116) %onnx::Conv_1119 = Identity(%onnx::Conv_1116) %onnx::Conv_1113 = Identity(%onnx::Conv_987) %onnx::Conv_1110 = Identity(%onnx::Conv_987) %onnx::Conv_1107 = Identity(%onnx::Conv_987) %onnx::Conv_1104 = Identity(%onnx::Conv_987) %onnx::Conv_1101 = Identity(%onnx::Conv_987) %onnx::Conv_1098 = Identity(%onnx::Conv_987) %onnx::Conv_1095 = Identity(%onnx::Conv_987) %onnx::Conv_1092 = Identity(%onnx::Conv_987) %onnx::Conv_1089 = Identity(%onnx::Conv_987) %onnx::Conv_1086 = Identity(%onnx::Conv_987) %onnx::Conv_1083 = Identity(%onnx::Conv_987) %onnx::Conv_1080 = Identity(%onnx::Conv_987) %onnx::Conv_1077 = Identity(%onnx::Conv_987) %onnx::Conv_1074 = Identity(%onnx::Conv_987) %onnx::Conv_1071 = Identity(%onnx::Conv_987) %onnx::Conv_1068 = Identity(%onnx::Conv_987) %onnx::Conv_1065 = Identity(%onnx::Conv_987) %onnx::Conv_1062 = Identity(%onnx::Conv_987) %onnx::Conv_1059 = Identity(%onnx::Conv_987) %onnx::Conv_1056 = Identity(%onnx::Conv_987) %onnx::Conv_1053 = Identity(%onnx::Conv_987) %onnx::Conv_1050 = Identity(%onnx::Conv_990) %onnx::Conv_1047 = Identity(%onnx::Conv_990) %onnx::Conv_1044 = Identity(%onnx::Conv_990) %onnx::Conv_1041 = Identity(%onnx::Conv_990) %onnx::Conv_1038 = Identity(%onnx::Conv_990) %onnx::Conv_1035 = Identity(%onnx::Conv_990) %onnx::Conv_1032 = Identity(%onnx::Conv_990) %onnx::Conv_1029 = Identity(%onnx::Conv_990) %onnx::Conv_1026 = Identity(%onnx::Conv_990) %onnx::Conv_1023 = Identity(%onnx::Conv_990) %onnx::Conv_1020 = Identity(%onnx::Conv_990) %onnx::Conv_1017 = Identity(%onnx::Conv_990) %onnx::Conv_1014 = Identity(%onnx::Conv_990) %onnx::Conv_1011 = Identity(%onnx::Conv_990) %onnx::Conv_1008 = Identity(%onnx::Conv_990) %onnx::Conv_1005 = Identity(%onnx::Conv_990) %onnx::Conv_1002 = Identity(%onnx::Conv_990) %onnx::Conv_999 = Identity(%onnx::Conv_990) %onnx::Conv_996 = Identity(%onnx::Conv_990) %onnx::Conv_993 = Identity(%onnx::Conv_990) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_986, %onnx::Conv_987) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_989, %onnx::Conv_990) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_992, %onnx::Conv_993) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_1_output_0) %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_995, %onnx::Conv_996) %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/Add_3_output_0 = Add(%/layers.1/Add_2_output_0, %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_3_output_0, %onnx::Conv_998, %onnx::Conv_999) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_4_output_0 = Add(%/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_3_output_0) %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_4_output_0, %onnx::Conv_1001, %onnx::Conv_1002) %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1004, %onnx::Conv_1005) %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_5_output_0 = Add(%/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_4_output_0) %/layers.1/Add_6_output_0 = Add(%/layers.1/Add_5_output_0, %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_6_output_0, %onnx::Conv_1007, %onnx::Conv_1008) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.2/maxpool/MaxPool_output_0, %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_1010, %onnx::Conv_1011) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_1013, %onnx::Conv_1014) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_1_output_0) %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_1016, %onnx::Conv_1017) %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/Add_3_output_0 = Add(%/layers.2/Add_2_output_0, %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_3_output_0, %onnx::Conv_1019, %onnx::Conv_1020) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_4_output_0 = Add(%/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_3_output_0) %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_4_output_0, %onnx::Conv_1022, %onnx::Conv_1023) %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_1025, %onnx::Conv_1026) %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_5_output_0 = Add(%/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_4_output_0) %/layers.2/Add_6_output_0 = Add(%/layers.2/Add_5_output_0, %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_6_output_0, %onnx::Conv_1028, %onnx::Conv_1029) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.2/maxpool/MaxPool_output_0, %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_1031, %onnx::Conv_1032) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_1034, %onnx::Conv_1035) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_1_output_0) %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_1037, %onnx::Conv_1038) %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/Add_3_output_0 = Add(%/layers.3/Add_2_output_0, %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_3_output_0, %onnx::Conv_1040, %onnx::Conv_1041) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_4_output_0 = Add(%/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_3_output_0) %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_4_output_0, %onnx::Conv_1043, %onnx::Conv_1044) %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_1046, %onnx::Conv_1047) %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_5_output_0 = Add(%/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_4_output_0) %/layers.3/Add_6_output_0 = Add(%/layers.3/Add_5_output_0, %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_6_output_0, %onnx::Conv_1049, %onnx::Conv_1050) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.2/maxpool/MaxPool_output_0, %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Concat_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_1052, %onnx::Conv_1053) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_1055, %onnx::Conv_1056) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_1_output_0) %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_1058, %onnx::Conv_1059) %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/Add_3_output_0 = Add(%/layers.5/Add_2_output_0, %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_3_output_0, %onnx::Conv_1061, %onnx::Conv_1062) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_4_output_0 = Add(%/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_3_output_0) %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_4_output_0, %onnx::Conv_1064, %onnx::Conv_1065) %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_1067, %onnx::Conv_1068) %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_5_output_0 = Add(%/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_4_output_0) %/layers.5/Add_6_output_0 = Add(%/layers.5/Add_5_output_0, %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_6_output_0, %onnx::Conv_1070, %onnx::Conv_1071) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.2/maxpool/MaxPool_output_0, %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_1073, %onnx::Conv_1074) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_1076, %onnx::Conv_1077) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_1_output_0) %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_1079, %onnx::Conv_1080) %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/Add_3_output_0 = Add(%/layers.6/Add_2_output_0, %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_3_output_0, %onnx::Conv_1082, %onnx::Conv_1083) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_4_output_0 = Add(%/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_3_output_0) %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_4_output_0, %onnx::Conv_1085, %onnx::Conv_1086) %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_1088, %onnx::Conv_1089) %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_5_output_0 = Add(%/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_4_output_0) %/layers.6/Add_6_output_0 = Add(%/layers.6/Add_5_output_0, %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_6_output_0, %onnx::Conv_1091, %onnx::Conv_1092) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.2/maxpool/MaxPool_output_0, %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_1094, %onnx::Conv_1095) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_1097, %onnx::Conv_1098) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_1_output_0) %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_1100, %onnx::Conv_1101) %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/Add_3_output_0 = Add(%/layers.7/Add_2_output_0, %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_3_output_0, %onnx::Conv_1103, %onnx::Conv_1104) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_4_output_0 = Add(%/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_3_output_0) %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_4_output_0, %onnx::Conv_1106, %onnx::Conv_1107) %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_1109, %onnx::Conv_1110) %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_5_output_0 = Add(%/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_4_output_0) %/layers.7/Add_6_output_0 = Add(%/layers.7/Add_5_output_0, %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_6_output_0, %onnx::Conv_1112, %onnx::Conv_1113) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.2/maxpool/MaxPool_output_0, %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Concat_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1115, %onnx::Conv_1116) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_1118, %onnx::Conv_1119) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_1_output_0) %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1121, %onnx::Conv_1122) %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/Add_3_output_0 = Add(%/layers.9/Add_2_output_0, %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_3_output_0, %onnx::Conv_1124, %onnx::Conv_1125) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_4_output_0 = Add(%/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_3_output_0) %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_4_output_0, %onnx::Conv_1127, %onnx::Conv_1128) %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1130, %onnx::Conv_1131) %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_5_output_0 = Add(%/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_4_output_0) %/layers.9/Add_6_output_0 = Add(%/layers.9/Add_5_output_0, %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_6_output_0, %onnx::Conv_1133, %onnx::Conv_1134) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.2/maxpool/MaxPool_output_0, %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_1136, %onnx::Conv_1137) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_1139, %onnx::Conv_1140) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_1_output_0) %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_1142, %onnx::Conv_1143) %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/Add_3_output_0 = Add(%/layers.10/Add_2_output_0, %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_3_output_0, %onnx::Conv_1145, %onnx::Conv_1146) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_4_output_0 = Add(%/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_3_output_0) %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_4_output_0, %onnx::Conv_1148, %onnx::Conv_1149) %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_1151, %onnx::Conv_1152) %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_5_output_0 = Add(%/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_4_output_0) %/layers.10/Add_6_output_0 = Add(%/layers.10/Add_5_output_0, %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_6_output_0, %onnx::Conv_1154, %onnx::Conv_1155) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.2/maxpool/MaxPool_output_0, %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_1157, %onnx::Conv_1158) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_1160, %onnx::Conv_1161) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_1_output_0) %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_1163, %onnx::Conv_1164) %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/Add_3_output_0 = Add(%/layers.11/Add_2_output_0, %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_3_output_0, %onnx::Conv_1166, %onnx::Conv_1167) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_4_output_0 = Add(%/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_3_output_0) %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_4_output_0, %onnx::Conv_1169, %onnx::Conv_1170) %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_1172, %onnx::Conv_1173) %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_5_output_0 = Add(%/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_4_output_0) %/layers.11/Add_6_output_0 = Add(%/layers.11/Add_5_output_0, %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_6_output_0, %onnx::Conv_1175, %onnx::Conv_1176) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.2/maxpool/MaxPool_output_0, %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Concat_output_0) %984 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %984 }
val_accuracy
92.558092
1,336,027,136
4,426,762
{'zcp_epe_nas': 125.47623921071315, 'zcp_fisher': 18.31600570678711, 'zcp_flops': 21376434176.0, 'zcp_grad_norm': 95.1053695678711, 'zcp_grasp': 10.9361572265625, 'zcp_jacov': -16.055266341728718, 'zcp_l2_norm': 1190.3131103515625, 'zcp_nwot': 226.9151444112864, 'zcp_params': 4426762.0, 'zcp_plain': -0.014320628717541, 'zcp_snip': 566.962158203125, 'zcp_synflow': 130.74138365021818, 'zcp_zen': 102.46141052246094, 'zcp_val_accuracy': 0.934294879436492}
NASBench101_127553
NASBench101
127553
4d12c8e9c988326012c840b4cd697db6
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_869[FLOAT, 128x3x3x3] %onnx::Conv_870[FLOAT, 128] %onnx::Conv_872[FLOAT, 64x128x1x1] %onnx::Conv_873[FLOAT, 64] %onnx::Conv_875[FLOAT, 64x64x1x1] %onnx::Conv_878[FLOAT, 64x128x1x1] %onnx::Conv_881[FLOAT, 64x64x3x3] %onnx::Conv_884[FLOAT, 64x64x1x1] %onnx::Conv_887[FLOAT, 64x64x3x3] %onnx::Conv_890[FLOAT, 64x128x1x1] %onnx::Conv_893[FLOAT, 64x64x1x1] %onnx::Conv_896[FLOAT, 64x128x1x1] %onnx::Conv_899[FLOAT, 64x64x3x3] %onnx::Conv_902[FLOAT, 64x64x1x1] %onnx::Conv_905[FLOAT, 64x64x3x3] %onnx::Conv_908[FLOAT, 64x128x1x1] %onnx::Conv_911[FLOAT, 64x64x1x1] %onnx::Conv_914[FLOAT, 64x128x1x1] %onnx::Conv_917[FLOAT, 64x64x3x3] %onnx::Conv_920[FLOAT, 64x64x1x1] %onnx::Conv_923[FLOAT, 64x64x3x3] %onnx::Conv_926[FLOAT, 128x128x1x1] %onnx::Conv_929[FLOAT, 128x128x1x1] %onnx::Conv_932[FLOAT, 128x128x1x1] %onnx::Conv_935[FLOAT, 128x128x3x3] %onnx::Conv_938[FLOAT, 128x128x1x1] %onnx::Conv_941[FLOAT, 128x128x3x3] %onnx::Conv_944[FLOAT, 128x256x1x1] %onnx::Conv_947[FLOAT, 128x128x1x1] %onnx::Conv_950[FLOAT, 128x256x1x1] %onnx::Conv_953[FLOAT, 128x128x3x3] %onnx::Conv_956[FLOAT, 128x128x1x1] %onnx::Conv_959[FLOAT, 128x128x3x3] %onnx::Conv_962[FLOAT, 128x256x1x1] %onnx::Conv_965[FLOAT, 128x128x1x1] %onnx::Conv_968[FLOAT, 128x256x1x1] %onnx::Conv_971[FLOAT, 128x128x3x3] %onnx::Conv_974[FLOAT, 128x128x1x1] %onnx::Conv_977[FLOAT, 128x128x3x3] %onnx::Conv_980[FLOAT, 256x256x1x1] %onnx::Conv_981[FLOAT, 256] %onnx::Conv_983[FLOAT, 256x256x1x1] %onnx::Conv_986[FLOAT, 256x256x1x1] %onnx::Conv_989[FLOAT, 256x256x3x3] %onnx::Conv_992[FLOAT, 256x256x1x1] %onnx::Conv_995[FLOAT, 256x256x3x3] %onnx::Conv_998[FLOAT, 256x512x1x1] %onnx::Conv_1001[FLOAT, 256x256x1x1] %onnx::Conv_1004[FLOAT, 256x512x1x1] %onnx::Conv_1007[FLOAT, 256x256x3x3] %onnx::Conv_1010[FLOAT, 256x256x1x1] %onnx::Conv_1013[FLOAT, 256x256x3x3] %onnx::Conv_1016[FLOAT, 256x512x1x1] %onnx::Conv_1019[FLOAT, 256x256x1x1] %onnx::Conv_1022[FLOAT, 256x512x1x1] %onnx::Conv_1025[FLOAT, 256x256x3x3] %onnx::Conv_1028[FLOAT, 256x256x1x1] %onnx::Conv_1031[FLOAT, 256x256x3x3] ) { %onnx::Conv_1032 = Identity(%onnx::Conv_981) %onnx::Conv_1029 = Identity(%onnx::Conv_981) %onnx::Conv_1026 = Identity(%onnx::Conv_981) %onnx::Conv_1023 = Identity(%onnx::Conv_981) %onnx::Conv_1020 = Identity(%onnx::Conv_981) %onnx::Conv_1017 = Identity(%onnx::Conv_981) %onnx::Conv_1014 = Identity(%onnx::Conv_981) %onnx::Conv_1011 = Identity(%onnx::Conv_981) %onnx::Conv_1008 = Identity(%onnx::Conv_981) %onnx::Conv_1005 = Identity(%onnx::Conv_981) %onnx::Conv_1002 = Identity(%onnx::Conv_981) %onnx::Conv_999 = Identity(%onnx::Conv_981) %onnx::Conv_996 = Identity(%onnx::Conv_981) %onnx::Conv_993 = Identity(%onnx::Conv_981) %onnx::Conv_990 = Identity(%onnx::Conv_981) %onnx::Conv_987 = Identity(%onnx::Conv_981) %onnx::Conv_984 = Identity(%onnx::Conv_981) %onnx::Conv_978 = Identity(%onnx::Conv_870) %onnx::Conv_975 = Identity(%onnx::Conv_870) %onnx::Conv_972 = Identity(%onnx::Conv_870) %onnx::Conv_969 = Identity(%onnx::Conv_870) %onnx::Conv_966 = Identity(%onnx::Conv_870) %onnx::Conv_963 = Identity(%onnx::Conv_870) %onnx::Conv_960 = Identity(%onnx::Conv_870) %onnx::Conv_957 = Identity(%onnx::Conv_870) %onnx::Conv_954 = Identity(%onnx::Conv_870) %onnx::Conv_951 = Identity(%onnx::Conv_870) %onnx::Conv_948 = Identity(%onnx::Conv_870) %onnx::Conv_945 = Identity(%onnx::Conv_870) %onnx::Conv_942 = Identity(%onnx::Conv_870) %onnx::Conv_939 = Identity(%onnx::Conv_870) %onnx::Conv_936 = Identity(%onnx::Conv_870) %onnx::Conv_933 = Identity(%onnx::Conv_870) %onnx::Conv_930 = Identity(%onnx::Conv_870) %onnx::Conv_927 = Identity(%onnx::Conv_870) %onnx::Conv_924 = Identity(%onnx::Conv_873) %onnx::Conv_921 = Identity(%onnx::Conv_873) %onnx::Conv_918 = Identity(%onnx::Conv_873) %onnx::Conv_915 = Identity(%onnx::Conv_873) %onnx::Conv_912 = Identity(%onnx::Conv_873) %onnx::Conv_909 = Identity(%onnx::Conv_873) %onnx::Conv_906 = Identity(%onnx::Conv_873) %onnx::Conv_903 = Identity(%onnx::Conv_873) %onnx::Conv_900 = Identity(%onnx::Conv_873) %onnx::Conv_897 = Identity(%onnx::Conv_873) %onnx::Conv_894 = Identity(%onnx::Conv_873) %onnx::Conv_891 = Identity(%onnx::Conv_873) %onnx::Conv_888 = Identity(%onnx::Conv_873) %onnx::Conv_885 = Identity(%onnx::Conv_873) %onnx::Conv_882 = Identity(%onnx::Conv_873) %onnx::Conv_879 = Identity(%onnx::Conv_873) %onnx::Conv_876 = Identity(%onnx::Conv_873) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_869, %onnx::Conv_870) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_872, %onnx::Conv_873) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_875, %onnx::Conv_876) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_878, %onnx::Conv_879) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/Add_2_output_0 = Add(%/layers.1/Add_1_output_0, %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_2_output_0, %onnx::Conv_881, %onnx::Conv_882) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_3_output_0 = Add(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_3_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_4_output_0 = Add(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_3_output_0) %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_4_output_0, %onnx::Conv_884, %onnx::Conv_885) %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Add_5_output_0 = Add(%/layers.1/vertex_op.3/maxpool/MaxPool_output_0, %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_5_output_0, %onnx::Conv_887, %onnx::Conv_888) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.3/maxpool/MaxPool_output_0, %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_890, %onnx::Conv_891) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_893, %onnx::Conv_894) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_896, %onnx::Conv_897) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/Add_2_output_0 = Add(%/layers.2/Add_1_output_0, %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_2_output_0, %onnx::Conv_899, %onnx::Conv_900) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_3_output_0 = Add(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_3_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_4_output_0 = Add(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_3_output_0) %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_4_output_0, %onnx::Conv_902, %onnx::Conv_903) %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Add_5_output_0 = Add(%/layers.2/vertex_op.3/maxpool/MaxPool_output_0, %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_5_output_0, %onnx::Conv_905, %onnx::Conv_906) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.3/maxpool/MaxPool_output_0, %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_908, %onnx::Conv_909) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_911, %onnx::Conv_912) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_914, %onnx::Conv_915) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/Add_2_output_0 = Add(%/layers.3/Add_1_output_0, %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_2_output_0, %onnx::Conv_917, %onnx::Conv_918) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_3_output_0 = Add(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_3_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_4_output_0 = Add(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_3_output_0) %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_4_output_0, %onnx::Conv_920, %onnx::Conv_921) %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Add_5_output_0 = Add(%/layers.3/vertex_op.3/maxpool/MaxPool_output_0, %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_5_output_0, %onnx::Conv_923, %onnx::Conv_924) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.3/maxpool/MaxPool_output_0, %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Concat_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_926, %onnx::Conv_927) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_929, %onnx::Conv_930) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_932, %onnx::Conv_933) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/Add_2_output_0 = Add(%/layers.5/Add_1_output_0, %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_2_output_0, %onnx::Conv_935, %onnx::Conv_936) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_3_output_0 = Add(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_3_output_0) %/layers.5/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_4_output_0 = Add(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_3_output_0) %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_4_output_0, %onnx::Conv_938, %onnx::Conv_939) %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Add_5_output_0 = Add(%/layers.5/vertex_op.3/maxpool/MaxPool_output_0, %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_5_output_0, %onnx::Conv_941, %onnx::Conv_942) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.3/maxpool/MaxPool_output_0, %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_944, %onnx::Conv_945) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_947, %onnx::Conv_948) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_950, %onnx::Conv_951) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/Add_2_output_0 = Add(%/layers.6/Add_1_output_0, %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_2_output_0, %onnx::Conv_953, %onnx::Conv_954) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_3_output_0 = Add(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_3_output_0) %/layers.6/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_4_output_0 = Add(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_3_output_0) %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_4_output_0, %onnx::Conv_956, %onnx::Conv_957) %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Add_5_output_0 = Add(%/layers.6/vertex_op.3/maxpool/MaxPool_output_0, %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_5_output_0, %onnx::Conv_959, %onnx::Conv_960) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.3/maxpool/MaxPool_output_0, %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_962, %onnx::Conv_963) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_965, %onnx::Conv_966) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_968, %onnx::Conv_969) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/Add_2_output_0 = Add(%/layers.7/Add_1_output_0, %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_2_output_0, %onnx::Conv_971, %onnx::Conv_972) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_3_output_0 = Add(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_3_output_0) %/layers.7/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_4_output_0 = Add(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_3_output_0) %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_4_output_0, %onnx::Conv_974, %onnx::Conv_975) %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Add_5_output_0 = Add(%/layers.7/vertex_op.3/maxpool/MaxPool_output_0, %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_5_output_0, %onnx::Conv_977, %onnx::Conv_978) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.3/maxpool/MaxPool_output_0, %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Concat_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_980, %onnx::Conv_981) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_983, %onnx::Conv_984) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_986, %onnx::Conv_987) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/Add_2_output_0 = Add(%/layers.9/Add_1_output_0, %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_2_output_0, %onnx::Conv_989, %onnx::Conv_990) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_3_output_0 = Add(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_3_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_4_output_0 = Add(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_3_output_0) %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_4_output_0, %onnx::Conv_992, %onnx::Conv_993) %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Add_5_output_0 = Add(%/layers.9/vertex_op.3/maxpool/MaxPool_output_0, %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_5_output_0, %onnx::Conv_995, %onnx::Conv_996) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.3/maxpool/MaxPool_output_0, %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_998, %onnx::Conv_999) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_1001, %onnx::Conv_1002) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_1004, %onnx::Conv_1005) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/Add_2_output_0 = Add(%/layers.10/Add_1_output_0, %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_2_output_0, %onnx::Conv_1007, %onnx::Conv_1008) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_3_output_0 = Add(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_3_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_4_output_0 = Add(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_3_output_0) %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_4_output_0, %onnx::Conv_1010, %onnx::Conv_1011) %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Add_5_output_0 = Add(%/layers.10/vertex_op.3/maxpool/MaxPool_output_0, %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_5_output_0, %onnx::Conv_1013, %onnx::Conv_1014) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.3/maxpool/MaxPool_output_0, %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_1016, %onnx::Conv_1017) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_1019, %onnx::Conv_1020) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_1022, %onnx::Conv_1023) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/Add_2_output_0 = Add(%/layers.11/Add_1_output_0, %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_2_output_0, %onnx::Conv_1025, %onnx::Conv_1026) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_3_output_0 = Add(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_3_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_4_output_0 = Add(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_3_output_0) %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_4_output_0, %onnx::Conv_1028, %onnx::Conv_1029) %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Add_5_output_0 = Add(%/layers.11/vertex_op.3/maxpool/MaxPool_output_0, %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_5_output_0, %onnx::Conv_1031, %onnx::Conv_1032) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.3/maxpool/MaxPool_output_0, %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Concat_output_0) %867 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %867 }
val_accuracy
90.054089
1,803,036,672
6,054,282
{'zcp_epe_nas': 86.45423959569102, 'zcp_fisher': 144.77268981933594, 'zcp_flops': 28848586752.0, 'zcp_grad_norm': 211.4068603515625, 'zcp_grasp': -5.31787109375, 'zcp_jacov': -16.063323699184473, 'zcp_l2_norm': 994.2924194335938, 'zcp_nwot': 224.15073462762624, 'zcp_params': 6054282.0, 'zcp_plain': -0.032617669552564, 'zcp_snip': 1228.1151123046875, 'zcp_synflow': 141.07275293073542, 'zcp_zen': 101.35595703125, 'zcp_val_accuracy': 0.885516822338104}
NASBench101_116966
NASBench101
116966
46981c2f28b23c3bdbd90820966c62ca
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_653[FLOAT, 128x3x3x3] %onnx::Conv_654[FLOAT, 128] %onnx::Conv_656[FLOAT, 64x128x1x1] %onnx::Conv_657[FLOAT, 64] %onnx::Conv_659[FLOAT, 64x128x1x1] %onnx::Conv_662[FLOAT, 64x64x3x3] %onnx::Conv_665[FLOAT, 64x64x1x1] %onnx::Conv_668[FLOAT, 64x128x1x1] %onnx::Conv_671[FLOAT, 64x128x1x1] %onnx::Conv_674[FLOAT, 64x64x3x3] %onnx::Conv_677[FLOAT, 64x64x1x1] %onnx::Conv_680[FLOAT, 64x128x1x1] %onnx::Conv_683[FLOAT, 64x128x1x1] %onnx::Conv_686[FLOAT, 64x64x3x3] %onnx::Conv_689[FLOAT, 64x64x1x1] %onnx::Conv_692[FLOAT, 128x128x1x1] %onnx::Conv_695[FLOAT, 128x128x1x1] %onnx::Conv_698[FLOAT, 128x128x3x3] %onnx::Conv_701[FLOAT, 128x128x1x1] %onnx::Conv_704[FLOAT, 128x256x1x1] %onnx::Conv_707[FLOAT, 128x256x1x1] %onnx::Conv_710[FLOAT, 128x128x3x3] %onnx::Conv_713[FLOAT, 128x128x1x1] %onnx::Conv_716[FLOAT, 128x256x1x1] %onnx::Conv_719[FLOAT, 128x256x1x1] %onnx::Conv_722[FLOAT, 128x128x3x3] %onnx::Conv_725[FLOAT, 128x128x1x1] %onnx::Conv_728[FLOAT, 256x256x1x1] %onnx::Conv_729[FLOAT, 256] %onnx::Conv_731[FLOAT, 256x256x1x1] %onnx::Conv_734[FLOAT, 256x256x3x3] %onnx::Conv_737[FLOAT, 256x256x1x1] %onnx::Conv_740[FLOAT, 256x512x1x1] %onnx::Conv_743[FLOAT, 256x512x1x1] %onnx::Conv_746[FLOAT, 256x256x3x3] %onnx::Conv_749[FLOAT, 256x256x1x1] %onnx::Conv_752[FLOAT, 256x512x1x1] %onnx::Conv_755[FLOAT, 256x512x1x1] %onnx::Conv_758[FLOAT, 256x256x3x3] %onnx::Conv_761[FLOAT, 256x256x1x1] ) { %onnx::Conv_762 = Identity(%onnx::Conv_729) %onnx::Conv_759 = Identity(%onnx::Conv_729) %onnx::Conv_756 = Identity(%onnx::Conv_729) %onnx::Conv_753 = Identity(%onnx::Conv_729) %onnx::Conv_750 = Identity(%onnx::Conv_729) %onnx::Conv_747 = Identity(%onnx::Conv_729) %onnx::Conv_744 = Identity(%onnx::Conv_729) %onnx::Conv_741 = Identity(%onnx::Conv_729) %onnx::Conv_738 = Identity(%onnx::Conv_729) %onnx::Conv_735 = Identity(%onnx::Conv_729) %onnx::Conv_732 = Identity(%onnx::Conv_729) %onnx::Conv_726 = Identity(%onnx::Conv_654) %onnx::Conv_723 = Identity(%onnx::Conv_654) %onnx::Conv_720 = Identity(%onnx::Conv_654) %onnx::Conv_717 = Identity(%onnx::Conv_654) %onnx::Conv_714 = Identity(%onnx::Conv_654) %onnx::Conv_711 = Identity(%onnx::Conv_654) %onnx::Conv_708 = Identity(%onnx::Conv_654) %onnx::Conv_705 = Identity(%onnx::Conv_654) %onnx::Conv_702 = Identity(%onnx::Conv_654) %onnx::Conv_699 = Identity(%onnx::Conv_654) %onnx::Conv_696 = Identity(%onnx::Conv_654) %onnx::Conv_693 = Identity(%onnx::Conv_654) %onnx::Conv_690 = Identity(%onnx::Conv_657) %onnx::Conv_687 = Identity(%onnx::Conv_657) %onnx::Conv_684 = Identity(%onnx::Conv_657) %onnx::Conv_681 = Identity(%onnx::Conv_657) %onnx::Conv_678 = Identity(%onnx::Conv_657) %onnx::Conv_675 = Identity(%onnx::Conv_657) %onnx::Conv_672 = Identity(%onnx::Conv_657) %onnx::Conv_669 = Identity(%onnx::Conv_657) %onnx::Conv_666 = Identity(%onnx::Conv_657) %onnx::Conv_663 = Identity(%onnx::Conv_657) %onnx::Conv_660 = Identity(%onnx::Conv_657) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_653, %onnx::Conv_654) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_656, %onnx::Conv_657) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_659, %onnx::Conv_660) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/maxpool/MaxPool_output_0, %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_1_output_0) %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.1/maxpool/MaxPool_output_0, %/layers.1/vertex_op.2/maxpool/MaxPool_output_0) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_2_output_0, %onnx::Conv_662, %onnx::Conv_663) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_665, %onnx::Conv_666) %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_3_output_0 = Add(%/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_3_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.5/maxpool/MaxPool_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_668, %onnx::Conv_669) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_671, %onnx::Conv_672) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/maxpool/MaxPool_output_0, %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_1_output_0) %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.1/maxpool/MaxPool_output_0, %/layers.2/vertex_op.2/maxpool/MaxPool_output_0) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_2_output_0, %onnx::Conv_674, %onnx::Conv_675) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_677, %onnx::Conv_678) %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_3_output_0 = Add(%/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_3_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.5/maxpool/MaxPool_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_680, %onnx::Conv_681) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_683, %onnx::Conv_684) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/maxpool/MaxPool_output_0, %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_1_output_0) %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.1/maxpool/MaxPool_output_0, %/layers.3/vertex_op.2/maxpool/MaxPool_output_0) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_2_output_0, %onnx::Conv_686, %onnx::Conv_687) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_689, %onnx::Conv_690) %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_3_output_0 = Add(%/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_3_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.5/maxpool/MaxPool_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Concat_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_692, %onnx::Conv_693) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_695, %onnx::Conv_696) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.1/maxpool/MaxPool_output_0, %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_1_output_0) %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.1/maxpool/MaxPool_output_0, %/layers.5/vertex_op.2/maxpool/MaxPool_output_0) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_2_output_0, %onnx::Conv_698, %onnx::Conv_699) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_701, %onnx::Conv_702) %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_3_output_0 = Add(%/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_3_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.5/maxpool/MaxPool_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_704, %onnx::Conv_705) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_707, %onnx::Conv_708) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.1/maxpool/MaxPool_output_0, %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_1_output_0) %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.1/maxpool/MaxPool_output_0, %/layers.6/vertex_op.2/maxpool/MaxPool_output_0) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_2_output_0, %onnx::Conv_710, %onnx::Conv_711) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_713, %onnx::Conv_714) %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_3_output_0 = Add(%/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_3_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.5/maxpool/MaxPool_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_716, %onnx::Conv_717) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_719, %onnx::Conv_720) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.1/maxpool/MaxPool_output_0, %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_1_output_0) %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.1/maxpool/MaxPool_output_0, %/layers.7/vertex_op.2/maxpool/MaxPool_output_0) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_2_output_0, %onnx::Conv_722, %onnx::Conv_723) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_725, %onnx::Conv_726) %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_3_output_0 = Add(%/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_3_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.5/maxpool/MaxPool_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Concat_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_728, %onnx::Conv_729) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_731, %onnx::Conv_732) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/maxpool/MaxPool_output_0, %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_1_output_0) %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.1/maxpool/MaxPool_output_0, %/layers.9/vertex_op.2/maxpool/MaxPool_output_0) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_2_output_0, %onnx::Conv_734, %onnx::Conv_735) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_737, %onnx::Conv_738) %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_3_output_0 = Add(%/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_3_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.5/maxpool/MaxPool_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_740, %onnx::Conv_741) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_743, %onnx::Conv_744) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/maxpool/MaxPool_output_0, %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_1_output_0) %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.1/maxpool/MaxPool_output_0, %/layers.10/vertex_op.2/maxpool/MaxPool_output_0) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_2_output_0, %onnx::Conv_746, %onnx::Conv_747) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_749, %onnx::Conv_750) %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_3_output_0 = Add(%/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_3_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.5/maxpool/MaxPool_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_752, %onnx::Conv_753) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_755, %onnx::Conv_756) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/maxpool/MaxPool_output_0, %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_1_output_0) %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.1/maxpool/MaxPool_output_0, %/layers.11/vertex_op.2/maxpool/MaxPool_output_0) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_2_output_0, %onnx::Conv_758, %onnx::Conv_759) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_761, %onnx::Conv_762) %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_3_output_0 = Add(%/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_3_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.5/maxpool/MaxPool_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Concat_output_0) %651 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %651 }
val_accuracy
90.865386
1,042,556,928
3,468,426
{'zcp_epe_nas': 92.88517916805311, 'zcp_fisher': 6.985177993774414, 'zcp_flops': 16680910848.0, 'zcp_grad_norm': 46.68549728393555, 'zcp_grasp': -2.349868774414062, 'zcp_jacov': -16.050166204176616, 'zcp_l2_norm': 694.9937744140625, 'zcp_nwot': 218.18186943650514, 'zcp_params': 3468426.0, 'zcp_plain': 0.076834812760353, 'zcp_snip': 306.2525329589844, 'zcp_synflow': 72.50292108882877, 'zcp_zen': 76.44905090332031, 'zcp_val_accuracy': 0.923477590084075}
NASBench101_88928
NASBench101
88928
35dc9874b4582d07ac6c838169261b50
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_743[FLOAT, 128x3x3x3] %onnx::Conv_744[FLOAT, 128] %onnx::Conv_746[FLOAT, 128x128x1x1] %onnx::Conv_749[FLOAT, 128x128x3x3] %onnx::Conv_752[FLOAT, 128x128x3x3] %onnx::Conv_755[FLOAT, 128x128x1x1] %onnx::Conv_758[FLOAT, 128x128x3x3] %onnx::Conv_761[FLOAT, 128x128x1x1] %onnx::Conv_764[FLOAT, 128x128x3x3] %onnx::Conv_767[FLOAT, 128x128x3x3] %onnx::Conv_770[FLOAT, 128x128x1x1] %onnx::Conv_773[FLOAT, 128x128x3x3] %onnx::Conv_776[FLOAT, 128x128x1x1] %onnx::Conv_779[FLOAT, 128x128x3x3] %onnx::Conv_782[FLOAT, 128x128x3x3] %onnx::Conv_785[FLOAT, 128x128x1x1] %onnx::Conv_788[FLOAT, 128x128x3x3] %onnx::Conv_791[FLOAT, 256x128x1x1] %onnx::Conv_792[FLOAT, 256] %onnx::Conv_794[FLOAT, 256x256x3x3] %onnx::Conv_797[FLOAT, 256x256x3x3] %onnx::Conv_800[FLOAT, 256x128x1x1] %onnx::Conv_803[FLOAT, 256x256x3x3] %onnx::Conv_806[FLOAT, 256x256x1x1] %onnx::Conv_809[FLOAT, 256x256x3x3] %onnx::Conv_812[FLOAT, 256x256x3x3] %onnx::Conv_815[FLOAT, 256x256x1x1] %onnx::Conv_818[FLOAT, 256x256x3x3] %onnx::Conv_821[FLOAT, 256x256x1x1] %onnx::Conv_824[FLOAT, 256x256x3x3] %onnx::Conv_827[FLOAT, 256x256x3x3] %onnx::Conv_830[FLOAT, 256x256x1x1] %onnx::Conv_833[FLOAT, 256x256x3x3] %onnx::Conv_836[FLOAT, 512x256x1x1] %onnx::Conv_837[FLOAT, 512] %onnx::Conv_839[FLOAT, 512x512x3x3] %onnx::Conv_842[FLOAT, 512x512x3x3] %onnx::Conv_845[FLOAT, 512x256x1x1] %onnx::Conv_848[FLOAT, 512x512x3x3] %onnx::Conv_851[FLOAT, 512x512x1x1] %onnx::Conv_854[FLOAT, 512x512x3x3] %onnx::Conv_857[FLOAT, 512x512x3x3] %onnx::Conv_860[FLOAT, 512x512x1x1] %onnx::Conv_863[FLOAT, 512x512x3x3] %onnx::Conv_866[FLOAT, 512x512x1x1] %onnx::Conv_869[FLOAT, 512x512x3x3] %onnx::Conv_872[FLOAT, 512x512x3x3] %onnx::Conv_875[FLOAT, 512x512x1x1] %onnx::Conv_878[FLOAT, 512x512x3x3] ) { %onnx::Conv_879 = Identity(%onnx::Conv_837) %onnx::Conv_876 = Identity(%onnx::Conv_837) %onnx::Conv_873 = Identity(%onnx::Conv_837) %onnx::Conv_870 = Identity(%onnx::Conv_837) %onnx::Conv_867 = Identity(%onnx::Conv_837) %onnx::Conv_864 = Identity(%onnx::Conv_837) %onnx::Conv_861 = Identity(%onnx::Conv_837) %onnx::Conv_858 = Identity(%onnx::Conv_837) %onnx::Conv_855 = Identity(%onnx::Conv_837) %onnx::Conv_852 = Identity(%onnx::Conv_837) %onnx::Conv_849 = Identity(%onnx::Conv_837) %onnx::Conv_846 = Identity(%onnx::Conv_837) %onnx::Conv_843 = Identity(%onnx::Conv_837) %onnx::Conv_840 = Identity(%onnx::Conv_837) %onnx::Conv_834 = Identity(%onnx::Conv_792) %onnx::Conv_831 = Identity(%onnx::Conv_792) %onnx::Conv_828 = Identity(%onnx::Conv_792) %onnx::Conv_825 = Identity(%onnx::Conv_792) %onnx::Conv_822 = Identity(%onnx::Conv_792) %onnx::Conv_819 = Identity(%onnx::Conv_792) %onnx::Conv_816 = Identity(%onnx::Conv_792) %onnx::Conv_813 = Identity(%onnx::Conv_792) %onnx::Conv_810 = Identity(%onnx::Conv_792) %onnx::Conv_807 = Identity(%onnx::Conv_792) %onnx::Conv_804 = Identity(%onnx::Conv_792) %onnx::Conv_801 = Identity(%onnx::Conv_792) %onnx::Conv_798 = Identity(%onnx::Conv_792) %onnx::Conv_795 = Identity(%onnx::Conv_792) %onnx::Conv_789 = Identity(%onnx::Conv_744) %onnx::Conv_786 = Identity(%onnx::Conv_744) %onnx::Conv_783 = Identity(%onnx::Conv_744) %onnx::Conv_780 = Identity(%onnx::Conv_744) %onnx::Conv_777 = Identity(%onnx::Conv_744) %onnx::Conv_774 = Identity(%onnx::Conv_744) %onnx::Conv_771 = Identity(%onnx::Conv_744) %onnx::Conv_768 = Identity(%onnx::Conv_744) %onnx::Conv_765 = Identity(%onnx::Conv_744) %onnx::Conv_762 = Identity(%onnx::Conv_744) %onnx::Conv_759 = Identity(%onnx::Conv_744) %onnx::Conv_756 = Identity(%onnx::Conv_744) %onnx::Conv_753 = Identity(%onnx::Conv_744) %onnx::Conv_750 = Identity(%onnx::Conv_744) %onnx::Conv_747 = Identity(%onnx::Conv_744) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_743, %onnx::Conv_744) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_746, %onnx::Conv_747) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_749, %onnx::Conv_750) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_1_output_0) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/vertex_op.3/maxpool/MaxPool_output_0, %onnx::Conv_752, %onnx::Conv_753) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_755, %onnx::Conv_756) %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/Add_3_output_0 = Add(%/layers.1/Add_2_output_0, %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_3_output_0, %onnx::Conv_758, %onnx::Conv_759) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_761, %onnx::Conv_762) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_764, %onnx::Conv_765) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_1_output_0) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/vertex_op.3/maxpool/MaxPool_output_0, %onnx::Conv_767, %onnx::Conv_768) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_770, %onnx::Conv_771) %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/Add_3_output_0 = Add(%/layers.2/Add_2_output_0, %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_3_output_0, %onnx::Conv_773, %onnx::Conv_774) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_776, %onnx::Conv_777) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_779, %onnx::Conv_780) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_1_output_0) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/vertex_op.3/maxpool/MaxPool_output_0, %onnx::Conv_782, %onnx::Conv_783) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_785, %onnx::Conv_786) %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/Add_3_output_0 = Add(%/layers.3/Add_2_output_0, %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_3_output_0, %onnx::Conv_788, %onnx::Conv_789) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_791, %onnx::Conv_792) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_794, %onnx::Conv_795) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_1_output_0) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/vertex_op.3/maxpool/MaxPool_output_0, %onnx::Conv_797, %onnx::Conv_798) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_800, %onnx::Conv_801) %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/Add_3_output_0 = Add(%/layers.5/Add_2_output_0, %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_3_output_0, %onnx::Conv_803, %onnx::Conv_804) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_806, %onnx::Conv_807) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_809, %onnx::Conv_810) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_1_output_0) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/vertex_op.3/maxpool/MaxPool_output_0, %onnx::Conv_812, %onnx::Conv_813) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_815, %onnx::Conv_816) %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/Add_3_output_0 = Add(%/layers.6/Add_2_output_0, %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_3_output_0, %onnx::Conv_818, %onnx::Conv_819) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_821, %onnx::Conv_822) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_824, %onnx::Conv_825) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_1_output_0) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/vertex_op.3/maxpool/MaxPool_output_0, %onnx::Conv_827, %onnx::Conv_828) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_830, %onnx::Conv_831) %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/Add_3_output_0 = Add(%/layers.7/Add_2_output_0, %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_3_output_0, %onnx::Conv_833, %onnx::Conv_834) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_836, %onnx::Conv_837) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_839, %onnx::Conv_840) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_1_output_0) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/vertex_op.3/maxpool/MaxPool_output_0, %onnx::Conv_842, %onnx::Conv_843) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_845, %onnx::Conv_846) %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/Add_3_output_0 = Add(%/layers.9/Add_2_output_0, %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_3_output_0, %onnx::Conv_848, %onnx::Conv_849) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_851, %onnx::Conv_852) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_854, %onnx::Conv_855) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_1_output_0) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/vertex_op.3/maxpool/MaxPool_output_0, %onnx::Conv_857, %onnx::Conv_858) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_860, %onnx::Conv_861) %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/Add_3_output_0 = Add(%/layers.10/Add_2_output_0, %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_3_output_0, %onnx::Conv_863, %onnx::Conv_864) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_866, %onnx::Conv_867) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_869, %onnx::Conv_870) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_1_output_0) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/vertex_op.3/maxpool/MaxPool_output_0, %onnx::Conv_872, %onnx::Conv_873) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_875, %onnx::Conv_876) %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/Add_3_output_0 = Add(%/layers.11/Add_2_output_0, %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_3_output_0, %onnx::Conv_878, %onnx::Conv_879) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %741 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %741 }
val_accuracy
92.047274
8,726,259,712
29,641,610
{'zcp_epe_nas': 164.7413451101487, 'zcp_fisher': 209.4033203125, 'zcp_flops': 139620155392.0, 'zcp_grad_norm': 217.45254516601562, 'zcp_grasp': 10.58935546875, 'zcp_jacov': -16.057227063816068, 'zcp_l2_norm': 1030.591064453125, 'zcp_nwot': 231.68213826567685, 'zcp_params': 29641610.0, 'zcp_plain': 0.0020567507017400003, 'zcp_snip': 1895.9017333984375, 'zcp_synflow': 139.33525602037884, 'zcp_zen': 107.53545379638672, 'zcp_val_accuracy': 0.9241786599159241}
NASBench101_312906
NASBench101
312906
bd51c9b9ca2cf28c588dce3a1089f2d8
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_1076[FLOAT, 128x3x3x3] %onnx::Conv_1077[FLOAT, 128] %onnx::Conv_1079[FLOAT, 64x128x1x1] %onnx::Conv_1080[FLOAT, 64] %onnx::Conv_1082[FLOAT, 64x64x1x1] %onnx::Conv_1085[FLOAT, 64x128x1x1] %onnx::Conv_1088[FLOAT, 64x64x1x1] %onnx::Conv_1091[FLOAT, 64x64x3x3] %onnx::Conv_1094[FLOAT, 64x128x1x1] %onnx::Conv_1097[FLOAT, 64x64x1x1] %onnx::Conv_1100[FLOAT, 64x64x1x1] %onnx::Conv_1103[FLOAT, 64x128x1x1] %onnx::Conv_1106[FLOAT, 64x64x1x1] %onnx::Conv_1109[FLOAT, 64x128x1x1] %onnx::Conv_1112[FLOAT, 64x64x1x1] %onnx::Conv_1115[FLOAT, 64x64x3x3] %onnx::Conv_1118[FLOAT, 64x128x1x1] %onnx::Conv_1121[FLOAT, 64x64x1x1] %onnx::Conv_1124[FLOAT, 64x64x1x1] %onnx::Conv_1127[FLOAT, 64x128x1x1] %onnx::Conv_1130[FLOAT, 64x64x1x1] %onnx::Conv_1133[FLOAT, 64x128x1x1] %onnx::Conv_1136[FLOAT, 64x64x1x1] %onnx::Conv_1139[FLOAT, 64x64x3x3] %onnx::Conv_1142[FLOAT, 64x128x1x1] %onnx::Conv_1145[FLOAT, 64x64x1x1] %onnx::Conv_1148[FLOAT, 64x64x1x1] %onnx::Conv_1151[FLOAT, 128x128x1x1] %onnx::Conv_1154[FLOAT, 128x128x1x1] %onnx::Conv_1157[FLOAT, 128x128x1x1] %onnx::Conv_1160[FLOAT, 128x128x1x1] %onnx::Conv_1163[FLOAT, 128x128x3x3] %onnx::Conv_1166[FLOAT, 128x128x1x1] %onnx::Conv_1169[FLOAT, 128x128x1x1] %onnx::Conv_1172[FLOAT, 128x128x1x1] %onnx::Conv_1175[FLOAT, 128x256x1x1] %onnx::Conv_1178[FLOAT, 128x128x1x1] %onnx::Conv_1181[FLOAT, 128x256x1x1] %onnx::Conv_1184[FLOAT, 128x128x1x1] %onnx::Conv_1187[FLOAT, 128x128x3x3] %onnx::Conv_1190[FLOAT, 128x256x1x1] %onnx::Conv_1193[FLOAT, 128x128x1x1] %onnx::Conv_1196[FLOAT, 128x128x1x1] %onnx::Conv_1199[FLOAT, 128x256x1x1] %onnx::Conv_1202[FLOAT, 128x128x1x1] %onnx::Conv_1205[FLOAT, 128x256x1x1] %onnx::Conv_1208[FLOAT, 128x128x1x1] %onnx::Conv_1211[FLOAT, 128x128x3x3] %onnx::Conv_1214[FLOAT, 128x256x1x1] %onnx::Conv_1217[FLOAT, 128x128x1x1] %onnx::Conv_1220[FLOAT, 128x128x1x1] %onnx::Conv_1223[FLOAT, 256x256x1x1] %onnx::Conv_1224[FLOAT, 256] %onnx::Conv_1226[FLOAT, 256x256x1x1] %onnx::Conv_1229[FLOAT, 256x256x1x1] %onnx::Conv_1232[FLOAT, 256x256x1x1] %onnx::Conv_1235[FLOAT, 256x256x3x3] %onnx::Conv_1238[FLOAT, 256x256x1x1] %onnx::Conv_1241[FLOAT, 256x256x1x1] %onnx::Conv_1244[FLOAT, 256x256x1x1] %onnx::Conv_1247[FLOAT, 256x512x1x1] %onnx::Conv_1250[FLOAT, 256x256x1x1] %onnx::Conv_1253[FLOAT, 256x512x1x1] %onnx::Conv_1256[FLOAT, 256x256x1x1] %onnx::Conv_1259[FLOAT, 256x256x3x3] %onnx::Conv_1262[FLOAT, 256x512x1x1] %onnx::Conv_1265[FLOAT, 256x256x1x1] %onnx::Conv_1268[FLOAT, 256x256x1x1] %onnx::Conv_1271[FLOAT, 256x512x1x1] %onnx::Conv_1274[FLOAT, 256x256x1x1] %onnx::Conv_1277[FLOAT, 256x512x1x1] %onnx::Conv_1280[FLOAT, 256x256x1x1] %onnx::Conv_1283[FLOAT, 256x256x3x3] %onnx::Conv_1286[FLOAT, 256x512x1x1] %onnx::Conv_1289[FLOAT, 256x256x1x1] %onnx::Conv_1292[FLOAT, 256x256x1x1] ) { %onnx::Conv_1293 = Identity(%onnx::Conv_1224) %onnx::Conv_1290 = Identity(%onnx::Conv_1224) %onnx::Conv_1287 = Identity(%onnx::Conv_1224) %onnx::Conv_1284 = Identity(%onnx::Conv_1224) %onnx::Conv_1281 = Identity(%onnx::Conv_1224) %onnx::Conv_1278 = Identity(%onnx::Conv_1224) %onnx::Conv_1275 = Identity(%onnx::Conv_1224) %onnx::Conv_1272 = Identity(%onnx::Conv_1224) %onnx::Conv_1269 = Identity(%onnx::Conv_1224) %onnx::Conv_1266 = Identity(%onnx::Conv_1224) %onnx::Conv_1263 = Identity(%onnx::Conv_1224) %onnx::Conv_1260 = Identity(%onnx::Conv_1224) %onnx::Conv_1257 = Identity(%onnx::Conv_1224) %onnx::Conv_1254 = Identity(%onnx::Conv_1224) %onnx::Conv_1251 = Identity(%onnx::Conv_1224) %onnx::Conv_1248 = Identity(%onnx::Conv_1224) %onnx::Conv_1245 = Identity(%onnx::Conv_1224) %onnx::Conv_1242 = Identity(%onnx::Conv_1224) %onnx::Conv_1239 = Identity(%onnx::Conv_1224) %onnx::Conv_1236 = Identity(%onnx::Conv_1224) %onnx::Conv_1233 = Identity(%onnx::Conv_1224) %onnx::Conv_1230 = Identity(%onnx::Conv_1224) %onnx::Conv_1227 = Identity(%onnx::Conv_1224) %onnx::Conv_1221 = Identity(%onnx::Conv_1077) %onnx::Conv_1218 = Identity(%onnx::Conv_1077) %onnx::Conv_1215 = Identity(%onnx::Conv_1077) %onnx::Conv_1212 = Identity(%onnx::Conv_1077) %onnx::Conv_1209 = Identity(%onnx::Conv_1077) %onnx::Conv_1206 = Identity(%onnx::Conv_1077) %onnx::Conv_1203 = Identity(%onnx::Conv_1077) %onnx::Conv_1200 = Identity(%onnx::Conv_1077) %onnx::Conv_1197 = Identity(%onnx::Conv_1077) %onnx::Conv_1194 = Identity(%onnx::Conv_1077) %onnx::Conv_1191 = Identity(%onnx::Conv_1077) %onnx::Conv_1188 = Identity(%onnx::Conv_1077) %onnx::Conv_1185 = Identity(%onnx::Conv_1077) %onnx::Conv_1182 = Identity(%onnx::Conv_1077) %onnx::Conv_1179 = Identity(%onnx::Conv_1077) %onnx::Conv_1176 = Identity(%onnx::Conv_1077) %onnx::Conv_1173 = Identity(%onnx::Conv_1077) %onnx::Conv_1170 = Identity(%onnx::Conv_1077) %onnx::Conv_1167 = Identity(%onnx::Conv_1077) %onnx::Conv_1164 = Identity(%onnx::Conv_1077) %onnx::Conv_1161 = Identity(%onnx::Conv_1077) %onnx::Conv_1158 = Identity(%onnx::Conv_1077) %onnx::Conv_1155 = Identity(%onnx::Conv_1077) %onnx::Conv_1152 = Identity(%onnx::Conv_1077) %onnx::Conv_1149 = Identity(%onnx::Conv_1080) %onnx::Conv_1146 = Identity(%onnx::Conv_1080) %onnx::Conv_1143 = Identity(%onnx::Conv_1080) %onnx::Conv_1140 = Identity(%onnx::Conv_1080) %onnx::Conv_1137 = Identity(%onnx::Conv_1080) %onnx::Conv_1134 = Identity(%onnx::Conv_1080) %onnx::Conv_1131 = Identity(%onnx::Conv_1080) %onnx::Conv_1128 = Identity(%onnx::Conv_1080) %onnx::Conv_1125 = Identity(%onnx::Conv_1080) %onnx::Conv_1122 = Identity(%onnx::Conv_1080) %onnx::Conv_1119 = Identity(%onnx::Conv_1080) %onnx::Conv_1116 = Identity(%onnx::Conv_1080) %onnx::Conv_1113 = Identity(%onnx::Conv_1080) %onnx::Conv_1110 = Identity(%onnx::Conv_1080) %onnx::Conv_1107 = Identity(%onnx::Conv_1080) %onnx::Conv_1104 = Identity(%onnx::Conv_1080) %onnx::Conv_1101 = Identity(%onnx::Conv_1080) %onnx::Conv_1098 = Identity(%onnx::Conv_1080) %onnx::Conv_1095 = Identity(%onnx::Conv_1080) %onnx::Conv_1092 = Identity(%onnx::Conv_1080) %onnx::Conv_1089 = Identity(%onnx::Conv_1080) %onnx::Conv_1086 = Identity(%onnx::Conv_1080) %onnx::Conv_1083 = Identity(%onnx::Conv_1080) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_1076, %onnx::Conv_1077) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1079, %onnx::Conv_1080) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_1082, %onnx::Conv_1083) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1085, %onnx::Conv_1086) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_1088, %onnx::Conv_1089) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_2_output_0, %onnx::Conv_1091, %onnx::Conv_1092) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1094, %onnx::Conv_1095) %/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_3_output_0 = Add(%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_3_output_0) %/layers.1/Add_4_output_0 = Add(%/layers.1/Add_3_output_0, %/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_4_output_0, %onnx::Conv_1097, %onnx::Conv_1098) %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_5_output_0 = Add(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_4_output_0) %/layers.1/Add_6_output_0 = Add(%/layers.1/Add_5_output_0, %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_6_output_0, %onnx::Conv_1100, %onnx::Conv_1101) %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_1103, %onnx::Conv_1104) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_1106, %onnx::Conv_1107) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_1109, %onnx::Conv_1110) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_1112, %onnx::Conv_1113) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_2_output_0, %onnx::Conv_1115, %onnx::Conv_1116) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_1118, %onnx::Conv_1119) %/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_3_output_0 = Add(%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_3_output_0) %/layers.2/Add_4_output_0 = Add(%/layers.2/Add_3_output_0, %/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_4_output_0, %onnx::Conv_1121, %onnx::Conv_1122) %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_5_output_0 = Add(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_4_output_0) %/layers.2/Add_6_output_0 = Add(%/layers.2/Add_5_output_0, %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_6_output_0, %onnx::Conv_1124, %onnx::Conv_1125) %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_1127, %onnx::Conv_1128) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_1130, %onnx::Conv_1131) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_1133, %onnx::Conv_1134) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_1136, %onnx::Conv_1137) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_2_output_0, %onnx::Conv_1139, %onnx::Conv_1140) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_1142, %onnx::Conv_1143) %/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_3_output_0 = Add(%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_3_output_0) %/layers.3/Add_4_output_0 = Add(%/layers.3/Add_3_output_0, %/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_4_output_0, %onnx::Conv_1145, %onnx::Conv_1146) %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_5_output_0 = Add(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_4_output_0) %/layers.3/Add_6_output_0 = Add(%/layers.3/Add_5_output_0, %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_6_output_0, %onnx::Conv_1148, %onnx::Conv_1149) %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Concat_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_1151, %onnx::Conv_1152) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_1154, %onnx::Conv_1155) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_1157, %onnx::Conv_1158) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_1160, %onnx::Conv_1161) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_2_output_0, %onnx::Conv_1163, %onnx::Conv_1164) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_1166, %onnx::Conv_1167) %/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_3_output_0 = Add(%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_3_output_0) %/layers.5/Add_4_output_0 = Add(%/layers.5/Add_3_output_0, %/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_4_output_0, %onnx::Conv_1169, %onnx::Conv_1170) %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_5_output_0 = Add(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_4_output_0) %/layers.5/Add_6_output_0 = Add(%/layers.5/Add_5_output_0, %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_6_output_0, %onnx::Conv_1172, %onnx::Conv_1173) %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_1175, %onnx::Conv_1176) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_1178, %onnx::Conv_1179) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_1181, %onnx::Conv_1182) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_1184, %onnx::Conv_1185) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_2_output_0, %onnx::Conv_1187, %onnx::Conv_1188) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_1190, %onnx::Conv_1191) %/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_3_output_0 = Add(%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_3_output_0) %/layers.6/Add_4_output_0 = Add(%/layers.6/Add_3_output_0, %/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_4_output_0, %onnx::Conv_1193, %onnx::Conv_1194) %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_5_output_0 = Add(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_4_output_0) %/layers.6/Add_6_output_0 = Add(%/layers.6/Add_5_output_0, %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_6_output_0, %onnx::Conv_1196, %onnx::Conv_1197) %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_1199, %onnx::Conv_1200) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_1202, %onnx::Conv_1203) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_1205, %onnx::Conv_1206) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_1208, %onnx::Conv_1209) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_2_output_0, %onnx::Conv_1211, %onnx::Conv_1212) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_1214, %onnx::Conv_1215) %/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_3_output_0 = Add(%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_3_output_0) %/layers.7/Add_4_output_0 = Add(%/layers.7/Add_3_output_0, %/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_4_output_0, %onnx::Conv_1217, %onnx::Conv_1218) %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_5_output_0 = Add(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_4_output_0) %/layers.7/Add_6_output_0 = Add(%/layers.7/Add_5_output_0, %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_6_output_0, %onnx::Conv_1220, %onnx::Conv_1221) %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Concat_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1223, %onnx::Conv_1224) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_1226, %onnx::Conv_1227) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1229, %onnx::Conv_1230) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_1232, %onnx::Conv_1233) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_2_output_0, %onnx::Conv_1235, %onnx::Conv_1236) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1238, %onnx::Conv_1239) %/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_3_output_0 = Add(%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_3_output_0) %/layers.9/Add_4_output_0 = Add(%/layers.9/Add_3_output_0, %/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_4_output_0, %onnx::Conv_1241, %onnx::Conv_1242) %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_5_output_0 = Add(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_4_output_0) %/layers.9/Add_6_output_0 = Add(%/layers.9/Add_5_output_0, %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_6_output_0, %onnx::Conv_1244, %onnx::Conv_1245) %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_1247, %onnx::Conv_1248) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_1250, %onnx::Conv_1251) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_1253, %onnx::Conv_1254) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_1256, %onnx::Conv_1257) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_2_output_0, %onnx::Conv_1259, %onnx::Conv_1260) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_1262, %onnx::Conv_1263) %/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_3_output_0 = Add(%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_3_output_0) %/layers.10/Add_4_output_0 = Add(%/layers.10/Add_3_output_0, %/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_4_output_0, %onnx::Conv_1265, %onnx::Conv_1266) %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_5_output_0 = Add(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_4_output_0) %/layers.10/Add_6_output_0 = Add(%/layers.10/Add_5_output_0, %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_6_output_0, %onnx::Conv_1268, %onnx::Conv_1269) %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_1271, %onnx::Conv_1272) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_1274, %onnx::Conv_1275) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_1277, %onnx::Conv_1278) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_1280, %onnx::Conv_1281) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_2_output_0, %onnx::Conv_1283, %onnx::Conv_1284) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_1286, %onnx::Conv_1287) %/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_3_output_0 = Add(%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_3_output_0) %/layers.11/Add_4_output_0 = Add(%/layers.11/Add_3_output_0, %/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_4_output_0, %onnx::Conv_1289, %onnx::Conv_1290) %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_5_output_0 = Add(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_4_output_0) %/layers.11/Add_6_output_0 = Add(%/layers.11/Add_5_output_0, %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_6_output_0, %onnx::Conv_1292, %onnx::Conv_1293) %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Concat_output_0) %1074 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %1074 }
val_accuracy
92.898637
1,414,277,120
4,687,498
{'zcp_epe_nas': 113.40920669271276, 'zcp_fisher': 3.9616472721099854, 'zcp_flops': 22628433920.0, 'zcp_grad_norm': 53.800777435302734, 'zcp_grasp': -2.831573486328125, 'zcp_jacov': -16.042751958581707, 'zcp_l2_norm': 1338.7520751953125, 'zcp_nwot': 229.14847675626677, 'zcp_params': 4687498.0, 'zcp_plain': -0.025519635528326003, 'zcp_snip': 304.2192077636719, 'zcp_synflow': 130.0704352117911, 'zcp_zen': 110.29625701904297, 'zcp_val_accuracy': 0.9130609035491941}
NASBench101_243047
NASBench101
243047
931cd1c4ed2f818ca8a948a4e784e551
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_953[FLOAT, 128x3x3x3] %onnx::Conv_954[FLOAT, 128] %onnx::Conv_956[FLOAT, 43x128x1x1] %onnx::Conv_957[FLOAT, 43] %onnx::Conv_959[FLOAT, 43x43x3x3] %onnx::Conv_962[FLOAT, 43x128x1x1] %onnx::Conv_965[FLOAT, 43x43x3x3] %onnx::Conv_968[FLOAT, 42x42x3x3] %onnx::Conv_969[FLOAT, 42] %onnx::Conv_971[FLOAT, 42x42x1x1] %onnx::Conv_974[FLOAT, 43x128x1x1] %onnx::Conv_977[FLOAT, 43x43x3x3] %onnx::Conv_980[FLOAT, 43x128x1x1] %onnx::Conv_983[FLOAT, 43x43x3x3] %onnx::Conv_986[FLOAT, 42x42x3x3] %onnx::Conv_989[FLOAT, 42x42x1x1] %onnx::Conv_992[FLOAT, 43x128x1x1] %onnx::Conv_995[FLOAT, 43x43x3x3] %onnx::Conv_998[FLOAT, 43x128x1x1] %onnx::Conv_1001[FLOAT, 43x43x3x3] %onnx::Conv_1004[FLOAT, 42x42x3x3] %onnx::Conv_1007[FLOAT, 42x42x1x1] %onnx::Conv_1010[FLOAT, 86x128x1x1] %onnx::Conv_1011[FLOAT, 86] %onnx::Conv_1013[FLOAT, 86x86x3x3] %onnx::Conv_1016[FLOAT, 85x128x1x1] %onnx::Conv_1017[FLOAT, 85] %onnx::Conv_1019[FLOAT, 85x85x3x3] %onnx::Conv_1022[FLOAT, 85x85x3x3] %onnx::Conv_1025[FLOAT, 85x85x1x1] %onnx::Conv_1028[FLOAT, 86x256x1x1] %onnx::Conv_1031[FLOAT, 86x86x3x3] %onnx::Conv_1034[FLOAT, 85x256x1x1] %onnx::Conv_1037[FLOAT, 85x85x3x3] %onnx::Conv_1040[FLOAT, 85x85x3x3] %onnx::Conv_1043[FLOAT, 85x85x1x1] %onnx::Conv_1046[FLOAT, 86x256x1x1] %onnx::Conv_1049[FLOAT, 86x86x3x3] %onnx::Conv_1052[FLOAT, 85x256x1x1] %onnx::Conv_1055[FLOAT, 85x85x3x3] %onnx::Conv_1058[FLOAT, 85x85x3x3] %onnx::Conv_1061[FLOAT, 85x85x1x1] %onnx::Conv_1064[FLOAT, 171x256x1x1] %onnx::Conv_1065[FLOAT, 171] %onnx::Conv_1067[FLOAT, 171x171x3x3] %onnx::Conv_1070[FLOAT, 171x256x1x1] %onnx::Conv_1073[FLOAT, 171x171x3x3] %onnx::Conv_1076[FLOAT, 170x170x3x3] %onnx::Conv_1077[FLOAT, 170] %onnx::Conv_1079[FLOAT, 170x170x1x1] %onnx::Conv_1082[FLOAT, 171x512x1x1] %onnx::Conv_1085[FLOAT, 171x171x3x3] %onnx::Conv_1088[FLOAT, 171x512x1x1] %onnx::Conv_1091[FLOAT, 171x171x3x3] %onnx::Conv_1094[FLOAT, 170x170x3x3] %onnx::Conv_1097[FLOAT, 170x170x1x1] %onnx::Conv_1100[FLOAT, 171x512x1x1] %onnx::Conv_1103[FLOAT, 171x171x3x3] %onnx::Conv_1106[FLOAT, 171x512x1x1] %onnx::Conv_1109[FLOAT, 171x171x3x3] %onnx::Conv_1112[FLOAT, 170x170x3x3] %onnx::Conv_1115[FLOAT, 170x170x1x1] ) { %onnx::Conv_1116 = Identity(%onnx::Conv_1077) %onnx::Conv_1113 = Identity(%onnx::Conv_1077) %onnx::Conv_1110 = Identity(%onnx::Conv_1065) %onnx::Conv_1107 = Identity(%onnx::Conv_1065) %onnx::Conv_1104 = Identity(%onnx::Conv_1065) %onnx::Conv_1101 = Identity(%onnx::Conv_1065) %onnx::Conv_1098 = Identity(%onnx::Conv_1077) %onnx::Conv_1095 = Identity(%onnx::Conv_1077) %onnx::Conv_1092 = Identity(%onnx::Conv_1065) %onnx::Conv_1089 = Identity(%onnx::Conv_1065) %onnx::Conv_1086 = Identity(%onnx::Conv_1065) %onnx::Conv_1083 = Identity(%onnx::Conv_1065) %onnx::Conv_1080 = Identity(%onnx::Conv_1077) %onnx::Conv_1074 = Identity(%onnx::Conv_1065) %onnx::Conv_1071 = Identity(%onnx::Conv_1065) %onnx::Conv_1068 = Identity(%onnx::Conv_1065) %onnx::Conv_1062 = Identity(%onnx::Conv_1017) %onnx::Conv_1059 = Identity(%onnx::Conv_1017) %onnx::Conv_1056 = Identity(%onnx::Conv_1017) %onnx::Conv_1053 = Identity(%onnx::Conv_1017) %onnx::Conv_1050 = Identity(%onnx::Conv_1011) %onnx::Conv_1047 = Identity(%onnx::Conv_1011) %onnx::Conv_1044 = Identity(%onnx::Conv_1017) %onnx::Conv_1041 = Identity(%onnx::Conv_1017) %onnx::Conv_1038 = Identity(%onnx::Conv_1017) %onnx::Conv_1035 = Identity(%onnx::Conv_1017) %onnx::Conv_1032 = Identity(%onnx::Conv_1011) %onnx::Conv_1029 = Identity(%onnx::Conv_1011) %onnx::Conv_1026 = Identity(%onnx::Conv_1017) %onnx::Conv_1023 = Identity(%onnx::Conv_1017) %onnx::Conv_1020 = Identity(%onnx::Conv_1017) %onnx::Conv_1014 = Identity(%onnx::Conv_1011) %onnx::Conv_1008 = Identity(%onnx::Conv_969) %onnx::Conv_1005 = Identity(%onnx::Conv_969) %onnx::Conv_1002 = Identity(%onnx::Conv_957) %onnx::Conv_999 = Identity(%onnx::Conv_957) %onnx::Conv_996 = Identity(%onnx::Conv_957) %onnx::Conv_993 = Identity(%onnx::Conv_957) %onnx::Conv_990 = Identity(%onnx::Conv_969) %onnx::Conv_987 = Identity(%onnx::Conv_969) %onnx::Conv_984 = Identity(%onnx::Conv_957) %onnx::Conv_981 = Identity(%onnx::Conv_957) %onnx::Conv_978 = Identity(%onnx::Conv_957) %onnx::Conv_975 = Identity(%onnx::Conv_957) %onnx::Conv_972 = Identity(%onnx::Conv_969) %onnx::Conv_966 = Identity(%onnx::Conv_957) %onnx::Conv_963 = Identity(%onnx::Conv_957) %onnx::Conv_960 = Identity(%onnx::Conv_957) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_953, %onnx::Conv_954) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_956, %onnx::Conv_957) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_959, %onnx::Conv_960) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_962, %onnx::Conv_963) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_965, %onnx::Conv_966) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.1/Slice_output_0 = Slice(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_3_output_0, %/layers.1/Constant_4_output_0, %/layers.1/Constant_2_output_0, %/layers.1/Constant_5_output_0) %/layers.1/Constant_6_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/Slice_output_0, %/layers.1/Constant_6_output_0) %/layers.1/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_2_output_0) %/layers.1/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_8_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_9_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_10_output_0 = Constant[value = <Tensor>]() %/layers.1/Slice_1_output_0 = Slice(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_8_output_0, %/layers.1/Constant_9_output_0, %/layers.1/Constant_7_output_0, %/layers.1/Constant_10_output_0) %/layers.1/Constant_11_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_3_output_0 = Add(%/layers.1/Slice_1_output_0, %/layers.1/Constant_11_output_0) %/layers.1/Add_4_output_0 = Add(%/layers.1/Add_3_output_0, %/layers.1/vertex_op.3/maxpool/MaxPool_output_0) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_4_output_0, %onnx::Conv_968, %onnx::Conv_969) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_12_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_5_output_0 = Add(%/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_12_output_0) %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_5_output_0, %onnx::Conv_971, %onnx::Conv_972) %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_974, %onnx::Conv_975) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_977, %onnx::Conv_978) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_980, %onnx::Conv_981) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_983, %onnx::Conv_984) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.2/Slice_output_0 = Slice(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_3_output_0, %/layers.2/Constant_4_output_0, %/layers.2/Constant_2_output_0, %/layers.2/Constant_5_output_0) %/layers.2/Constant_6_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/Slice_output_0, %/layers.2/Constant_6_output_0) %/layers.2/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_2_output_0) %/layers.2/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_8_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_9_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_10_output_0 = Constant[value = <Tensor>]() %/layers.2/Slice_1_output_0 = Slice(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_8_output_0, %/layers.2/Constant_9_output_0, %/layers.2/Constant_7_output_0, %/layers.2/Constant_10_output_0) %/layers.2/Constant_11_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_3_output_0 = Add(%/layers.2/Slice_1_output_0, %/layers.2/Constant_11_output_0) %/layers.2/Add_4_output_0 = Add(%/layers.2/Add_3_output_0, %/layers.2/vertex_op.3/maxpool/MaxPool_output_0) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_4_output_0, %onnx::Conv_986, %onnx::Conv_987) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_12_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_5_output_0 = Add(%/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_12_output_0) %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_5_output_0, %onnx::Conv_989, %onnx::Conv_990) %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_992, %onnx::Conv_993) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_995, %onnx::Conv_996) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_998, %onnx::Conv_999) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_1001, %onnx::Conv_1002) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.3/Slice_output_0 = Slice(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_3_output_0, %/layers.3/Constant_4_output_0, %/layers.3/Constant_2_output_0, %/layers.3/Constant_5_output_0) %/layers.3/Constant_6_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/Slice_output_0, %/layers.3/Constant_6_output_0) %/layers.3/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_2_output_0) %/layers.3/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_8_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_9_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_10_output_0 = Constant[value = <Tensor>]() %/layers.3/Slice_1_output_0 = Slice(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_8_output_0, %/layers.3/Constant_9_output_0, %/layers.3/Constant_7_output_0, %/layers.3/Constant_10_output_0) %/layers.3/Constant_11_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_3_output_0 = Add(%/layers.3/Slice_1_output_0, %/layers.3/Constant_11_output_0) %/layers.3/Add_4_output_0 = Add(%/layers.3/Add_3_output_0, %/layers.3/vertex_op.3/maxpool/MaxPool_output_0) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_4_output_0, %onnx::Conv_1004, %onnx::Conv_1005) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_12_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_5_output_0 = Add(%/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_12_output_0) %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_5_output_0, %onnx::Conv_1007, %onnx::Conv_1008) %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Concat_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_1010, %onnx::Conv_1011) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_1013, %onnx::Conv_1014) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_1016, %onnx::Conv_1017) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_1019, %onnx::Conv_1020) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_2_output_0) %/layers.5/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.5/Slice_output_0 = Slice(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_4_output_0, %/layers.5/Constant_5_output_0, %/layers.5/Constant_3_output_0, %/layers.5/Constant_6_output_0) %/layers.5/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_3_output_0 = Add(%/layers.5/Slice_output_0, %/layers.5/Constant_7_output_0) %/layers.5/Add_4_output_0 = Add(%/layers.5/Add_3_output_0, %/layers.5/vertex_op.3/maxpool/MaxPool_output_0) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_4_output_0, %onnx::Conv_1022, %onnx::Conv_1023) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_8_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_5_output_0 = Add(%/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_8_output_0) %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_5_output_0, %onnx::Conv_1025, %onnx::Conv_1026) %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_1028, %onnx::Conv_1029) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_1031, %onnx::Conv_1032) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_1034, %onnx::Conv_1035) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_1037, %onnx::Conv_1038) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_2_output_0) %/layers.6/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.6/Slice_output_0 = Slice(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_4_output_0, %/layers.6/Constant_5_output_0, %/layers.6/Constant_3_output_0, %/layers.6/Constant_6_output_0) %/layers.6/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_3_output_0 = Add(%/layers.6/Slice_output_0, %/layers.6/Constant_7_output_0) %/layers.6/Add_4_output_0 = Add(%/layers.6/Add_3_output_0, %/layers.6/vertex_op.3/maxpool/MaxPool_output_0) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_4_output_0, %onnx::Conv_1040, %onnx::Conv_1041) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_8_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_5_output_0 = Add(%/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_8_output_0) %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_5_output_0, %onnx::Conv_1043, %onnx::Conv_1044) %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_1046, %onnx::Conv_1047) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_1049, %onnx::Conv_1050) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_1052, %onnx::Conv_1053) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_1055, %onnx::Conv_1056) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_2_output_0) %/layers.7/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.7/Slice_output_0 = Slice(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_4_output_0, %/layers.7/Constant_5_output_0, %/layers.7/Constant_3_output_0, %/layers.7/Constant_6_output_0) %/layers.7/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_3_output_0 = Add(%/layers.7/Slice_output_0, %/layers.7/Constant_7_output_0) %/layers.7/Add_4_output_0 = Add(%/layers.7/Add_3_output_0, %/layers.7/vertex_op.3/maxpool/MaxPool_output_0) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_4_output_0, %onnx::Conv_1058, %onnx::Conv_1059) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_8_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_5_output_0 = Add(%/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_8_output_0) %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_5_output_0, %onnx::Conv_1061, %onnx::Conv_1062) %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Concat_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1064, %onnx::Conv_1065) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_1067, %onnx::Conv_1068) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1070, %onnx::Conv_1071) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_1073, %onnx::Conv_1074) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.9/Slice_output_0 = Slice(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_3_output_0, %/layers.9/Constant_4_output_0, %/layers.9/Constant_2_output_0, %/layers.9/Constant_5_output_0) %/layers.9/Constant_6_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/Slice_output_0, %/layers.9/Constant_6_output_0) %/layers.9/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_2_output_0) %/layers.9/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_8_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_9_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_10_output_0 = Constant[value = <Tensor>]() %/layers.9/Slice_1_output_0 = Slice(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_8_output_0, %/layers.9/Constant_9_output_0, %/layers.9/Constant_7_output_0, %/layers.9/Constant_10_output_0) %/layers.9/Constant_11_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_3_output_0 = Add(%/layers.9/Slice_1_output_0, %/layers.9/Constant_11_output_0) %/layers.9/Add_4_output_0 = Add(%/layers.9/Add_3_output_0, %/layers.9/vertex_op.3/maxpool/MaxPool_output_0) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_4_output_0, %onnx::Conv_1076, %onnx::Conv_1077) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_12_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_5_output_0 = Add(%/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_12_output_0) %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_5_output_0, %onnx::Conv_1079, %onnx::Conv_1080) %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_1082, %onnx::Conv_1083) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_1085, %onnx::Conv_1086) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_1088, %onnx::Conv_1089) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_1091, %onnx::Conv_1092) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.10/Slice_output_0 = Slice(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_3_output_0, %/layers.10/Constant_4_output_0, %/layers.10/Constant_2_output_0, %/layers.10/Constant_5_output_0) %/layers.10/Constant_6_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/Slice_output_0, %/layers.10/Constant_6_output_0) %/layers.10/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_2_output_0) %/layers.10/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_8_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_9_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_10_output_0 = Constant[value = <Tensor>]() %/layers.10/Slice_1_output_0 = Slice(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_8_output_0, %/layers.10/Constant_9_output_0, %/layers.10/Constant_7_output_0, %/layers.10/Constant_10_output_0) %/layers.10/Constant_11_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_3_output_0 = Add(%/layers.10/Slice_1_output_0, %/layers.10/Constant_11_output_0) %/layers.10/Add_4_output_0 = Add(%/layers.10/Add_3_output_0, %/layers.10/vertex_op.3/maxpool/MaxPool_output_0) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_4_output_0, %onnx::Conv_1094, %onnx::Conv_1095) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_12_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_5_output_0 = Add(%/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_12_output_0) %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_5_output_0, %onnx::Conv_1097, %onnx::Conv_1098) %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_1100, %onnx::Conv_1101) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_1103, %onnx::Conv_1104) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_1106, %onnx::Conv_1107) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_1109, %onnx::Conv_1110) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.11/Slice_output_0 = Slice(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_3_output_0, %/layers.11/Constant_4_output_0, %/layers.11/Constant_2_output_0, %/layers.11/Constant_5_output_0) %/layers.11/Constant_6_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/Slice_output_0, %/layers.11/Constant_6_output_0) %/layers.11/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_2_output_0) %/layers.11/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_8_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_9_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_10_output_0 = Constant[value = <Tensor>]() %/layers.11/Slice_1_output_0 = Slice(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_8_output_0, %/layers.11/Constant_9_output_0, %/layers.11/Constant_7_output_0, %/layers.11/Constant_10_output_0) %/layers.11/Constant_11_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_3_output_0 = Add(%/layers.11/Slice_1_output_0, %/layers.11/Constant_11_output_0) %/layers.11/Add_4_output_0 = Add(%/layers.11/Add_3_output_0, %/layers.11/vertex_op.3/maxpool/MaxPool_output_0) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_4_output_0, %onnx::Conv_1112, %onnx::Conv_1113) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_12_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_5_output_0 = Add(%/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_12_output_0) %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_5_output_0, %onnx::Conv_1115, %onnx::Conv_1116) %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Concat_output_0) %951 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %951 }
val_accuracy
93.519634
1,137,897,728
3,810,115
{'zcp_epe_nas': 167.68003988104218, 'zcp_fisher': 7.632844924926758, 'zcp_flops': 18206363648.0, 'zcp_grad_norm': 58.243595123291016, 'zcp_grasp': 2.282806396484375, 'zcp_jacov': -16.05598635859613, 'zcp_l2_norm': 884.7297973632812, 'zcp_nwot': 218.20311646503825, 'zcp_params': 3810115.0, 'zcp_plain': -0.011079748161137002, 'zcp_snip': 302.6837158203125, 'zcp_synflow': 115.7583591335441, 'zcp_zen': 97.50292205810547, 'zcp_val_accuracy': 0.9105569124221801}
NASBench101_285304
NASBench101
285304
acafd1196f298808bd3f05c73c4fced7
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_968[FLOAT, 128x3x3x3] %onnx::Conv_969[FLOAT, 128] %onnx::Conv_971[FLOAT, 64x128x1x1] %onnx::Conv_972[FLOAT, 64] %onnx::Conv_974[FLOAT, 64x64x1x1] %onnx::Conv_977[FLOAT, 64x64x1x1] %onnx::Conv_980[FLOAT, 64x128x1x1] %onnx::Conv_983[FLOAT, 64x64x3x3] %onnx::Conv_986[FLOAT, 64x128x1x1] %onnx::Conv_989[FLOAT, 64x64x1x1] %onnx::Conv_992[FLOAT, 64x128x1x1] %onnx::Conv_995[FLOAT, 64x64x1x1] %onnx::Conv_998[FLOAT, 64x64x1x1] %onnx::Conv_1001[FLOAT, 64x128x1x1] %onnx::Conv_1004[FLOAT, 64x64x3x3] %onnx::Conv_1007[FLOAT, 64x128x1x1] %onnx::Conv_1010[FLOAT, 64x64x1x1] %onnx::Conv_1013[FLOAT, 64x128x1x1] %onnx::Conv_1016[FLOAT, 64x64x1x1] %onnx::Conv_1019[FLOAT, 64x64x1x1] %onnx::Conv_1022[FLOAT, 64x128x1x1] %onnx::Conv_1025[FLOAT, 64x64x3x3] %onnx::Conv_1028[FLOAT, 64x128x1x1] %onnx::Conv_1031[FLOAT, 64x64x1x1] %onnx::Conv_1034[FLOAT, 128x128x1x1] %onnx::Conv_1037[FLOAT, 128x128x1x1] %onnx::Conv_1040[FLOAT, 128x128x1x1] %onnx::Conv_1043[FLOAT, 128x128x1x1] %onnx::Conv_1046[FLOAT, 128x128x3x3] %onnx::Conv_1049[FLOAT, 128x128x1x1] %onnx::Conv_1052[FLOAT, 128x128x1x1] %onnx::Conv_1055[FLOAT, 128x256x1x1] %onnx::Conv_1058[FLOAT, 128x128x1x1] %onnx::Conv_1061[FLOAT, 128x128x1x1] %onnx::Conv_1064[FLOAT, 128x256x1x1] %onnx::Conv_1067[FLOAT, 128x128x3x3] %onnx::Conv_1070[FLOAT, 128x256x1x1] %onnx::Conv_1073[FLOAT, 128x128x1x1] %onnx::Conv_1076[FLOAT, 128x256x1x1] %onnx::Conv_1079[FLOAT, 128x128x1x1] %onnx::Conv_1082[FLOAT, 128x128x1x1] %onnx::Conv_1085[FLOAT, 128x256x1x1] %onnx::Conv_1088[FLOAT, 128x128x3x3] %onnx::Conv_1091[FLOAT, 128x256x1x1] %onnx::Conv_1094[FLOAT, 128x128x1x1] %onnx::Conv_1097[FLOAT, 256x256x1x1] %onnx::Conv_1098[FLOAT, 256] %onnx::Conv_1100[FLOAT, 256x256x1x1] %onnx::Conv_1103[FLOAT, 256x256x1x1] %onnx::Conv_1106[FLOAT, 256x256x1x1] %onnx::Conv_1109[FLOAT, 256x256x3x3] %onnx::Conv_1112[FLOAT, 256x256x1x1] %onnx::Conv_1115[FLOAT, 256x256x1x1] %onnx::Conv_1118[FLOAT, 256x512x1x1] %onnx::Conv_1121[FLOAT, 256x256x1x1] %onnx::Conv_1124[FLOAT, 256x256x1x1] %onnx::Conv_1127[FLOAT, 256x512x1x1] %onnx::Conv_1130[FLOAT, 256x256x3x3] %onnx::Conv_1133[FLOAT, 256x512x1x1] %onnx::Conv_1136[FLOAT, 256x256x1x1] %onnx::Conv_1139[FLOAT, 256x512x1x1] %onnx::Conv_1142[FLOAT, 256x256x1x1] %onnx::Conv_1145[FLOAT, 256x256x1x1] %onnx::Conv_1148[FLOAT, 256x512x1x1] %onnx::Conv_1151[FLOAT, 256x256x3x3] %onnx::Conv_1154[FLOAT, 256x512x1x1] %onnx::Conv_1157[FLOAT, 256x256x1x1] ) { %onnx::Conv_1158 = Identity(%onnx::Conv_1098) %onnx::Conv_1155 = Identity(%onnx::Conv_1098) %onnx::Conv_1152 = Identity(%onnx::Conv_1098) %onnx::Conv_1149 = Identity(%onnx::Conv_1098) %onnx::Conv_1146 = Identity(%onnx::Conv_1098) %onnx::Conv_1143 = Identity(%onnx::Conv_1098) %onnx::Conv_1140 = Identity(%onnx::Conv_1098) %onnx::Conv_1137 = Identity(%onnx::Conv_1098) %onnx::Conv_1134 = Identity(%onnx::Conv_1098) %onnx::Conv_1131 = Identity(%onnx::Conv_1098) %onnx::Conv_1128 = Identity(%onnx::Conv_1098) %onnx::Conv_1125 = Identity(%onnx::Conv_1098) %onnx::Conv_1122 = Identity(%onnx::Conv_1098) %onnx::Conv_1119 = Identity(%onnx::Conv_1098) %onnx::Conv_1116 = Identity(%onnx::Conv_1098) %onnx::Conv_1113 = Identity(%onnx::Conv_1098) %onnx::Conv_1110 = Identity(%onnx::Conv_1098) %onnx::Conv_1107 = Identity(%onnx::Conv_1098) %onnx::Conv_1104 = Identity(%onnx::Conv_1098) %onnx::Conv_1101 = Identity(%onnx::Conv_1098) %onnx::Conv_1095 = Identity(%onnx::Conv_969) %onnx::Conv_1092 = Identity(%onnx::Conv_969) %onnx::Conv_1089 = Identity(%onnx::Conv_969) %onnx::Conv_1086 = Identity(%onnx::Conv_969) %onnx::Conv_1083 = Identity(%onnx::Conv_969) %onnx::Conv_1080 = Identity(%onnx::Conv_969) %onnx::Conv_1077 = Identity(%onnx::Conv_969) %onnx::Conv_1074 = Identity(%onnx::Conv_969) %onnx::Conv_1071 = Identity(%onnx::Conv_969) %onnx::Conv_1068 = Identity(%onnx::Conv_969) %onnx::Conv_1065 = Identity(%onnx::Conv_969) %onnx::Conv_1062 = Identity(%onnx::Conv_969) %onnx::Conv_1059 = Identity(%onnx::Conv_969) %onnx::Conv_1056 = Identity(%onnx::Conv_969) %onnx::Conv_1053 = Identity(%onnx::Conv_969) %onnx::Conv_1050 = Identity(%onnx::Conv_969) %onnx::Conv_1047 = Identity(%onnx::Conv_969) %onnx::Conv_1044 = Identity(%onnx::Conv_969) %onnx::Conv_1041 = Identity(%onnx::Conv_969) %onnx::Conv_1038 = Identity(%onnx::Conv_969) %onnx::Conv_1035 = Identity(%onnx::Conv_969) %onnx::Conv_1032 = Identity(%onnx::Conv_972) %onnx::Conv_1029 = Identity(%onnx::Conv_972) %onnx::Conv_1026 = Identity(%onnx::Conv_972) %onnx::Conv_1023 = Identity(%onnx::Conv_972) %onnx::Conv_1020 = Identity(%onnx::Conv_972) %onnx::Conv_1017 = Identity(%onnx::Conv_972) %onnx::Conv_1014 = Identity(%onnx::Conv_972) %onnx::Conv_1011 = Identity(%onnx::Conv_972) %onnx::Conv_1008 = Identity(%onnx::Conv_972) %onnx::Conv_1005 = Identity(%onnx::Conv_972) %onnx::Conv_1002 = Identity(%onnx::Conv_972) %onnx::Conv_999 = Identity(%onnx::Conv_972) %onnx::Conv_996 = Identity(%onnx::Conv_972) %onnx::Conv_993 = Identity(%onnx::Conv_972) %onnx::Conv_990 = Identity(%onnx::Conv_972) %onnx::Conv_987 = Identity(%onnx::Conv_972) %onnx::Conv_984 = Identity(%onnx::Conv_972) %onnx::Conv_981 = Identity(%onnx::Conv_972) %onnx::Conv_978 = Identity(%onnx::Conv_972) %onnx::Conv_975 = Identity(%onnx::Conv_972) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_968, %onnx::Conv_969) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_971, %onnx::Conv_972) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_974, %onnx::Conv_975) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_977, %onnx::Conv_978) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_980, %onnx::Conv_981) %/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/Add_3_output_0 = Add(%/layers.1/Add_2_output_0, %/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_3_output_0, %onnx::Conv_983, %onnx::Conv_984) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_986, %onnx::Conv_987) %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_4_output_0 = Add(%/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_3_output_0) %/layers.1/Add_5_output_0 = Add(%/layers.1/Add_4_output_0, %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_5_output_0, %onnx::Conv_989, %onnx::Conv_990) %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_992, %onnx::Conv_993) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_995, %onnx::Conv_996) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_998, %onnx::Conv_999) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_1001, %onnx::Conv_1002) %/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/Add_3_output_0 = Add(%/layers.2/Add_2_output_0, %/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_3_output_0, %onnx::Conv_1004, %onnx::Conv_1005) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_1007, %onnx::Conv_1008) %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_4_output_0 = Add(%/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_3_output_0) %/layers.2/Add_5_output_0 = Add(%/layers.2/Add_4_output_0, %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_5_output_0, %onnx::Conv_1010, %onnx::Conv_1011) %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_1013, %onnx::Conv_1014) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_1016, %onnx::Conv_1017) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_1019, %onnx::Conv_1020) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_1022, %onnx::Conv_1023) %/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/Add_3_output_0 = Add(%/layers.3/Add_2_output_0, %/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_3_output_0, %onnx::Conv_1025, %onnx::Conv_1026) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_1028, %onnx::Conv_1029) %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_4_output_0 = Add(%/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_3_output_0) %/layers.3/Add_5_output_0 = Add(%/layers.3/Add_4_output_0, %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_5_output_0, %onnx::Conv_1031, %onnx::Conv_1032) %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Concat_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_1034, %onnx::Conv_1035) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_1037, %onnx::Conv_1038) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_1040, %onnx::Conv_1041) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_1043, %onnx::Conv_1044) %/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/Add_3_output_0 = Add(%/layers.5/Add_2_output_0, %/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_3_output_0, %onnx::Conv_1046, %onnx::Conv_1047) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_1049, %onnx::Conv_1050) %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_4_output_0 = Add(%/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_3_output_0) %/layers.5/Add_5_output_0 = Add(%/layers.5/Add_4_output_0, %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_5_output_0, %onnx::Conv_1052, %onnx::Conv_1053) %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_1055, %onnx::Conv_1056) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_1058, %onnx::Conv_1059) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_1061, %onnx::Conv_1062) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_1064, %onnx::Conv_1065) %/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/Add_3_output_0 = Add(%/layers.6/Add_2_output_0, %/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_3_output_0, %onnx::Conv_1067, %onnx::Conv_1068) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_1070, %onnx::Conv_1071) %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_4_output_0 = Add(%/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_3_output_0) %/layers.6/Add_5_output_0 = Add(%/layers.6/Add_4_output_0, %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_5_output_0, %onnx::Conv_1073, %onnx::Conv_1074) %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_1076, %onnx::Conv_1077) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_1079, %onnx::Conv_1080) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_1082, %onnx::Conv_1083) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_1085, %onnx::Conv_1086) %/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/Add_3_output_0 = Add(%/layers.7/Add_2_output_0, %/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_3_output_0, %onnx::Conv_1088, %onnx::Conv_1089) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_1091, %onnx::Conv_1092) %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_4_output_0 = Add(%/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_3_output_0) %/layers.7/Add_5_output_0 = Add(%/layers.7/Add_4_output_0, %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_5_output_0, %onnx::Conv_1094, %onnx::Conv_1095) %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Concat_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1097, %onnx::Conv_1098) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_1100, %onnx::Conv_1101) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_1103, %onnx::Conv_1104) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1106, %onnx::Conv_1107) %/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/Add_3_output_0 = Add(%/layers.9/Add_2_output_0, %/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_3_output_0, %onnx::Conv_1109, %onnx::Conv_1110) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1112, %onnx::Conv_1113) %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_4_output_0 = Add(%/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_3_output_0) %/layers.9/Add_5_output_0 = Add(%/layers.9/Add_4_output_0, %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_5_output_0, %onnx::Conv_1115, %onnx::Conv_1116) %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_1118, %onnx::Conv_1119) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_1121, %onnx::Conv_1122) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_1124, %onnx::Conv_1125) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_1127, %onnx::Conv_1128) %/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/Add_3_output_0 = Add(%/layers.10/Add_2_output_0, %/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_3_output_0, %onnx::Conv_1130, %onnx::Conv_1131) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_1133, %onnx::Conv_1134) %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_4_output_0 = Add(%/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_3_output_0) %/layers.10/Add_5_output_0 = Add(%/layers.10/Add_4_output_0, %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_5_output_0, %onnx::Conv_1136, %onnx::Conv_1137) %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_1139, %onnx::Conv_1140) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_1142, %onnx::Conv_1143) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_1145, %onnx::Conv_1146) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_1148, %onnx::Conv_1149) %/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/Add_3_output_0 = Add(%/layers.11/Add_2_output_0, %/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_3_output_0, %onnx::Conv_1151, %onnx::Conv_1152) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_1154, %onnx::Conv_1155) %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_4_output_0 = Add(%/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_3_output_0) %/layers.11/Add_5_output_0 = Add(%/layers.11/Add_4_output_0, %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_5_output_0, %onnx::Conv_1157, %onnx::Conv_1158) %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Concat_output_0) %966 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %966 }
val_accuracy
92.127407
1,336,027,136
4,426,762
{'zcp_epe_nas': 128.30278652457378, 'zcp_fisher': 78.79334259033203, 'zcp_flops': 21376434176.0, 'zcp_grad_norm': 209.57516479492188, 'zcp_grasp': 263.744140625, 'zcp_jacov': -16.05132399263857, 'zcp_l2_norm': 1189.336181640625, 'zcp_nwot': 227.11436983247157, 'zcp_params': 4426762.0, 'zcp_plain': -0.003807736095041, 'zcp_snip': 1077.4276123046875, 'zcp_synflow': 130.3837938728421, 'zcp_zen': 102.74352264404297, 'zcp_val_accuracy': 0.889322936534881}
NASBench101_276219
NASBench101
276219
a7375d51d72e68653a75f0e59e6755b3
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_950[FLOAT, 128x3x3x3] %onnx::Conv_951[FLOAT, 128] %onnx::Conv_953[FLOAT, 128x128x1x1] %onnx::Conv_956[FLOAT, 128x128x1x1] %onnx::Conv_959[FLOAT, 128x128x1x1] %onnx::Conv_962[FLOAT, 128x128x1x1] %onnx::Conv_965[FLOAT, 128x128x1x1] %onnx::Conv_968[FLOAT, 128x128x3x3] %onnx::Conv_971[FLOAT, 128x128x1x1] %onnx::Conv_974[FLOAT, 128x128x1x1] %onnx::Conv_977[FLOAT, 128x128x1x1] %onnx::Conv_980[FLOAT, 128x128x1x1] %onnx::Conv_983[FLOAT, 128x128x1x1] %onnx::Conv_986[FLOAT, 128x128x1x1] %onnx::Conv_989[FLOAT, 128x128x3x3] %onnx::Conv_992[FLOAT, 128x128x1x1] %onnx::Conv_995[FLOAT, 128x128x1x1] %onnx::Conv_998[FLOAT, 128x128x1x1] %onnx::Conv_1001[FLOAT, 128x128x1x1] %onnx::Conv_1004[FLOAT, 128x128x1x1] %onnx::Conv_1007[FLOAT, 128x128x1x1] %onnx::Conv_1010[FLOAT, 128x128x3x3] %onnx::Conv_1013[FLOAT, 128x128x1x1] %onnx::Conv_1016[FLOAT, 256x128x1x1] %onnx::Conv_1017[FLOAT, 256] %onnx::Conv_1019[FLOAT, 256x256x1x1] %onnx::Conv_1022[FLOAT, 256x128x1x1] %onnx::Conv_1025[FLOAT, 256x256x1x1] %onnx::Conv_1028[FLOAT, 256x128x1x1] %onnx::Conv_1031[FLOAT, 256x256x3x3] %onnx::Conv_1034[FLOAT, 256x128x1x1] %onnx::Conv_1037[FLOAT, 256x256x1x1] %onnx::Conv_1040[FLOAT, 256x256x1x1] %onnx::Conv_1043[FLOAT, 256x256x1x1] %onnx::Conv_1046[FLOAT, 256x256x1x1] %onnx::Conv_1049[FLOAT, 256x256x1x1] %onnx::Conv_1052[FLOAT, 256x256x3x3] %onnx::Conv_1055[FLOAT, 256x256x1x1] %onnx::Conv_1058[FLOAT, 256x256x1x1] %onnx::Conv_1061[FLOAT, 256x256x1x1] %onnx::Conv_1064[FLOAT, 256x256x1x1] %onnx::Conv_1067[FLOAT, 256x256x1x1] %onnx::Conv_1070[FLOAT, 256x256x1x1] %onnx::Conv_1073[FLOAT, 256x256x3x3] %onnx::Conv_1076[FLOAT, 256x256x1x1] %onnx::Conv_1079[FLOAT, 512x256x1x1] %onnx::Conv_1080[FLOAT, 512] %onnx::Conv_1082[FLOAT, 512x512x1x1] %onnx::Conv_1085[FLOAT, 512x256x1x1] %onnx::Conv_1088[FLOAT, 512x512x1x1] %onnx::Conv_1091[FLOAT, 512x256x1x1] %onnx::Conv_1094[FLOAT, 512x512x3x3] %onnx::Conv_1097[FLOAT, 512x256x1x1] %onnx::Conv_1100[FLOAT, 512x512x1x1] %onnx::Conv_1103[FLOAT, 512x512x1x1] %onnx::Conv_1106[FLOAT, 512x512x1x1] %onnx::Conv_1109[FLOAT, 512x512x1x1] %onnx::Conv_1112[FLOAT, 512x512x1x1] %onnx::Conv_1115[FLOAT, 512x512x3x3] %onnx::Conv_1118[FLOAT, 512x512x1x1] %onnx::Conv_1121[FLOAT, 512x512x1x1] %onnx::Conv_1124[FLOAT, 512x512x1x1] %onnx::Conv_1127[FLOAT, 512x512x1x1] %onnx::Conv_1130[FLOAT, 512x512x1x1] %onnx::Conv_1133[FLOAT, 512x512x1x1] %onnx::Conv_1136[FLOAT, 512x512x3x3] %onnx::Conv_1139[FLOAT, 512x512x1x1] ) { %onnx::Conv_1140 = Identity(%onnx::Conv_1080) %onnx::Conv_1137 = Identity(%onnx::Conv_1080) %onnx::Conv_1134 = Identity(%onnx::Conv_1080) %onnx::Conv_1131 = Identity(%onnx::Conv_1080) %onnx::Conv_1128 = Identity(%onnx::Conv_1080) %onnx::Conv_1125 = Identity(%onnx::Conv_1080) %onnx::Conv_1122 = Identity(%onnx::Conv_1080) %onnx::Conv_1119 = Identity(%onnx::Conv_1080) %onnx::Conv_1116 = Identity(%onnx::Conv_1080) %onnx::Conv_1113 = Identity(%onnx::Conv_1080) %onnx::Conv_1110 = Identity(%onnx::Conv_1080) %onnx::Conv_1107 = Identity(%onnx::Conv_1080) %onnx::Conv_1104 = Identity(%onnx::Conv_1080) %onnx::Conv_1101 = Identity(%onnx::Conv_1080) %onnx::Conv_1098 = Identity(%onnx::Conv_1080) %onnx::Conv_1095 = Identity(%onnx::Conv_1080) %onnx::Conv_1092 = Identity(%onnx::Conv_1080) %onnx::Conv_1089 = Identity(%onnx::Conv_1080) %onnx::Conv_1086 = Identity(%onnx::Conv_1080) %onnx::Conv_1083 = Identity(%onnx::Conv_1080) %onnx::Conv_1077 = Identity(%onnx::Conv_1017) %onnx::Conv_1074 = Identity(%onnx::Conv_1017) %onnx::Conv_1071 = Identity(%onnx::Conv_1017) %onnx::Conv_1068 = Identity(%onnx::Conv_1017) %onnx::Conv_1065 = Identity(%onnx::Conv_1017) %onnx::Conv_1062 = Identity(%onnx::Conv_1017) %onnx::Conv_1059 = Identity(%onnx::Conv_1017) %onnx::Conv_1056 = Identity(%onnx::Conv_1017) %onnx::Conv_1053 = Identity(%onnx::Conv_1017) %onnx::Conv_1050 = Identity(%onnx::Conv_1017) %onnx::Conv_1047 = Identity(%onnx::Conv_1017) %onnx::Conv_1044 = Identity(%onnx::Conv_1017) %onnx::Conv_1041 = Identity(%onnx::Conv_1017) %onnx::Conv_1038 = Identity(%onnx::Conv_1017) %onnx::Conv_1035 = Identity(%onnx::Conv_1017) %onnx::Conv_1032 = Identity(%onnx::Conv_1017) %onnx::Conv_1029 = Identity(%onnx::Conv_1017) %onnx::Conv_1026 = Identity(%onnx::Conv_1017) %onnx::Conv_1023 = Identity(%onnx::Conv_1017) %onnx::Conv_1020 = Identity(%onnx::Conv_1017) %onnx::Conv_1014 = Identity(%onnx::Conv_951) %onnx::Conv_1011 = Identity(%onnx::Conv_951) %onnx::Conv_1008 = Identity(%onnx::Conv_951) %onnx::Conv_1005 = Identity(%onnx::Conv_951) %onnx::Conv_1002 = Identity(%onnx::Conv_951) %onnx::Conv_999 = Identity(%onnx::Conv_951) %onnx::Conv_996 = Identity(%onnx::Conv_951) %onnx::Conv_993 = Identity(%onnx::Conv_951) %onnx::Conv_990 = Identity(%onnx::Conv_951) %onnx::Conv_987 = Identity(%onnx::Conv_951) %onnx::Conv_984 = Identity(%onnx::Conv_951) %onnx::Conv_981 = Identity(%onnx::Conv_951) %onnx::Conv_978 = Identity(%onnx::Conv_951) %onnx::Conv_975 = Identity(%onnx::Conv_951) %onnx::Conv_972 = Identity(%onnx::Conv_951) %onnx::Conv_969 = Identity(%onnx::Conv_951) %onnx::Conv_966 = Identity(%onnx::Conv_951) %onnx::Conv_963 = Identity(%onnx::Conv_951) %onnx::Conv_960 = Identity(%onnx::Conv_951) %onnx::Conv_957 = Identity(%onnx::Conv_951) %onnx::Conv_954 = Identity(%onnx::Conv_951) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_950, %onnx::Conv_951) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_953, %onnx::Conv_954) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_956, %onnx::Conv_957) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_959, %onnx::Conv_960) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_1_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/Add_3_output_0 = Add(%/layers.1/Add_2_output_0, %/layers.1/vertex_op.2/maxpool/MaxPool_output_0) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_3_output_0, %onnx::Conv_962, %onnx::Conv_963) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_965, %onnx::Conv_966) %/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_4_output_0 = Add(%/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_3_output_0) %/layers.1/Add_5_output_0 = Add(%/layers.1/Add_4_output_0, %/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_5_output_0, %onnx::Conv_968, %onnx::Conv_969) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_971, %onnx::Conv_972) %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Add_6_output_0 = Add(%/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_6_output_0, %onnx::Conv_974, %onnx::Conv_975) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_977, %onnx::Conv_978) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_6_output_0, %onnx::Conv_980, %onnx::Conv_981) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_1_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/Add_3_output_0 = Add(%/layers.2/Add_2_output_0, %/layers.2/vertex_op.2/maxpool/MaxPool_output_0) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_3_output_0, %onnx::Conv_983, %onnx::Conv_984) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_6_output_0, %onnx::Conv_986, %onnx::Conv_987) %/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_4_output_0 = Add(%/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_3_output_0) %/layers.2/Add_5_output_0 = Add(%/layers.2/Add_4_output_0, %/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_5_output_0, %onnx::Conv_989, %onnx::Conv_990) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_6_output_0, %onnx::Conv_992, %onnx::Conv_993) %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Add_6_output_0 = Add(%/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_6_output_0, %onnx::Conv_995, %onnx::Conv_996) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_998, %onnx::Conv_999) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_6_output_0, %onnx::Conv_1001, %onnx::Conv_1002) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_1_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/Add_3_output_0 = Add(%/layers.3/Add_2_output_0, %/layers.3/vertex_op.2/maxpool/MaxPool_output_0) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_3_output_0, %onnx::Conv_1004, %onnx::Conv_1005) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_6_output_0, %onnx::Conv_1007, %onnx::Conv_1008) %/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_4_output_0 = Add(%/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_3_output_0) %/layers.3/Add_5_output_0 = Add(%/layers.3/Add_4_output_0, %/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_5_output_0, %onnx::Conv_1010, %onnx::Conv_1011) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_6_output_0, %onnx::Conv_1013, %onnx::Conv_1014) %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Add_6_output_0 = Add(%/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Add_6_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_1016, %onnx::Conv_1017) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_1019, %onnx::Conv_1020) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_1022, %onnx::Conv_1023) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_1_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/Add_3_output_0 = Add(%/layers.5/Add_2_output_0, %/layers.5/vertex_op.2/maxpool/MaxPool_output_0) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_3_output_0, %onnx::Conv_1025, %onnx::Conv_1026) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_1028, %onnx::Conv_1029) %/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_4_output_0 = Add(%/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_3_output_0) %/layers.5/Add_5_output_0 = Add(%/layers.5/Add_4_output_0, %/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_5_output_0, %onnx::Conv_1031, %onnx::Conv_1032) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_1034, %onnx::Conv_1035) %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Add_6_output_0 = Add(%/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_6_output_0, %onnx::Conv_1037, %onnx::Conv_1038) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_1040, %onnx::Conv_1041) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_6_output_0, %onnx::Conv_1043, %onnx::Conv_1044) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_1_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/Add_3_output_0 = Add(%/layers.6/Add_2_output_0, %/layers.6/vertex_op.2/maxpool/MaxPool_output_0) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_3_output_0, %onnx::Conv_1046, %onnx::Conv_1047) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_6_output_0, %onnx::Conv_1049, %onnx::Conv_1050) %/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_4_output_0 = Add(%/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_3_output_0) %/layers.6/Add_5_output_0 = Add(%/layers.6/Add_4_output_0, %/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_5_output_0, %onnx::Conv_1052, %onnx::Conv_1053) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_6_output_0, %onnx::Conv_1055, %onnx::Conv_1056) %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Add_6_output_0 = Add(%/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_6_output_0, %onnx::Conv_1058, %onnx::Conv_1059) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_1061, %onnx::Conv_1062) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_6_output_0, %onnx::Conv_1064, %onnx::Conv_1065) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_1_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/Add_3_output_0 = Add(%/layers.7/Add_2_output_0, %/layers.7/vertex_op.2/maxpool/MaxPool_output_0) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_3_output_0, %onnx::Conv_1067, %onnx::Conv_1068) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_6_output_0, %onnx::Conv_1070, %onnx::Conv_1071) %/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_4_output_0 = Add(%/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_3_output_0) %/layers.7/Add_5_output_0 = Add(%/layers.7/Add_4_output_0, %/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_5_output_0, %onnx::Conv_1073, %onnx::Conv_1074) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_6_output_0, %onnx::Conv_1076, %onnx::Conv_1077) %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Add_6_output_0 = Add(%/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Add_6_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1079, %onnx::Conv_1080) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_1082, %onnx::Conv_1083) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1085, %onnx::Conv_1086) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_1_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/Add_3_output_0 = Add(%/layers.9/Add_2_output_0, %/layers.9/vertex_op.2/maxpool/MaxPool_output_0) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_3_output_0, %onnx::Conv_1088, %onnx::Conv_1089) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1091, %onnx::Conv_1092) %/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_4_output_0 = Add(%/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_3_output_0) %/layers.9/Add_5_output_0 = Add(%/layers.9/Add_4_output_0, %/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_5_output_0, %onnx::Conv_1094, %onnx::Conv_1095) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1097, %onnx::Conv_1098) %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Add_6_output_0 = Add(%/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_6_output_0, %onnx::Conv_1100, %onnx::Conv_1101) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_1103, %onnx::Conv_1104) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_6_output_0, %onnx::Conv_1106, %onnx::Conv_1107) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_1_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/Add_3_output_0 = Add(%/layers.10/Add_2_output_0, %/layers.10/vertex_op.2/maxpool/MaxPool_output_0) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_3_output_0, %onnx::Conv_1109, %onnx::Conv_1110) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_6_output_0, %onnx::Conv_1112, %onnx::Conv_1113) %/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_4_output_0 = Add(%/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_3_output_0) %/layers.10/Add_5_output_0 = Add(%/layers.10/Add_4_output_0, %/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_5_output_0, %onnx::Conv_1115, %onnx::Conv_1116) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_6_output_0, %onnx::Conv_1118, %onnx::Conv_1119) %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Add_6_output_0 = Add(%/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_6_output_0, %onnx::Conv_1121, %onnx::Conv_1122) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_1124, %onnx::Conv_1125) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_6_output_0, %onnx::Conv_1127, %onnx::Conv_1128) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_1_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/Add_3_output_0 = Add(%/layers.11/Add_2_output_0, %/layers.11/vertex_op.2/maxpool/MaxPool_output_0) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_3_output_0, %onnx::Conv_1130, %onnx::Conv_1131) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_6_output_0, %onnx::Conv_1133, %onnx::Conv_1134) %/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_4_output_0 = Add(%/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_3_output_0) %/layers.11/Add_5_output_0 = Add(%/layers.11/Add_4_output_0, %/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_5_output_0, %onnx::Conv_1136, %onnx::Conv_1137) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_6_output_0, %onnx::Conv_1139, %onnx::Conv_1140) %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Add_6_output_0 = Add(%/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Add_6_output_0) %948 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %948 }
val_accuracy
94.330931
4,442,302,464
14,873,994
{'zcp_epe_nas': 165.24834022554975, 'zcp_fisher': 2.5082788467407218, 'zcp_flops': 71076839424.0, 'zcp_grad_norm': 37.182762145996094, 'zcp_grasp': -0.261260986328125, 'zcp_jacov': -16.05534225291178, 'zcp_l2_norm': 1422.3326416015625, 'zcp_nwot': 237.40488820593183, 'zcp_params': 14873994.0, 'zcp_plain': -0.014242484234273002, 'zcp_snip': 318.4031677246094, 'zcp_synflow': 119.98052656116289, 'zcp_zen': 121.33695983886719, 'zcp_val_accuracy': 0.9305889606475831}
NASBench101_341216
NASBench101
341216
ce4fe3909fc9410149f857bc94d53e0b
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_815[FLOAT, 128x3x3x3] %onnx::Conv_816[FLOAT, 128] %onnx::Conv_818[FLOAT, 43x128x1x1] %onnx::Conv_819[FLOAT, 43] %onnx::Conv_821[FLOAT, 43x43x1x1] %onnx::Conv_824[FLOAT, 43x128x1x1] %onnx::Conv_827[FLOAT, 43x43x3x3] %onnx::Conv_830[FLOAT, 42x42x1x1] %onnx::Conv_831[FLOAT, 42] %onnx::Conv_833[FLOAT, 43x128x1x1] %onnx::Conv_836[FLOAT, 43x43x1x1] %onnx::Conv_839[FLOAT, 43x128x1x1] %onnx::Conv_842[FLOAT, 43x43x3x3] %onnx::Conv_845[FLOAT, 42x42x1x1] %onnx::Conv_848[FLOAT, 43x128x1x1] %onnx::Conv_851[FLOAT, 43x43x1x1] %onnx::Conv_854[FLOAT, 43x128x1x1] %onnx::Conv_857[FLOAT, 43x43x3x3] %onnx::Conv_860[FLOAT, 42x42x1x1] %onnx::Conv_863[FLOAT, 86x128x1x1] %onnx::Conv_864[FLOAT, 86] %onnx::Conv_866[FLOAT, 86x86x1x1] %onnx::Conv_869[FLOAT, 85x128x1x1] %onnx::Conv_870[FLOAT, 85] %onnx::Conv_872[FLOAT, 85x85x3x3] %onnx::Conv_875[FLOAT, 85x85x1x1] %onnx::Conv_878[FLOAT, 86x256x1x1] %onnx::Conv_881[FLOAT, 86x86x1x1] %onnx::Conv_884[FLOAT, 85x256x1x1] %onnx::Conv_887[FLOAT, 85x85x3x3] %onnx::Conv_890[FLOAT, 85x85x1x1] %onnx::Conv_893[FLOAT, 86x256x1x1] %onnx::Conv_896[FLOAT, 86x86x1x1] %onnx::Conv_899[FLOAT, 85x256x1x1] %onnx::Conv_902[FLOAT, 85x85x3x3] %onnx::Conv_905[FLOAT, 85x85x1x1] %onnx::Conv_908[FLOAT, 171x256x1x1] %onnx::Conv_909[FLOAT, 171] %onnx::Conv_911[FLOAT, 171x171x1x1] %onnx::Conv_914[FLOAT, 171x256x1x1] %onnx::Conv_917[FLOAT, 171x171x3x3] %onnx::Conv_920[FLOAT, 170x170x1x1] %onnx::Conv_921[FLOAT, 170] %onnx::Conv_923[FLOAT, 171x512x1x1] %onnx::Conv_926[FLOAT, 171x171x1x1] %onnx::Conv_929[FLOAT, 171x512x1x1] %onnx::Conv_932[FLOAT, 171x171x3x3] %onnx::Conv_935[FLOAT, 170x170x1x1] %onnx::Conv_938[FLOAT, 171x512x1x1] %onnx::Conv_941[FLOAT, 171x171x1x1] %onnx::Conv_944[FLOAT, 171x512x1x1] %onnx::Conv_947[FLOAT, 171x171x3x3] %onnx::Conv_950[FLOAT, 170x170x1x1] ) { %onnx::Conv_951 = Identity(%onnx::Conv_921) %onnx::Conv_948 = Identity(%onnx::Conv_909) %onnx::Conv_945 = Identity(%onnx::Conv_909) %onnx::Conv_942 = Identity(%onnx::Conv_909) %onnx::Conv_939 = Identity(%onnx::Conv_909) %onnx::Conv_936 = Identity(%onnx::Conv_921) %onnx::Conv_933 = Identity(%onnx::Conv_909) %onnx::Conv_930 = Identity(%onnx::Conv_909) %onnx::Conv_927 = Identity(%onnx::Conv_909) %onnx::Conv_924 = Identity(%onnx::Conv_909) %onnx::Conv_918 = Identity(%onnx::Conv_909) %onnx::Conv_915 = Identity(%onnx::Conv_909) %onnx::Conv_912 = Identity(%onnx::Conv_909) %onnx::Conv_906 = Identity(%onnx::Conv_870) %onnx::Conv_903 = Identity(%onnx::Conv_870) %onnx::Conv_900 = Identity(%onnx::Conv_870) %onnx::Conv_897 = Identity(%onnx::Conv_864) %onnx::Conv_894 = Identity(%onnx::Conv_864) %onnx::Conv_891 = Identity(%onnx::Conv_870) %onnx::Conv_888 = Identity(%onnx::Conv_870) %onnx::Conv_885 = Identity(%onnx::Conv_870) %onnx::Conv_882 = Identity(%onnx::Conv_864) %onnx::Conv_879 = Identity(%onnx::Conv_864) %onnx::Conv_876 = Identity(%onnx::Conv_870) %onnx::Conv_873 = Identity(%onnx::Conv_870) %onnx::Conv_867 = Identity(%onnx::Conv_864) %onnx::Conv_861 = Identity(%onnx::Conv_831) %onnx::Conv_858 = Identity(%onnx::Conv_819) %onnx::Conv_855 = Identity(%onnx::Conv_819) %onnx::Conv_852 = Identity(%onnx::Conv_819) %onnx::Conv_849 = Identity(%onnx::Conv_819) %onnx::Conv_846 = Identity(%onnx::Conv_831) %onnx::Conv_843 = Identity(%onnx::Conv_819) %onnx::Conv_840 = Identity(%onnx::Conv_819) %onnx::Conv_837 = Identity(%onnx::Conv_819) %onnx::Conv_834 = Identity(%onnx::Conv_819) %onnx::Conv_828 = Identity(%onnx::Conv_819) %onnx::Conv_825 = Identity(%onnx::Conv_819) %onnx::Conv_822 = Identity(%onnx::Conv_819) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_815, %onnx::Conv_816) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_818, %onnx::Conv_819) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_821, %onnx::Conv_822) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_824, %onnx::Conv_825) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_1_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/Add_3_output_0 = Add(%/layers.1/Add_2_output_0, %/layers.1/vertex_op.2/maxpool/MaxPool_output_0) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_3_output_0, %onnx::Conv_827, %onnx::Conv_828) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_4_output_0 = Add(%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_3_output_0) %/layers.1/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_4_output_0) %/layers.1/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.1/Slice_output_0 = Slice(%/layers.1/vertex_op.4/maxpool/MaxPool_output_0, %/layers.1/Constant_5_output_0, %/layers.1/Constant_6_output_0, %/layers.1/Constant_4_output_0, %/layers.1/Constant_7_output_0) %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Slice_output_0, %onnx::Conv_830, %onnx::Conv_831) %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.4/maxpool/MaxPool_output_0, %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_833, %onnx::Conv_834) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_836, %onnx::Conv_837) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_839, %onnx::Conv_840) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_1_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/Add_3_output_0 = Add(%/layers.2/Add_2_output_0, %/layers.2/vertex_op.2/maxpool/MaxPool_output_0) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_3_output_0, %onnx::Conv_842, %onnx::Conv_843) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_4_output_0 = Add(%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_3_output_0) %/layers.2/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_4_output_0) %/layers.2/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.2/Slice_output_0 = Slice(%/layers.2/vertex_op.4/maxpool/MaxPool_output_0, %/layers.2/Constant_5_output_0, %/layers.2/Constant_6_output_0, %/layers.2/Constant_4_output_0, %/layers.2/Constant_7_output_0) %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Slice_output_0, %onnx::Conv_845, %onnx::Conv_846) %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.4/maxpool/MaxPool_output_0, %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_848, %onnx::Conv_849) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_851, %onnx::Conv_852) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_854, %onnx::Conv_855) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_1_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/Add_3_output_0 = Add(%/layers.3/Add_2_output_0, %/layers.3/vertex_op.2/maxpool/MaxPool_output_0) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_3_output_0, %onnx::Conv_857, %onnx::Conv_858) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_4_output_0 = Add(%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_3_output_0) %/layers.3/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_4_output_0) %/layers.3/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.3/Slice_output_0 = Slice(%/layers.3/vertex_op.4/maxpool/MaxPool_output_0, %/layers.3/Constant_5_output_0, %/layers.3/Constant_6_output_0, %/layers.3/Constant_4_output_0, %/layers.3/Constant_7_output_0) %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Slice_output_0, %onnx::Conv_860, %onnx::Conv_861) %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.4/maxpool/MaxPool_output_0, %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Concat_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_863, %onnx::Conv_864) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_866, %onnx::Conv_867) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_869, %onnx::Conv_870) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_1_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.5/Slice_output_0 = Slice(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_3_output_0, %/layers.5/Constant_4_output_0, %/layers.5/Constant_2_output_0, %/layers.5/Constant_5_output_0) %/layers.5/Constant_6_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/Slice_output_0, %/layers.5/Constant_6_output_0) %/layers.5/Add_3_output_0 = Add(%/layers.5/Add_2_output_0, %/layers.5/vertex_op.2/maxpool/MaxPool_output_0) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_3_output_0, %onnx::Conv_872, %onnx::Conv_873) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_4_output_0 = Add(%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_7_output_0) %/layers.5/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_4_output_0) %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.4/maxpool/MaxPool_output_0, %onnx::Conv_875, %onnx::Conv_876) %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.4/maxpool/MaxPool_output_0, %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_878, %onnx::Conv_879) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_881, %onnx::Conv_882) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_884, %onnx::Conv_885) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_1_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.6/Slice_output_0 = Slice(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_3_output_0, %/layers.6/Constant_4_output_0, %/layers.6/Constant_2_output_0, %/layers.6/Constant_5_output_0) %/layers.6/Constant_6_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/Slice_output_0, %/layers.6/Constant_6_output_0) %/layers.6/Add_3_output_0 = Add(%/layers.6/Add_2_output_0, %/layers.6/vertex_op.2/maxpool/MaxPool_output_0) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_3_output_0, %onnx::Conv_887, %onnx::Conv_888) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_4_output_0 = Add(%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_7_output_0) %/layers.6/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_4_output_0) %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.4/maxpool/MaxPool_output_0, %onnx::Conv_890, %onnx::Conv_891) %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.4/maxpool/MaxPool_output_0, %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_893, %onnx::Conv_894) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_896, %onnx::Conv_897) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_899, %onnx::Conv_900) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_1_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.7/Slice_output_0 = Slice(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_3_output_0, %/layers.7/Constant_4_output_0, %/layers.7/Constant_2_output_0, %/layers.7/Constant_5_output_0) %/layers.7/Constant_6_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/Slice_output_0, %/layers.7/Constant_6_output_0) %/layers.7/Add_3_output_0 = Add(%/layers.7/Add_2_output_0, %/layers.7/vertex_op.2/maxpool/MaxPool_output_0) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_3_output_0, %onnx::Conv_902, %onnx::Conv_903) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_4_output_0 = Add(%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_7_output_0) %/layers.7/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_4_output_0) %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/vertex_op.4/maxpool/MaxPool_output_0, %onnx::Conv_905, %onnx::Conv_906) %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.4/maxpool/MaxPool_output_0, %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Concat_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_908, %onnx::Conv_909) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_911, %onnx::Conv_912) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_914, %onnx::Conv_915) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_1_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/Add_3_output_0 = Add(%/layers.9/Add_2_output_0, %/layers.9/vertex_op.2/maxpool/MaxPool_output_0) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_3_output_0, %onnx::Conv_917, %onnx::Conv_918) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_4_output_0 = Add(%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_3_output_0) %/layers.9/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_4_output_0) %/layers.9/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.9/Slice_output_0 = Slice(%/layers.9/vertex_op.4/maxpool/MaxPool_output_0, %/layers.9/Constant_5_output_0, %/layers.9/Constant_6_output_0, %/layers.9/Constant_4_output_0, %/layers.9/Constant_7_output_0) %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Slice_output_0, %onnx::Conv_920, %onnx::Conv_921) %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.4/maxpool/MaxPool_output_0, %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_923, %onnx::Conv_924) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_926, %onnx::Conv_927) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_929, %onnx::Conv_930) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_1_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/Add_3_output_0 = Add(%/layers.10/Add_2_output_0, %/layers.10/vertex_op.2/maxpool/MaxPool_output_0) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_3_output_0, %onnx::Conv_932, %onnx::Conv_933) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_4_output_0 = Add(%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_3_output_0) %/layers.10/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_4_output_0) %/layers.10/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.10/Slice_output_0 = Slice(%/layers.10/vertex_op.4/maxpool/MaxPool_output_0, %/layers.10/Constant_5_output_0, %/layers.10/Constant_6_output_0, %/layers.10/Constant_4_output_0, %/layers.10/Constant_7_output_0) %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Slice_output_0, %onnx::Conv_935, %onnx::Conv_936) %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.4/maxpool/MaxPool_output_0, %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_938, %onnx::Conv_939) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_941, %onnx::Conv_942) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_944, %onnx::Conv_945) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_1_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/Add_3_output_0 = Add(%/layers.11/Add_2_output_0, %/layers.11/vertex_op.2/maxpool/MaxPool_output_0) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_3_output_0, %onnx::Conv_947, %onnx::Conv_948) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_4_output_0 = Add(%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_3_output_0) %/layers.11/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_4_output_0) %/layers.11/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.11/Slice_output_0 = Slice(%/layers.11/vertex_op.4/maxpool/MaxPool_output_0, %/layers.11/Constant_5_output_0, %/layers.11/Constant_6_output_0, %/layers.11/Constant_4_output_0, %/layers.11/Constant_7_output_0) %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Slice_output_0, %onnx::Conv_950, %onnx::Conv_951) %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.4/maxpool/MaxPool_output_0, %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Concat_output_0) %813 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %813 }
val_accuracy
91.245991
567,190,784
1,861,666
{'zcp_epe_nas': 102.41772565385243, 'zcp_fisher': 24.25765037536621, 'zcp_flops': 9075052544.0, 'zcp_grad_norm': 82.31523132324219, 'zcp_grasp': -11.108642578125, 'zcp_jacov': -16.067594226035965, 'zcp_l2_norm': 760.8841552734375, 'zcp_nwot': 215.5203431163151, 'zcp_params': 1861666.0, 'zcp_plain': 0.07278558611869801, 'zcp_snip': 418.5877685546875, 'zcp_synflow': 101.66816032825454, 'zcp_zen': 74.53855895996094, 'zcp_val_accuracy': 0.9305889606475831}
NASBench101_343754
NASBench101
343754
cfc95a87bdd7d31b24b0c33e2507952f
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_581[FLOAT, 128x3x3x3] %onnx::Conv_582[FLOAT, 128] %onnx::Conv_584[FLOAT, 32x128x1x1] %onnx::Conv_585[FLOAT, 32] %onnx::Conv_587[FLOAT, 32x128x1x1] %onnx::Conv_590[FLOAT, 32x32x3x3] %onnx::Conv_593[FLOAT, 32x128x1x1] %onnx::Conv_596[FLOAT, 32x128x1x1] %onnx::Conv_599[FLOAT, 32x32x3x3] %onnx::Conv_602[FLOAT, 32x128x1x1] %onnx::Conv_605[FLOAT, 32x128x1x1] %onnx::Conv_608[FLOAT, 32x32x3x3] %onnx::Conv_611[FLOAT, 64x128x1x1] %onnx::Conv_612[FLOAT, 64] %onnx::Conv_614[FLOAT, 64x128x1x1] %onnx::Conv_617[FLOAT, 64x64x3x3] %onnx::Conv_620[FLOAT, 64x256x1x1] %onnx::Conv_623[FLOAT, 64x256x1x1] %onnx::Conv_626[FLOAT, 64x64x3x3] %onnx::Conv_629[FLOAT, 64x256x1x1] %onnx::Conv_632[FLOAT, 64x256x1x1] %onnx::Conv_635[FLOAT, 64x64x3x3] %onnx::Conv_638[FLOAT, 128x256x1x1] %onnx::Conv_641[FLOAT, 128x256x1x1] %onnx::Conv_644[FLOAT, 128x128x3x3] %onnx::Conv_647[FLOAT, 128x512x1x1] %onnx::Conv_650[FLOAT, 128x512x1x1] %onnx::Conv_653[FLOAT, 128x128x3x3] %onnx::Conv_656[FLOAT, 128x512x1x1] %onnx::Conv_659[FLOAT, 128x512x1x1] %onnx::Conv_662[FLOAT, 128x128x3x3] ) { %onnx::Conv_663 = Identity(%onnx::Conv_582) %onnx::Conv_660 = Identity(%onnx::Conv_582) %onnx::Conv_657 = Identity(%onnx::Conv_582) %onnx::Conv_654 = Identity(%onnx::Conv_582) %onnx::Conv_651 = Identity(%onnx::Conv_582) %onnx::Conv_648 = Identity(%onnx::Conv_582) %onnx::Conv_645 = Identity(%onnx::Conv_582) %onnx::Conv_642 = Identity(%onnx::Conv_582) %onnx::Conv_639 = Identity(%onnx::Conv_582) %onnx::Conv_636 = Identity(%onnx::Conv_612) %onnx::Conv_633 = Identity(%onnx::Conv_612) %onnx::Conv_630 = Identity(%onnx::Conv_612) %onnx::Conv_627 = Identity(%onnx::Conv_612) %onnx::Conv_624 = Identity(%onnx::Conv_612) %onnx::Conv_621 = Identity(%onnx::Conv_612) %onnx::Conv_618 = Identity(%onnx::Conv_612) %onnx::Conv_615 = Identity(%onnx::Conv_612) %onnx::Conv_609 = Identity(%onnx::Conv_585) %onnx::Conv_606 = Identity(%onnx::Conv_585) %onnx::Conv_603 = Identity(%onnx::Conv_585) %onnx::Conv_600 = Identity(%onnx::Conv_585) %onnx::Conv_597 = Identity(%onnx::Conv_585) %onnx::Conv_594 = Identity(%onnx::Conv_585) %onnx::Conv_591 = Identity(%onnx::Conv_585) %onnx::Conv_588 = Identity(%onnx::Conv_585) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_581, %onnx::Conv_582) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_584, %onnx::Conv_585) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_587, %onnx::Conv_588) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_1_output_0) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_590, %onnx::Conv_591) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_2_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_3_output_0 = Add(%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_3_output_0) %/layers.1/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_3_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.1/maxpool/MaxPool_output_0, %/layers.1/vertex_op.2/maxpool/MaxPool_output_0, %/layers.1/vertex_op.4/maxpool/MaxPool_output_0, %/layers.1/vertex_op.5/maxpool/MaxPool_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_593, %onnx::Conv_594) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_596, %onnx::Conv_597) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_1_output_0) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_599, %onnx::Conv_600) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_2_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_3_output_0 = Add(%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_3_output_0) %/layers.2/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_3_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.1/maxpool/MaxPool_output_0, %/layers.2/vertex_op.2/maxpool/MaxPool_output_0, %/layers.2/vertex_op.4/maxpool/MaxPool_output_0, %/layers.2/vertex_op.5/maxpool/MaxPool_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_602, %onnx::Conv_603) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_605, %onnx::Conv_606) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_1_output_0) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_608, %onnx::Conv_609) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_2_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_3_output_0 = Add(%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_3_output_0) %/layers.3/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_3_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.1/maxpool/MaxPool_output_0, %/layers.3/vertex_op.2/maxpool/MaxPool_output_0, %/layers.3/vertex_op.4/maxpool/MaxPool_output_0, %/layers.3/vertex_op.5/maxpool/MaxPool_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Concat_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_611, %onnx::Conv_612) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_614, %onnx::Conv_615) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_1_output_0) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_617, %onnx::Conv_618) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_2_output_0) %/layers.5/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_3_output_0 = Add(%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_3_output_0) %/layers.5/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_3_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.1/maxpool/MaxPool_output_0, %/layers.5/vertex_op.2/maxpool/MaxPool_output_0, %/layers.5/vertex_op.4/maxpool/MaxPool_output_0, %/layers.5/vertex_op.5/maxpool/MaxPool_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_620, %onnx::Conv_621) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_623, %onnx::Conv_624) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_1_output_0) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_626, %onnx::Conv_627) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_2_output_0) %/layers.6/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_3_output_0 = Add(%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_3_output_0) %/layers.6/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_3_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.1/maxpool/MaxPool_output_0, %/layers.6/vertex_op.2/maxpool/MaxPool_output_0, %/layers.6/vertex_op.4/maxpool/MaxPool_output_0, %/layers.6/vertex_op.5/maxpool/MaxPool_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_629, %onnx::Conv_630) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_632, %onnx::Conv_633) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_1_output_0) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_635, %onnx::Conv_636) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_2_output_0) %/layers.7/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_3_output_0 = Add(%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_3_output_0) %/layers.7/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_3_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.1/maxpool/MaxPool_output_0, %/layers.7/vertex_op.2/maxpool/MaxPool_output_0, %/layers.7/vertex_op.4/maxpool/MaxPool_output_0, %/layers.7/vertex_op.5/maxpool/MaxPool_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Concat_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_638, %onnx::Conv_639) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_641, %onnx::Conv_642) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_1_output_0) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_644, %onnx::Conv_645) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_2_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_3_output_0 = Add(%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_3_output_0) %/layers.9/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_3_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.1/maxpool/MaxPool_output_0, %/layers.9/vertex_op.2/maxpool/MaxPool_output_0, %/layers.9/vertex_op.4/maxpool/MaxPool_output_0, %/layers.9/vertex_op.5/maxpool/MaxPool_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_647, %onnx::Conv_648) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_650, %onnx::Conv_651) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_1_output_0) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_653, %onnx::Conv_654) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_2_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_3_output_0 = Add(%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_3_output_0) %/layers.10/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_3_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.1/maxpool/MaxPool_output_0, %/layers.10/vertex_op.2/maxpool/MaxPool_output_0, %/layers.10/vertex_op.4/maxpool/MaxPool_output_0, %/layers.10/vertex_op.5/maxpool/MaxPool_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_656, %onnx::Conv_657) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_659, %onnx::Conv_660) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_1_output_0) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_662, %onnx::Conv_663) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_2_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_3_output_0 = Add(%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_3_output_0) %/layers.11/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_3_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.1/maxpool/MaxPool_output_0, %/layers.11/vertex_op.2/maxpool/MaxPool_output_0, %/layers.11/vertex_op.4/maxpool/MaxPool_output_0, %/layers.11/vertex_op.5/maxpool/MaxPool_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Concat_output_0) %579 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %579 }
val_accuracy
90.144229
316,352,512
1,027,658
{'zcp_epe_nas': 103.17498077382407, 'zcp_fisher': 2.844444990158081, 'zcp_flops': 5061640192.0, 'zcp_grad_norm': 29.693716049194336, 'zcp_grasp': -0.8695373535156251, 'zcp_jacov': -16.053329274410842, 'zcp_l2_norm': 501.4164123535156, 'zcp_nwot': 204.52023017699202, 'zcp_params': 1027658.0, 'zcp_plain': 0.046867545694112, 'zcp_snip': 145.04164123535156, 'zcp_synflow': 61.28348992539039, 'zcp_zen': 53.021305084228516, 'zcp_val_accuracy': 0.9092547893524171}
NASBench101_256004
NASBench101
256004
9b05c03be2171e0cf8f61be19944a9a7
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_905[FLOAT, 128x3x3x3] %onnx::Conv_906[FLOAT, 128] %onnx::Conv_908[FLOAT, 43x128x1x1] %onnx::Conv_909[FLOAT, 43] %onnx::Conv_911[FLOAT, 43x43x1x1] %onnx::Conv_914[FLOAT, 43x43x3x3] %onnx::Conv_917[FLOAT, 42x128x1x1] %onnx::Conv_918[FLOAT, 42] %onnx::Conv_920[FLOAT, 42x42x1x1] %onnx::Conv_923[FLOAT, 42x42x3x3] %onnx::Conv_926[FLOAT, 43x128x1x1] %onnx::Conv_929[FLOAT, 43x43x1x1] %onnx::Conv_932[FLOAT, 43x43x3x3] %onnx::Conv_935[FLOAT, 42x128x1x1] %onnx::Conv_938[FLOAT, 42x42x1x1] %onnx::Conv_941[FLOAT, 42x42x3x3] %onnx::Conv_944[FLOAT, 43x128x1x1] %onnx::Conv_947[FLOAT, 43x43x1x1] %onnx::Conv_950[FLOAT, 43x43x3x3] %onnx::Conv_953[FLOAT, 42x128x1x1] %onnx::Conv_956[FLOAT, 42x42x1x1] %onnx::Conv_959[FLOAT, 42x42x3x3] %onnx::Conv_962[FLOAT, 86x128x1x1] %onnx::Conv_963[FLOAT, 86] %onnx::Conv_965[FLOAT, 86x86x1x1] %onnx::Conv_968[FLOAT, 85x85x3x3] %onnx::Conv_969[FLOAT, 85] %onnx::Conv_971[FLOAT, 85x128x1x1] %onnx::Conv_974[FLOAT, 85x85x1x1] %onnx::Conv_977[FLOAT, 85x85x3x3] %onnx::Conv_980[FLOAT, 86x256x1x1] %onnx::Conv_983[FLOAT, 86x86x1x1] %onnx::Conv_986[FLOAT, 85x85x3x3] %onnx::Conv_989[FLOAT, 85x256x1x1] %onnx::Conv_992[FLOAT, 85x85x1x1] %onnx::Conv_995[FLOAT, 85x85x3x3] %onnx::Conv_998[FLOAT, 86x256x1x1] %onnx::Conv_1001[FLOAT, 86x86x1x1] %onnx::Conv_1004[FLOAT, 85x85x3x3] %onnx::Conv_1007[FLOAT, 85x256x1x1] %onnx::Conv_1010[FLOAT, 85x85x1x1] %onnx::Conv_1013[FLOAT, 85x85x3x3] %onnx::Conv_1016[FLOAT, 171x256x1x1] %onnx::Conv_1017[FLOAT, 171] %onnx::Conv_1019[FLOAT, 171x171x1x1] %onnx::Conv_1022[FLOAT, 171x171x3x3] %onnx::Conv_1025[FLOAT, 170x256x1x1] %onnx::Conv_1026[FLOAT, 170] %onnx::Conv_1028[FLOAT, 170x170x1x1] %onnx::Conv_1031[FLOAT, 170x170x3x3] %onnx::Conv_1034[FLOAT, 171x512x1x1] %onnx::Conv_1037[FLOAT, 171x171x1x1] %onnx::Conv_1040[FLOAT, 171x171x3x3] %onnx::Conv_1043[FLOAT, 170x512x1x1] %onnx::Conv_1046[FLOAT, 170x170x1x1] %onnx::Conv_1049[FLOAT, 170x170x3x3] %onnx::Conv_1052[FLOAT, 171x512x1x1] %onnx::Conv_1055[FLOAT, 171x171x1x1] %onnx::Conv_1058[FLOAT, 171x171x3x3] %onnx::Conv_1061[FLOAT, 170x512x1x1] %onnx::Conv_1064[FLOAT, 170x170x1x1] %onnx::Conv_1067[FLOAT, 170x170x3x3] ) { %onnx::Conv_1068 = Identity(%onnx::Conv_1026) %onnx::Conv_1065 = Identity(%onnx::Conv_1026) %onnx::Conv_1062 = Identity(%onnx::Conv_1026) %onnx::Conv_1059 = Identity(%onnx::Conv_1017) %onnx::Conv_1056 = Identity(%onnx::Conv_1017) %onnx::Conv_1053 = Identity(%onnx::Conv_1017) %onnx::Conv_1050 = Identity(%onnx::Conv_1026) %onnx::Conv_1047 = Identity(%onnx::Conv_1026) %onnx::Conv_1044 = Identity(%onnx::Conv_1026) %onnx::Conv_1041 = Identity(%onnx::Conv_1017) %onnx::Conv_1038 = Identity(%onnx::Conv_1017) %onnx::Conv_1035 = Identity(%onnx::Conv_1017) %onnx::Conv_1032 = Identity(%onnx::Conv_1026) %onnx::Conv_1029 = Identity(%onnx::Conv_1026) %onnx::Conv_1023 = Identity(%onnx::Conv_1017) %onnx::Conv_1020 = Identity(%onnx::Conv_1017) %onnx::Conv_1014 = Identity(%onnx::Conv_969) %onnx::Conv_1011 = Identity(%onnx::Conv_969) %onnx::Conv_1008 = Identity(%onnx::Conv_969) %onnx::Conv_1005 = Identity(%onnx::Conv_969) %onnx::Conv_1002 = Identity(%onnx::Conv_963) %onnx::Conv_999 = Identity(%onnx::Conv_963) %onnx::Conv_996 = Identity(%onnx::Conv_969) %onnx::Conv_993 = Identity(%onnx::Conv_969) %onnx::Conv_990 = Identity(%onnx::Conv_969) %onnx::Conv_987 = Identity(%onnx::Conv_969) %onnx::Conv_984 = Identity(%onnx::Conv_963) %onnx::Conv_981 = Identity(%onnx::Conv_963) %onnx::Conv_978 = Identity(%onnx::Conv_969) %onnx::Conv_975 = Identity(%onnx::Conv_969) %onnx::Conv_972 = Identity(%onnx::Conv_969) %onnx::Conv_966 = Identity(%onnx::Conv_963) %onnx::Conv_960 = Identity(%onnx::Conv_918) %onnx::Conv_957 = Identity(%onnx::Conv_918) %onnx::Conv_954 = Identity(%onnx::Conv_918) %onnx::Conv_951 = Identity(%onnx::Conv_909) %onnx::Conv_948 = Identity(%onnx::Conv_909) %onnx::Conv_945 = Identity(%onnx::Conv_909) %onnx::Conv_942 = Identity(%onnx::Conv_918) %onnx::Conv_939 = Identity(%onnx::Conv_918) %onnx::Conv_936 = Identity(%onnx::Conv_918) %onnx::Conv_933 = Identity(%onnx::Conv_909) %onnx::Conv_930 = Identity(%onnx::Conv_909) %onnx::Conv_927 = Identity(%onnx::Conv_909) %onnx::Conv_924 = Identity(%onnx::Conv_918) %onnx::Conv_921 = Identity(%onnx::Conv_918) %onnx::Conv_915 = Identity(%onnx::Conv_909) %onnx::Conv_912 = Identity(%onnx::Conv_909) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_905, %onnx::Conv_906) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_908, %onnx::Conv_909) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_911, %onnx::Conv_912) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_914, %onnx::Conv_915) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_2_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.1/Slice_output_0 = Slice(%/layers.1/vertex_op.3/maxpool/MaxPool_output_0, %/layers.1/Constant_4_output_0, %/layers.1/Constant_5_output_0, %/layers.1/Constant_3_output_0, %/layers.1/Constant_6_output_0) %/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_917, %onnx::Conv_918) %/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Add_3_output_0 = Add(%/layers.1/Slice_output_0, %/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_3_output_0, %onnx::Conv_920, %onnx::Conv_921) %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_4_output_0 = Add(%/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_7_output_0) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_4_output_0, %onnx::Conv_923, %onnx::Conv_924) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.3/maxpool/MaxPool_output_0, %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_926, %onnx::Conv_927) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_929, %onnx::Conv_930) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_932, %onnx::Conv_933) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_2_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.2/Slice_output_0 = Slice(%/layers.2/vertex_op.3/maxpool/MaxPool_output_0, %/layers.2/Constant_4_output_0, %/layers.2/Constant_5_output_0, %/layers.2/Constant_3_output_0, %/layers.2/Constant_6_output_0) %/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_935, %onnx::Conv_936) %/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Add_3_output_0 = Add(%/layers.2/Slice_output_0, %/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_3_output_0, %onnx::Conv_938, %onnx::Conv_939) %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_4_output_0 = Add(%/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_7_output_0) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_4_output_0, %onnx::Conv_941, %onnx::Conv_942) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.3/maxpool/MaxPool_output_0, %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_944, %onnx::Conv_945) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_947, %onnx::Conv_948) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_950, %onnx::Conv_951) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_2_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.3/Slice_output_0 = Slice(%/layers.3/vertex_op.3/maxpool/MaxPool_output_0, %/layers.3/Constant_4_output_0, %/layers.3/Constant_5_output_0, %/layers.3/Constant_3_output_0, %/layers.3/Constant_6_output_0) %/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_953, %onnx::Conv_954) %/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Add_3_output_0 = Add(%/layers.3/Slice_output_0, %/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_3_output_0, %onnx::Conv_956, %onnx::Conv_957) %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_4_output_0 = Add(%/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_7_output_0) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_4_output_0, %onnx::Conv_959, %onnx::Conv_960) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.3/maxpool/MaxPool_output_0, %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Concat_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_962, %onnx::Conv_963) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_965, %onnx::Conv_966) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.5/Slice_output_0 = Slice(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0, %/layers.5/Constant_3_output_0, %/layers.5/Constant_1_output_0, %/layers.5/Constant_4_output_0) %/layers.5/Constant_5_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/Slice_output_0, %/layers.5/Constant_5_output_0) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_968, %onnx::Conv_969) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_6_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_6_output_0) %/layers.5/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_2_output_0) %/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_971, %onnx::Conv_972) %/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Add_3_output_0 = Add(%/layers.5/vertex_op.3/maxpool/MaxPool_output_0, %/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_3_output_0, %onnx::Conv_974, %onnx::Conv_975) %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_4_output_0 = Add(%/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_7_output_0) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_4_output_0, %onnx::Conv_977, %onnx::Conv_978) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.3/maxpool/MaxPool_output_0, %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_980, %onnx::Conv_981) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_983, %onnx::Conv_984) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.6/Slice_output_0 = Slice(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0, %/layers.6/Constant_3_output_0, %/layers.6/Constant_1_output_0, %/layers.6/Constant_4_output_0) %/layers.6/Constant_5_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/Slice_output_0, %/layers.6/Constant_5_output_0) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_986, %onnx::Conv_987) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_6_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_6_output_0) %/layers.6/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_2_output_0) %/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_989, %onnx::Conv_990) %/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Add_3_output_0 = Add(%/layers.6/vertex_op.3/maxpool/MaxPool_output_0, %/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_3_output_0, %onnx::Conv_992, %onnx::Conv_993) %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_4_output_0 = Add(%/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_7_output_0) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_4_output_0, %onnx::Conv_995, %onnx::Conv_996) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.3/maxpool/MaxPool_output_0, %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_998, %onnx::Conv_999) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_1001, %onnx::Conv_1002) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.7/Slice_output_0 = Slice(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0, %/layers.7/Constant_3_output_0, %/layers.7/Constant_1_output_0, %/layers.7/Constant_4_output_0) %/layers.7/Constant_5_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/Slice_output_0, %/layers.7/Constant_5_output_0) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_1004, %onnx::Conv_1005) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_6_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_6_output_0) %/layers.7/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_2_output_0) %/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_1007, %onnx::Conv_1008) %/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Add_3_output_0 = Add(%/layers.7/vertex_op.3/maxpool/MaxPool_output_0, %/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_3_output_0, %onnx::Conv_1010, %onnx::Conv_1011) %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_4_output_0 = Add(%/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_7_output_0) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_4_output_0, %onnx::Conv_1013, %onnx::Conv_1014) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.3/maxpool/MaxPool_output_0, %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Concat_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1016, %onnx::Conv_1017) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_1019, %onnx::Conv_1020) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_1022, %onnx::Conv_1023) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_2_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.9/Slice_output_0 = Slice(%/layers.9/vertex_op.3/maxpool/MaxPool_output_0, %/layers.9/Constant_4_output_0, %/layers.9/Constant_5_output_0, %/layers.9/Constant_3_output_0, %/layers.9/Constant_6_output_0) %/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1025, %onnx::Conv_1026) %/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Add_3_output_0 = Add(%/layers.9/Slice_output_0, %/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_3_output_0, %onnx::Conv_1028, %onnx::Conv_1029) %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_4_output_0 = Add(%/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_7_output_0) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_4_output_0, %onnx::Conv_1031, %onnx::Conv_1032) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.3/maxpool/MaxPool_output_0, %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_1034, %onnx::Conv_1035) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_1037, %onnx::Conv_1038) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_1040, %onnx::Conv_1041) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_2_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.10/Slice_output_0 = Slice(%/layers.10/vertex_op.3/maxpool/MaxPool_output_0, %/layers.10/Constant_4_output_0, %/layers.10/Constant_5_output_0, %/layers.10/Constant_3_output_0, %/layers.10/Constant_6_output_0) %/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_1043, %onnx::Conv_1044) %/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Add_3_output_0 = Add(%/layers.10/Slice_output_0, %/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_3_output_0, %onnx::Conv_1046, %onnx::Conv_1047) %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_4_output_0 = Add(%/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_7_output_0) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_4_output_0, %onnx::Conv_1049, %onnx::Conv_1050) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.3/maxpool/MaxPool_output_0, %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_1052, %onnx::Conv_1053) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_1055, %onnx::Conv_1056) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_1058, %onnx::Conv_1059) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_2_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.11/Slice_output_0 = Slice(%/layers.11/vertex_op.3/maxpool/MaxPool_output_0, %/layers.11/Constant_4_output_0, %/layers.11/Constant_5_output_0, %/layers.11/Constant_3_output_0, %/layers.11/Constant_6_output_0) %/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_1061, %onnx::Conv_1062) %/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Add_3_output_0 = Add(%/layers.11/Slice_output_0, %/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_3_output_0, %onnx::Conv_1064, %onnx::Conv_1065) %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_4_output_0 = Add(%/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_7_output_0) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_4_output_0, %onnx::Conv_1067, %onnx::Conv_1068) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.3/maxpool/MaxPool_output_0, %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Concat_output_0) %903 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %903 }
val_accuracy
92.317706
865,328,896
2,884,775
{'zcp_epe_nas': 73.27279597176421, 'zcp_fisher': 383.5801696777344, 'zcp_flops': 13845262336.0, 'zcp_grad_norm': 334.7748718261719, 'zcp_grasp': -293.53125, 'zcp_jacov': -16.0465015190723, 'zcp_l2_norm': 883.707275390625, 'zcp_nwot': 218.58073500472827, 'zcp_params': 2884775.0, 'zcp_plain': 0.028379075229167, 'zcp_snip': 1558.3341064453125, 'zcp_synflow': 131.04319185859032, 'zcp_zen': 89.48976135253906, 'zcp_val_accuracy': 0.9212740659713741}
NASBench101_2426
NASBench101
2426
017e0a37769300a209f26ba0523d7de7
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_680[FLOAT, 128x3x3x3] %onnx::Conv_681[FLOAT, 128] %onnx::Conv_683[FLOAT, 64x128x1x1] %onnx::Conv_684[FLOAT, 64] %onnx::Conv_686[FLOAT, 64x64x1x1] %onnx::Conv_689[FLOAT, 64x64x1x1] %onnx::Conv_692[FLOAT, 64x64x3x3] %onnx::Conv_695[FLOAT, 64x128x1x1] %onnx::Conv_698[FLOAT, 64x64x1x1] %onnx::Conv_701[FLOAT, 64x64x1x1] %onnx::Conv_704[FLOAT, 64x64x3x3] %onnx::Conv_707[FLOAT, 64x128x1x1] %onnx::Conv_710[FLOAT, 64x64x1x1] %onnx::Conv_713[FLOAT, 64x64x1x1] %onnx::Conv_716[FLOAT, 64x64x3x3] %onnx::Conv_719[FLOAT, 128x128x1x1] %onnx::Conv_722[FLOAT, 128x128x1x1] %onnx::Conv_725[FLOAT, 128x128x1x1] %onnx::Conv_728[FLOAT, 128x128x3x3] %onnx::Conv_731[FLOAT, 128x256x1x1] %onnx::Conv_734[FLOAT, 128x128x1x1] %onnx::Conv_737[FLOAT, 128x128x1x1] %onnx::Conv_740[FLOAT, 128x128x3x3] %onnx::Conv_743[FLOAT, 128x256x1x1] %onnx::Conv_746[FLOAT, 128x128x1x1] %onnx::Conv_749[FLOAT, 128x128x1x1] %onnx::Conv_752[FLOAT, 128x128x3x3] %onnx::Conv_755[FLOAT, 256x256x1x1] %onnx::Conv_756[FLOAT, 256] %onnx::Conv_758[FLOAT, 256x256x1x1] %onnx::Conv_761[FLOAT, 256x256x1x1] %onnx::Conv_764[FLOAT, 256x256x3x3] %onnx::Conv_767[FLOAT, 256x512x1x1] %onnx::Conv_770[FLOAT, 256x256x1x1] %onnx::Conv_773[FLOAT, 256x256x1x1] %onnx::Conv_776[FLOAT, 256x256x3x3] %onnx::Conv_779[FLOAT, 256x512x1x1] %onnx::Conv_782[FLOAT, 256x256x1x1] %onnx::Conv_785[FLOAT, 256x256x1x1] %onnx::Conv_788[FLOAT, 256x256x3x3] ) { %onnx::Conv_789 = Identity(%onnx::Conv_756) %onnx::Conv_786 = Identity(%onnx::Conv_756) %onnx::Conv_783 = Identity(%onnx::Conv_756) %onnx::Conv_780 = Identity(%onnx::Conv_756) %onnx::Conv_777 = Identity(%onnx::Conv_756) %onnx::Conv_774 = Identity(%onnx::Conv_756) %onnx::Conv_771 = Identity(%onnx::Conv_756) %onnx::Conv_768 = Identity(%onnx::Conv_756) %onnx::Conv_765 = Identity(%onnx::Conv_756) %onnx::Conv_762 = Identity(%onnx::Conv_756) %onnx::Conv_759 = Identity(%onnx::Conv_756) %onnx::Conv_753 = Identity(%onnx::Conv_681) %onnx::Conv_750 = Identity(%onnx::Conv_681) %onnx::Conv_747 = Identity(%onnx::Conv_681) %onnx::Conv_744 = Identity(%onnx::Conv_681) %onnx::Conv_741 = Identity(%onnx::Conv_681) %onnx::Conv_738 = Identity(%onnx::Conv_681) %onnx::Conv_735 = Identity(%onnx::Conv_681) %onnx::Conv_732 = Identity(%onnx::Conv_681) %onnx::Conv_729 = Identity(%onnx::Conv_681) %onnx::Conv_726 = Identity(%onnx::Conv_681) %onnx::Conv_723 = Identity(%onnx::Conv_681) %onnx::Conv_720 = Identity(%onnx::Conv_681) %onnx::Conv_717 = Identity(%onnx::Conv_684) %onnx::Conv_714 = Identity(%onnx::Conv_684) %onnx::Conv_711 = Identity(%onnx::Conv_684) %onnx::Conv_708 = Identity(%onnx::Conv_684) %onnx::Conv_705 = Identity(%onnx::Conv_684) %onnx::Conv_702 = Identity(%onnx::Conv_684) %onnx::Conv_699 = Identity(%onnx::Conv_684) %onnx::Conv_696 = Identity(%onnx::Conv_684) %onnx::Conv_693 = Identity(%onnx::Conv_684) %onnx::Conv_690 = Identity(%onnx::Conv_684) %onnx::Conv_687 = Identity(%onnx::Conv_684) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_680, %onnx::Conv_681) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_683, %onnx::Conv_684) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_686, %onnx::Conv_687) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_1_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/Add_3_output_0 = Add(%/layers.1/Add_2_output_0, %/layers.1/vertex_op.2/maxpool/MaxPool_output_0) %/layers.1/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_3_output_0) %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.3/maxpool/MaxPool_output_0, %onnx::Conv_689, %onnx::Conv_690) %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_4_output_0 = Add(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_3_output_0) %/layers.1/Add_5_output_0 = Add(%/layers.1/Add_4_output_0, %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_5_output_0, %onnx::Conv_692, %onnx::Conv_693) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.2/maxpool/MaxPool_output_0, %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_695, %onnx::Conv_696) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_698, %onnx::Conv_699) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_1_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/Add_3_output_0 = Add(%/layers.2/Add_2_output_0, %/layers.2/vertex_op.2/maxpool/MaxPool_output_0) %/layers.2/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_3_output_0) %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.3/maxpool/MaxPool_output_0, %onnx::Conv_701, %onnx::Conv_702) %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_4_output_0 = Add(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_3_output_0) %/layers.2/Add_5_output_0 = Add(%/layers.2/Add_4_output_0, %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_5_output_0, %onnx::Conv_704, %onnx::Conv_705) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.2/maxpool/MaxPool_output_0, %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_707, %onnx::Conv_708) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_710, %onnx::Conv_711) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_1_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/Add_3_output_0 = Add(%/layers.3/Add_2_output_0, %/layers.3/vertex_op.2/maxpool/MaxPool_output_0) %/layers.3/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_3_output_0) %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/vertex_op.3/maxpool/MaxPool_output_0, %onnx::Conv_713, %onnx::Conv_714) %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_4_output_0 = Add(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_3_output_0) %/layers.3/Add_5_output_0 = Add(%/layers.3/Add_4_output_0, %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_5_output_0, %onnx::Conv_716, %onnx::Conv_717) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.2/maxpool/MaxPool_output_0, %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Concat_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_719, %onnx::Conv_720) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_722, %onnx::Conv_723) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_1_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/Add_3_output_0 = Add(%/layers.5/Add_2_output_0, %/layers.5/vertex_op.2/maxpool/MaxPool_output_0) %/layers.5/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_3_output_0) %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.3/maxpool/MaxPool_output_0, %onnx::Conv_725, %onnx::Conv_726) %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_4_output_0 = Add(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_3_output_0) %/layers.5/Add_5_output_0 = Add(%/layers.5/Add_4_output_0, %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_5_output_0, %onnx::Conv_728, %onnx::Conv_729) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.2/maxpool/MaxPool_output_0, %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_731, %onnx::Conv_732) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_734, %onnx::Conv_735) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_1_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/Add_3_output_0 = Add(%/layers.6/Add_2_output_0, %/layers.6/vertex_op.2/maxpool/MaxPool_output_0) %/layers.6/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_3_output_0) %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.3/maxpool/MaxPool_output_0, %onnx::Conv_737, %onnx::Conv_738) %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_4_output_0 = Add(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_3_output_0) %/layers.6/Add_5_output_0 = Add(%/layers.6/Add_4_output_0, %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_5_output_0, %onnx::Conv_740, %onnx::Conv_741) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.2/maxpool/MaxPool_output_0, %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_743, %onnx::Conv_744) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_746, %onnx::Conv_747) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_1_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/Add_3_output_0 = Add(%/layers.7/Add_2_output_0, %/layers.7/vertex_op.2/maxpool/MaxPool_output_0) %/layers.7/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_3_output_0) %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/vertex_op.3/maxpool/MaxPool_output_0, %onnx::Conv_749, %onnx::Conv_750) %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_4_output_0 = Add(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_3_output_0) %/layers.7/Add_5_output_0 = Add(%/layers.7/Add_4_output_0, %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_5_output_0, %onnx::Conv_752, %onnx::Conv_753) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.2/maxpool/MaxPool_output_0, %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Concat_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_755, %onnx::Conv_756) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_758, %onnx::Conv_759) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_1_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/Add_3_output_0 = Add(%/layers.9/Add_2_output_0, %/layers.9/vertex_op.2/maxpool/MaxPool_output_0) %/layers.9/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_3_output_0) %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.3/maxpool/MaxPool_output_0, %onnx::Conv_761, %onnx::Conv_762) %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_4_output_0 = Add(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_3_output_0) %/layers.9/Add_5_output_0 = Add(%/layers.9/Add_4_output_0, %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_5_output_0, %onnx::Conv_764, %onnx::Conv_765) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.2/maxpool/MaxPool_output_0, %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_767, %onnx::Conv_768) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_770, %onnx::Conv_771) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_1_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/Add_3_output_0 = Add(%/layers.10/Add_2_output_0, %/layers.10/vertex_op.2/maxpool/MaxPool_output_0) %/layers.10/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_3_output_0) %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.3/maxpool/MaxPool_output_0, %onnx::Conv_773, %onnx::Conv_774) %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_4_output_0 = Add(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_3_output_0) %/layers.10/Add_5_output_0 = Add(%/layers.10/Add_4_output_0, %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_5_output_0, %onnx::Conv_776, %onnx::Conv_777) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.2/maxpool/MaxPool_output_0, %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_779, %onnx::Conv_780) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_782, %onnx::Conv_783) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_1_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/Add_3_output_0 = Add(%/layers.11/Add_2_output_0, %/layers.11/vertex_op.2/maxpool/MaxPool_output_0) %/layers.11/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_3_output_0) %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/vertex_op.3/maxpool/MaxPool_output_0, %onnx::Conv_785, %onnx::Conv_786) %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_4_output_0 = Add(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_3_output_0) %/layers.11/Add_5_output_0 = Add(%/layers.11/Add_4_output_0, %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_5_output_0, %onnx::Conv_788, %onnx::Conv_789) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.2/maxpool/MaxPool_output_0, %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Concat_output_0) %678 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %678 }
val_accuracy
91.596556
983,836,672
3,292,298
{'zcp_epe_nas': 77.21621926075898, 'zcp_fisher': 34.03485870361328, 'zcp_flops': 15741386752.0, 'zcp_grad_norm': 113.03656768798828, 'zcp_grasp': 17.114990234375, 'zcp_jacov': -16.05084410401867, 'zcp_l2_norm': 648.9190673828125, 'zcp_nwot': 218.37945819373795, 'zcp_params': 3292298.0, 'zcp_plain': 0.054122451692819006, 'zcp_snip': 606.6016845703125, 'zcp_synflow': 113.89585771154104, 'zcp_zen': 70.4498291015625, 'zcp_val_accuracy': 0.9298878312110901}
NASBench101_220741
NASBench101
220741
85c5adb2f3fde5c3401c7c15ec25b8cc
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_527[FLOAT, 128x3x3x3] %onnx::Conv_528[FLOAT, 128] %onnx::Conv_530[FLOAT, 64x128x1x1] %onnx::Conv_531[FLOAT, 64] %onnx::Conv_533[FLOAT, 64x128x1x1] %onnx::Conv_536[FLOAT, 64x64x3x3] %onnx::Conv_539[FLOAT, 64x128x1x1] %onnx::Conv_542[FLOAT, 64x128x1x1] %onnx::Conv_545[FLOAT, 64x64x3x3] %onnx::Conv_548[FLOAT, 64x128x1x1] %onnx::Conv_551[FLOAT, 64x128x1x1] %onnx::Conv_554[FLOAT, 64x64x3x3] %onnx::Conv_557[FLOAT, 128x128x1x1] %onnx::Conv_560[FLOAT, 128x128x1x1] %onnx::Conv_563[FLOAT, 128x128x3x3] %onnx::Conv_566[FLOAT, 128x256x1x1] %onnx::Conv_569[FLOAT, 128x256x1x1] %onnx::Conv_572[FLOAT, 128x128x3x3] %onnx::Conv_575[FLOAT, 128x256x1x1] %onnx::Conv_578[FLOAT, 128x256x1x1] %onnx::Conv_581[FLOAT, 128x128x3x3] %onnx::Conv_584[FLOAT, 256x256x1x1] %onnx::Conv_585[FLOAT, 256] %onnx::Conv_587[FLOAT, 256x256x1x1] %onnx::Conv_590[FLOAT, 256x256x3x3] %onnx::Conv_593[FLOAT, 256x512x1x1] %onnx::Conv_596[FLOAT, 256x512x1x1] %onnx::Conv_599[FLOAT, 256x256x3x3] %onnx::Conv_602[FLOAT, 256x512x1x1] %onnx::Conv_605[FLOAT, 256x512x1x1] %onnx::Conv_608[FLOAT, 256x256x3x3] ) { %onnx::Conv_609 = Identity(%onnx::Conv_585) %onnx::Conv_606 = Identity(%onnx::Conv_585) %onnx::Conv_603 = Identity(%onnx::Conv_585) %onnx::Conv_600 = Identity(%onnx::Conv_585) %onnx::Conv_597 = Identity(%onnx::Conv_585) %onnx::Conv_594 = Identity(%onnx::Conv_585) %onnx::Conv_591 = Identity(%onnx::Conv_585) %onnx::Conv_588 = Identity(%onnx::Conv_585) %onnx::Conv_582 = Identity(%onnx::Conv_528) %onnx::Conv_579 = Identity(%onnx::Conv_528) %onnx::Conv_576 = Identity(%onnx::Conv_528) %onnx::Conv_573 = Identity(%onnx::Conv_528) %onnx::Conv_570 = Identity(%onnx::Conv_528) %onnx::Conv_567 = Identity(%onnx::Conv_528) %onnx::Conv_564 = Identity(%onnx::Conv_528) %onnx::Conv_561 = Identity(%onnx::Conv_528) %onnx::Conv_558 = Identity(%onnx::Conv_528) %onnx::Conv_555 = Identity(%onnx::Conv_531) %onnx::Conv_552 = Identity(%onnx::Conv_531) %onnx::Conv_549 = Identity(%onnx::Conv_531) %onnx::Conv_546 = Identity(%onnx::Conv_531) %onnx::Conv_543 = Identity(%onnx::Conv_531) %onnx::Conv_540 = Identity(%onnx::Conv_531) %onnx::Conv_537 = Identity(%onnx::Conv_531) %onnx::Conv_534 = Identity(%onnx::Conv_531) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_527, %onnx::Conv_528) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_530, %onnx::Conv_531) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0) %/layers.1/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/vertex_op.1/maxpool/MaxPool_output_0) %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_533, %onnx::Conv_534) %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/maxpool/MaxPool_output_0, %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_1_output_0) %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.1/maxpool/MaxPool_output_0, %/layers.1/vertex_op.2/maxpool/MaxPool_output_0) %/layers.1/Add_3_output_0 = Add(%/layers.1/Add_2_output_0, %/layers.1/vertex_op.3/maxpool/MaxPool_output_0) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_3_output_0, %onnx::Conv_536, %onnx::Conv_537) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.2/maxpool/MaxPool_output_0, %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_539, %onnx::Conv_540) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0) %/layers.2/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/vertex_op.1/maxpool/MaxPool_output_0) %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_542, %onnx::Conv_543) %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/maxpool/MaxPool_output_0, %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_1_output_0) %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.1/maxpool/MaxPool_output_0, %/layers.2/vertex_op.2/maxpool/MaxPool_output_0) %/layers.2/Add_3_output_0 = Add(%/layers.2/Add_2_output_0, %/layers.2/vertex_op.3/maxpool/MaxPool_output_0) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_3_output_0, %onnx::Conv_545, %onnx::Conv_546) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.2/maxpool/MaxPool_output_0, %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_548, %onnx::Conv_549) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0) %/layers.3/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/vertex_op.1/maxpool/MaxPool_output_0) %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_551, %onnx::Conv_552) %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/maxpool/MaxPool_output_0, %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_1_output_0) %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.1/maxpool/MaxPool_output_0, %/layers.3/vertex_op.2/maxpool/MaxPool_output_0) %/layers.3/Add_3_output_0 = Add(%/layers.3/Add_2_output_0, %/layers.3/vertex_op.3/maxpool/MaxPool_output_0) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_3_output_0, %onnx::Conv_554, %onnx::Conv_555) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.2/maxpool/MaxPool_output_0, %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Concat_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_557, %onnx::Conv_558) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0) %/layers.5/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/vertex_op.1/maxpool/MaxPool_output_0) %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_560, %onnx::Conv_561) %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.1/maxpool/MaxPool_output_0, %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_1_output_0) %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.1/maxpool/MaxPool_output_0, %/layers.5/vertex_op.2/maxpool/MaxPool_output_0) %/layers.5/Add_3_output_0 = Add(%/layers.5/Add_2_output_0, %/layers.5/vertex_op.3/maxpool/MaxPool_output_0) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_3_output_0, %onnx::Conv_563, %onnx::Conv_564) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.2/maxpool/MaxPool_output_0, %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_566, %onnx::Conv_567) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0) %/layers.6/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/vertex_op.1/maxpool/MaxPool_output_0) %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_569, %onnx::Conv_570) %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.1/maxpool/MaxPool_output_0, %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_1_output_0) %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.1/maxpool/MaxPool_output_0, %/layers.6/vertex_op.2/maxpool/MaxPool_output_0) %/layers.6/Add_3_output_0 = Add(%/layers.6/Add_2_output_0, %/layers.6/vertex_op.3/maxpool/MaxPool_output_0) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_3_output_0, %onnx::Conv_572, %onnx::Conv_573) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.2/maxpool/MaxPool_output_0, %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_575, %onnx::Conv_576) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0) %/layers.7/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/vertex_op.1/maxpool/MaxPool_output_0) %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_578, %onnx::Conv_579) %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.1/maxpool/MaxPool_output_0, %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_1_output_0) %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.1/maxpool/MaxPool_output_0, %/layers.7/vertex_op.2/maxpool/MaxPool_output_0) %/layers.7/Add_3_output_0 = Add(%/layers.7/Add_2_output_0, %/layers.7/vertex_op.3/maxpool/MaxPool_output_0) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_3_output_0, %onnx::Conv_581, %onnx::Conv_582) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.2/maxpool/MaxPool_output_0, %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Concat_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_584, %onnx::Conv_585) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0) %/layers.9/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/vertex_op.1/maxpool/MaxPool_output_0) %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_587, %onnx::Conv_588) %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/maxpool/MaxPool_output_0, %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_1_output_0) %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.1/maxpool/MaxPool_output_0, %/layers.9/vertex_op.2/maxpool/MaxPool_output_0) %/layers.9/Add_3_output_0 = Add(%/layers.9/Add_2_output_0, %/layers.9/vertex_op.3/maxpool/MaxPool_output_0) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_3_output_0, %onnx::Conv_590, %onnx::Conv_591) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.2/maxpool/MaxPool_output_0, %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_593, %onnx::Conv_594) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0) %/layers.10/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/vertex_op.1/maxpool/MaxPool_output_0) %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_596, %onnx::Conv_597) %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/maxpool/MaxPool_output_0, %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_1_output_0) %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.1/maxpool/MaxPool_output_0, %/layers.10/vertex_op.2/maxpool/MaxPool_output_0) %/layers.10/Add_3_output_0 = Add(%/layers.10/Add_2_output_0, %/layers.10/vertex_op.3/maxpool/MaxPool_output_0) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_3_output_0, %onnx::Conv_599, %onnx::Conv_600) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.2/maxpool/MaxPool_output_0, %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_602, %onnx::Conv_603) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0) %/layers.11/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/vertex_op.1/maxpool/MaxPool_output_0) %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_605, %onnx::Conv_606) %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/maxpool/MaxPool_output_0, %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_1_output_0) %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.1/maxpool/MaxPool_output_0, %/layers.11/vertex_op.2/maxpool/MaxPool_output_0) %/layers.11/Add_3_output_0 = Add(%/layers.11/Add_2_output_0, %/layers.11/vertex_op.3/maxpool/MaxPool_output_0) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_3_output_0, %onnx::Conv_608, %onnx::Conv_609) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.2/maxpool/MaxPool_output_0, %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Concat_output_0) %525 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %525 }
val_accuracy
88.96234
964,306,944
3,207,690
{'zcp_epe_nas': 160.966871671488, 'zcp_fisher': 2.7028329372406, 'zcp_flops': 15428911104.0, 'zcp_grad_norm': 27.720523834228516, 'zcp_grasp': 0.6237640380859371, 'zcp_jacov': -16.051568253671498, 'zcp_l2_norm': 544.59912109375, 'zcp_nwot': 213.6960114116573, 'zcp_params': 3207690.0, 'zcp_plain': -0.021628580987453003, 'zcp_snip': 163.5786895751953, 'zcp_synflow': 73.2771372832072, 'zcp_zen': 64.73367309570312, 'zcp_val_accuracy': 0.9307892918586731}
NASBench101_274955
NASBench101
274955
a67d6c7d8e157a40feeb68320f2c9c24
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_869[FLOAT, 128x3x3x3] %onnx::Conv_870[FLOAT, 128] %onnx::Conv_872[FLOAT, 128x128x1x1] %onnx::Conv_875[FLOAT, 128x128x1x1] %onnx::Conv_878[FLOAT, 128x128x1x1] %onnx::Conv_881[FLOAT, 128x128x1x1] %onnx::Conv_884[FLOAT, 128x128x3x3] %onnx::Conv_887[FLOAT, 128x128x1x1] %onnx::Conv_890[FLOAT, 128x128x1x1] %onnx::Conv_893[FLOAT, 128x128x1x1] %onnx::Conv_896[FLOAT, 128x128x1x1] %onnx::Conv_899[FLOAT, 128x128x1x1] %onnx::Conv_902[FLOAT, 128x128x3x3] %onnx::Conv_905[FLOAT, 128x128x1x1] %onnx::Conv_908[FLOAT, 128x128x1x1] %onnx::Conv_911[FLOAT, 128x128x1x1] %onnx::Conv_914[FLOAT, 128x128x1x1] %onnx::Conv_917[FLOAT, 128x128x1x1] %onnx::Conv_920[FLOAT, 128x128x3x3] %onnx::Conv_923[FLOAT, 128x128x1x1] %onnx::Conv_926[FLOAT, 256x128x1x1] %onnx::Conv_927[FLOAT, 256] %onnx::Conv_929[FLOAT, 256x256x1x1] %onnx::Conv_932[FLOAT, 256x256x1x1] %onnx::Conv_935[FLOAT, 256x256x1x1] %onnx::Conv_938[FLOAT, 256x256x3x3] %onnx::Conv_941[FLOAT, 256x128x1x1] %onnx::Conv_944[FLOAT, 256x256x1x1] %onnx::Conv_947[FLOAT, 256x256x1x1] %onnx::Conv_950[FLOAT, 256x256x1x1] %onnx::Conv_953[FLOAT, 256x256x1x1] %onnx::Conv_956[FLOAT, 256x256x3x3] %onnx::Conv_959[FLOAT, 256x256x1x1] %onnx::Conv_962[FLOAT, 256x256x1x1] %onnx::Conv_965[FLOAT, 256x256x1x1] %onnx::Conv_968[FLOAT, 256x256x1x1] %onnx::Conv_971[FLOAT, 256x256x1x1] %onnx::Conv_974[FLOAT, 256x256x3x3] %onnx::Conv_977[FLOAT, 256x256x1x1] %onnx::Conv_980[FLOAT, 512x256x1x1] %onnx::Conv_981[FLOAT, 512] %onnx::Conv_983[FLOAT, 512x512x1x1] %onnx::Conv_986[FLOAT, 512x512x1x1] %onnx::Conv_989[FLOAT, 512x512x1x1] %onnx::Conv_992[FLOAT, 512x512x3x3] %onnx::Conv_995[FLOAT, 512x256x1x1] %onnx::Conv_998[FLOAT, 512x512x1x1] %onnx::Conv_1001[FLOAT, 512x512x1x1] %onnx::Conv_1004[FLOAT, 512x512x1x1] %onnx::Conv_1007[FLOAT, 512x512x1x1] %onnx::Conv_1010[FLOAT, 512x512x3x3] %onnx::Conv_1013[FLOAT, 512x512x1x1] %onnx::Conv_1016[FLOAT, 512x512x1x1] %onnx::Conv_1019[FLOAT, 512x512x1x1] %onnx::Conv_1022[FLOAT, 512x512x1x1] %onnx::Conv_1025[FLOAT, 512x512x1x1] %onnx::Conv_1028[FLOAT, 512x512x3x3] %onnx::Conv_1031[FLOAT, 512x512x1x1] ) { %onnx::Conv_1032 = Identity(%onnx::Conv_981) %onnx::Conv_1029 = Identity(%onnx::Conv_981) %onnx::Conv_1026 = Identity(%onnx::Conv_981) %onnx::Conv_1023 = Identity(%onnx::Conv_981) %onnx::Conv_1020 = Identity(%onnx::Conv_981) %onnx::Conv_1017 = Identity(%onnx::Conv_981) %onnx::Conv_1014 = Identity(%onnx::Conv_981) %onnx::Conv_1011 = Identity(%onnx::Conv_981) %onnx::Conv_1008 = Identity(%onnx::Conv_981) %onnx::Conv_1005 = Identity(%onnx::Conv_981) %onnx::Conv_1002 = Identity(%onnx::Conv_981) %onnx::Conv_999 = Identity(%onnx::Conv_981) %onnx::Conv_996 = Identity(%onnx::Conv_981) %onnx::Conv_993 = Identity(%onnx::Conv_981) %onnx::Conv_990 = Identity(%onnx::Conv_981) %onnx::Conv_987 = Identity(%onnx::Conv_981) %onnx::Conv_984 = Identity(%onnx::Conv_981) %onnx::Conv_978 = Identity(%onnx::Conv_927) %onnx::Conv_975 = Identity(%onnx::Conv_927) %onnx::Conv_972 = Identity(%onnx::Conv_927) %onnx::Conv_969 = Identity(%onnx::Conv_927) %onnx::Conv_966 = Identity(%onnx::Conv_927) %onnx::Conv_963 = Identity(%onnx::Conv_927) %onnx::Conv_960 = Identity(%onnx::Conv_927) %onnx::Conv_957 = Identity(%onnx::Conv_927) %onnx::Conv_954 = Identity(%onnx::Conv_927) %onnx::Conv_951 = Identity(%onnx::Conv_927) %onnx::Conv_948 = Identity(%onnx::Conv_927) %onnx::Conv_945 = Identity(%onnx::Conv_927) %onnx::Conv_942 = Identity(%onnx::Conv_927) %onnx::Conv_939 = Identity(%onnx::Conv_927) %onnx::Conv_936 = Identity(%onnx::Conv_927) %onnx::Conv_933 = Identity(%onnx::Conv_927) %onnx::Conv_930 = Identity(%onnx::Conv_927) %onnx::Conv_924 = Identity(%onnx::Conv_870) %onnx::Conv_921 = Identity(%onnx::Conv_870) %onnx::Conv_918 = Identity(%onnx::Conv_870) %onnx::Conv_915 = Identity(%onnx::Conv_870) %onnx::Conv_912 = Identity(%onnx::Conv_870) %onnx::Conv_909 = Identity(%onnx::Conv_870) %onnx::Conv_906 = Identity(%onnx::Conv_870) %onnx::Conv_903 = Identity(%onnx::Conv_870) %onnx::Conv_900 = Identity(%onnx::Conv_870) %onnx::Conv_897 = Identity(%onnx::Conv_870) %onnx::Conv_894 = Identity(%onnx::Conv_870) %onnx::Conv_891 = Identity(%onnx::Conv_870) %onnx::Conv_888 = Identity(%onnx::Conv_870) %onnx::Conv_885 = Identity(%onnx::Conv_870) %onnx::Conv_882 = Identity(%onnx::Conv_870) %onnx::Conv_879 = Identity(%onnx::Conv_870) %onnx::Conv_876 = Identity(%onnx::Conv_870) %onnx::Conv_873 = Identity(%onnx::Conv_870) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_869, %onnx::Conv_870) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_872, %onnx::Conv_873) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_875, %onnx::Conv_876) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_878, %onnx::Conv_879) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/Add_3_output_0 = Add(%/layers.1/Add_2_output_0, %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_3_output_0, %onnx::Conv_881, %onnx::Conv_882) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_4_output_0 = Add(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_3_output_0) %/layers.1/Add_5_output_0 = Add(%/layers.1/Add_4_output_0, %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_5_output_0) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/vertex_op.4/maxpool/MaxPool_output_0, %onnx::Conv_884, %onnx::Conv_885) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_887, %onnx::Conv_888) %/layers.1/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Add_6_output_0 = Add(%/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_6_output_0, %onnx::Conv_890, %onnx::Conv_891) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_893, %onnx::Conv_894) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_896, %onnx::Conv_897) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/Add_3_output_0 = Add(%/layers.2/Add_2_output_0, %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_3_output_0, %onnx::Conv_899, %onnx::Conv_900) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_4_output_0 = Add(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_3_output_0) %/layers.2/Add_5_output_0 = Add(%/layers.2/Add_4_output_0, %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_5_output_0) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/vertex_op.4/maxpool/MaxPool_output_0, %onnx::Conv_902, %onnx::Conv_903) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_6_output_0, %onnx::Conv_905, %onnx::Conv_906) %/layers.2/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Add_6_output_0 = Add(%/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_6_output_0, %onnx::Conv_908, %onnx::Conv_909) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_911, %onnx::Conv_912) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_914, %onnx::Conv_915) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/Add_3_output_0 = Add(%/layers.3/Add_2_output_0, %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_3_output_0, %onnx::Conv_917, %onnx::Conv_918) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_4_output_0 = Add(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_3_output_0) %/layers.3/Add_5_output_0 = Add(%/layers.3/Add_4_output_0, %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_5_output_0) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/vertex_op.4/maxpool/MaxPool_output_0, %onnx::Conv_920, %onnx::Conv_921) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_6_output_0, %onnx::Conv_923, %onnx::Conv_924) %/layers.3/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Add_6_output_0 = Add(%/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Add_6_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_926, %onnx::Conv_927) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_929, %onnx::Conv_930) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_932, %onnx::Conv_933) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/Add_3_output_0 = Add(%/layers.5/Add_2_output_0, %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_3_output_0, %onnx::Conv_935, %onnx::Conv_936) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_4_output_0 = Add(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_3_output_0) %/layers.5/Add_5_output_0 = Add(%/layers.5/Add_4_output_0, %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_5_output_0) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/vertex_op.4/maxpool/MaxPool_output_0, %onnx::Conv_938, %onnx::Conv_939) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_941, %onnx::Conv_942) %/layers.5/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Add_6_output_0 = Add(%/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_6_output_0, %onnx::Conv_944, %onnx::Conv_945) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_947, %onnx::Conv_948) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_950, %onnx::Conv_951) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/Add_3_output_0 = Add(%/layers.6/Add_2_output_0, %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_3_output_0, %onnx::Conv_953, %onnx::Conv_954) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_4_output_0 = Add(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_3_output_0) %/layers.6/Add_5_output_0 = Add(%/layers.6/Add_4_output_0, %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_5_output_0) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/vertex_op.4/maxpool/MaxPool_output_0, %onnx::Conv_956, %onnx::Conv_957) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_6_output_0, %onnx::Conv_959, %onnx::Conv_960) %/layers.6/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Add_6_output_0 = Add(%/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_6_output_0, %onnx::Conv_962, %onnx::Conv_963) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_965, %onnx::Conv_966) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_968, %onnx::Conv_969) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/Add_3_output_0 = Add(%/layers.7/Add_2_output_0, %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_3_output_0, %onnx::Conv_971, %onnx::Conv_972) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_4_output_0 = Add(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_3_output_0) %/layers.7/Add_5_output_0 = Add(%/layers.7/Add_4_output_0, %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_5_output_0) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/vertex_op.4/maxpool/MaxPool_output_0, %onnx::Conv_974, %onnx::Conv_975) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_6_output_0, %onnx::Conv_977, %onnx::Conv_978) %/layers.7/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Add_6_output_0 = Add(%/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Add_6_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_980, %onnx::Conv_981) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_983, %onnx::Conv_984) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_986, %onnx::Conv_987) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/Add_3_output_0 = Add(%/layers.9/Add_2_output_0, %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_3_output_0, %onnx::Conv_989, %onnx::Conv_990) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_4_output_0 = Add(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_3_output_0) %/layers.9/Add_5_output_0 = Add(%/layers.9/Add_4_output_0, %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_5_output_0) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/vertex_op.4/maxpool/MaxPool_output_0, %onnx::Conv_992, %onnx::Conv_993) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_995, %onnx::Conv_996) %/layers.9/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Add_6_output_0 = Add(%/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_6_output_0, %onnx::Conv_998, %onnx::Conv_999) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_1001, %onnx::Conv_1002) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_1004, %onnx::Conv_1005) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/Add_3_output_0 = Add(%/layers.10/Add_2_output_0, %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_3_output_0, %onnx::Conv_1007, %onnx::Conv_1008) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_4_output_0 = Add(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_3_output_0) %/layers.10/Add_5_output_0 = Add(%/layers.10/Add_4_output_0, %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_5_output_0) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/vertex_op.4/maxpool/MaxPool_output_0, %onnx::Conv_1010, %onnx::Conv_1011) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_6_output_0, %onnx::Conv_1013, %onnx::Conv_1014) %/layers.10/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Add_6_output_0 = Add(%/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_6_output_0, %onnx::Conv_1016, %onnx::Conv_1017) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_1019, %onnx::Conv_1020) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_1022, %onnx::Conv_1023) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/Add_3_output_0 = Add(%/layers.11/Add_2_output_0, %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_3_output_0, %onnx::Conv_1025, %onnx::Conv_1026) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_4_output_0 = Add(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_3_output_0) %/layers.11/Add_5_output_0 = Add(%/layers.11/Add_4_output_0, %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_5_output_0) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/vertex_op.4/maxpool/MaxPool_output_0, %onnx::Conv_1028, %onnx::Conv_1029) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_6_output_0, %onnx::Conv_1031, %onnx::Conv_1032) %/layers.11/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Add_6_output_0 = Add(%/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Add_6_output_0) %867 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %867 }
val_accuracy
93.339342
4,201,916,416
14,164,106
{'zcp_epe_nas': 91.98203975682834, 'zcp_fisher': 49.253963470458984, 'zcp_flops': 67230662656.0, 'zcp_grad_norm': 132.5659637451172, 'zcp_grasp': -11.260986328125, 'zcp_jacov': -16.043091651428867, 'zcp_l2_norm': 1242.5596923828125, 'zcp_nwot': 234.97263159689305, 'zcp_params': 14164106.0, 'zcp_plain': 0.008721287362277001, 'zcp_snip': 1027.1661376953125, 'zcp_synflow': 146.53248167824503, 'zcp_zen': 107.07343292236328, 'zcp_val_accuracy': 0.9035456776618951}
NASBench101_235030
NASBench101
235030
8e3e0f28bf9ac605758250e78e43344c
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_950[FLOAT, 128x3x3x3] %onnx::Conv_951[FLOAT, 128] %onnx::Conv_953[FLOAT, 128x128x1x1] %onnx::Conv_956[FLOAT, 128x128x3x3] %onnx::Conv_959[FLOAT, 128x128x1x1] %onnx::Conv_962[FLOAT, 128x128x3x3] %onnx::Conv_965[FLOAT, 128x128x1x1] %onnx::Conv_968[FLOAT, 128x128x3x3] %onnx::Conv_971[FLOAT, 128x128x1x1] %onnx::Conv_974[FLOAT, 128x128x1x1] %onnx::Conv_977[FLOAT, 128x128x3x3] %onnx::Conv_980[FLOAT, 128x128x1x1] %onnx::Conv_983[FLOAT, 128x128x3x3] %onnx::Conv_986[FLOAT, 128x128x1x1] %onnx::Conv_989[FLOAT, 128x128x3x3] %onnx::Conv_992[FLOAT, 128x128x1x1] %onnx::Conv_995[FLOAT, 128x128x1x1] %onnx::Conv_998[FLOAT, 128x128x3x3] %onnx::Conv_1001[FLOAT, 128x128x1x1] %onnx::Conv_1004[FLOAT, 128x128x3x3] %onnx::Conv_1007[FLOAT, 128x128x1x1] %onnx::Conv_1010[FLOAT, 128x128x3x3] %onnx::Conv_1013[FLOAT, 128x128x1x1] %onnx::Conv_1016[FLOAT, 256x128x1x1] %onnx::Conv_1017[FLOAT, 256] %onnx::Conv_1019[FLOAT, 256x256x3x3] %onnx::Conv_1022[FLOAT, 256x128x1x1] %onnx::Conv_1025[FLOAT, 256x256x3x3] %onnx::Conv_1028[FLOAT, 256x256x1x1] %onnx::Conv_1031[FLOAT, 256x256x3x3] %onnx::Conv_1034[FLOAT, 256x128x1x1] %onnx::Conv_1037[FLOAT, 256x256x1x1] %onnx::Conv_1040[FLOAT, 256x256x3x3] %onnx::Conv_1043[FLOAT, 256x256x1x1] %onnx::Conv_1046[FLOAT, 256x256x3x3] %onnx::Conv_1049[FLOAT, 256x256x1x1] %onnx::Conv_1052[FLOAT, 256x256x3x3] %onnx::Conv_1055[FLOAT, 256x256x1x1] %onnx::Conv_1058[FLOAT, 256x256x1x1] %onnx::Conv_1061[FLOAT, 256x256x3x3] %onnx::Conv_1064[FLOAT, 256x256x1x1] %onnx::Conv_1067[FLOAT, 256x256x3x3] %onnx::Conv_1070[FLOAT, 256x256x1x1] %onnx::Conv_1073[FLOAT, 256x256x3x3] %onnx::Conv_1076[FLOAT, 256x256x1x1] %onnx::Conv_1079[FLOAT, 512x256x1x1] %onnx::Conv_1080[FLOAT, 512] %onnx::Conv_1082[FLOAT, 512x512x3x3] %onnx::Conv_1085[FLOAT, 512x256x1x1] %onnx::Conv_1088[FLOAT, 512x512x3x3] %onnx::Conv_1091[FLOAT, 512x512x1x1] %onnx::Conv_1094[FLOAT, 512x512x3x3] %onnx::Conv_1097[FLOAT, 512x256x1x1] %onnx::Conv_1100[FLOAT, 512x512x1x1] %onnx::Conv_1103[FLOAT, 512x512x3x3] %onnx::Conv_1106[FLOAT, 512x512x1x1] %onnx::Conv_1109[FLOAT, 512x512x3x3] %onnx::Conv_1112[FLOAT, 512x512x1x1] %onnx::Conv_1115[FLOAT, 512x512x3x3] %onnx::Conv_1118[FLOAT, 512x512x1x1] %onnx::Conv_1121[FLOAT, 512x512x1x1] %onnx::Conv_1124[FLOAT, 512x512x3x3] %onnx::Conv_1127[FLOAT, 512x512x1x1] %onnx::Conv_1130[FLOAT, 512x512x3x3] %onnx::Conv_1133[FLOAT, 512x512x1x1] %onnx::Conv_1136[FLOAT, 512x512x3x3] %onnx::Conv_1139[FLOAT, 512x512x1x1] ) { %onnx::Conv_1140 = Identity(%onnx::Conv_1080) %onnx::Conv_1137 = Identity(%onnx::Conv_1080) %onnx::Conv_1134 = Identity(%onnx::Conv_1080) %onnx::Conv_1131 = Identity(%onnx::Conv_1080) %onnx::Conv_1128 = Identity(%onnx::Conv_1080) %onnx::Conv_1125 = Identity(%onnx::Conv_1080) %onnx::Conv_1122 = Identity(%onnx::Conv_1080) %onnx::Conv_1119 = Identity(%onnx::Conv_1080) %onnx::Conv_1116 = Identity(%onnx::Conv_1080) %onnx::Conv_1113 = Identity(%onnx::Conv_1080) %onnx::Conv_1110 = Identity(%onnx::Conv_1080) %onnx::Conv_1107 = Identity(%onnx::Conv_1080) %onnx::Conv_1104 = Identity(%onnx::Conv_1080) %onnx::Conv_1101 = Identity(%onnx::Conv_1080) %onnx::Conv_1098 = Identity(%onnx::Conv_1080) %onnx::Conv_1095 = Identity(%onnx::Conv_1080) %onnx::Conv_1092 = Identity(%onnx::Conv_1080) %onnx::Conv_1089 = Identity(%onnx::Conv_1080) %onnx::Conv_1086 = Identity(%onnx::Conv_1080) %onnx::Conv_1083 = Identity(%onnx::Conv_1080) %onnx::Conv_1077 = Identity(%onnx::Conv_1017) %onnx::Conv_1074 = Identity(%onnx::Conv_1017) %onnx::Conv_1071 = Identity(%onnx::Conv_1017) %onnx::Conv_1068 = Identity(%onnx::Conv_1017) %onnx::Conv_1065 = Identity(%onnx::Conv_1017) %onnx::Conv_1062 = Identity(%onnx::Conv_1017) %onnx::Conv_1059 = Identity(%onnx::Conv_1017) %onnx::Conv_1056 = Identity(%onnx::Conv_1017) %onnx::Conv_1053 = Identity(%onnx::Conv_1017) %onnx::Conv_1050 = Identity(%onnx::Conv_1017) %onnx::Conv_1047 = Identity(%onnx::Conv_1017) %onnx::Conv_1044 = Identity(%onnx::Conv_1017) %onnx::Conv_1041 = Identity(%onnx::Conv_1017) %onnx::Conv_1038 = Identity(%onnx::Conv_1017) %onnx::Conv_1035 = Identity(%onnx::Conv_1017) %onnx::Conv_1032 = Identity(%onnx::Conv_1017) %onnx::Conv_1029 = Identity(%onnx::Conv_1017) %onnx::Conv_1026 = Identity(%onnx::Conv_1017) %onnx::Conv_1023 = Identity(%onnx::Conv_1017) %onnx::Conv_1020 = Identity(%onnx::Conv_1017) %onnx::Conv_1014 = Identity(%onnx::Conv_951) %onnx::Conv_1011 = Identity(%onnx::Conv_951) %onnx::Conv_1008 = Identity(%onnx::Conv_951) %onnx::Conv_1005 = Identity(%onnx::Conv_951) %onnx::Conv_1002 = Identity(%onnx::Conv_951) %onnx::Conv_999 = Identity(%onnx::Conv_951) %onnx::Conv_996 = Identity(%onnx::Conv_951) %onnx::Conv_993 = Identity(%onnx::Conv_951) %onnx::Conv_990 = Identity(%onnx::Conv_951) %onnx::Conv_987 = Identity(%onnx::Conv_951) %onnx::Conv_984 = Identity(%onnx::Conv_951) %onnx::Conv_981 = Identity(%onnx::Conv_951) %onnx::Conv_978 = Identity(%onnx::Conv_951) %onnx::Conv_975 = Identity(%onnx::Conv_951) %onnx::Conv_972 = Identity(%onnx::Conv_951) %onnx::Conv_969 = Identity(%onnx::Conv_951) %onnx::Conv_966 = Identity(%onnx::Conv_951) %onnx::Conv_963 = Identity(%onnx::Conv_951) %onnx::Conv_960 = Identity(%onnx::Conv_951) %onnx::Conv_957 = Identity(%onnx::Conv_951) %onnx::Conv_954 = Identity(%onnx::Conv_951) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_950, %onnx::Conv_951) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_953, %onnx::Conv_954) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_956, %onnx::Conv_957) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_959, %onnx::Conv_960) %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_962, %onnx::Conv_963) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/Add_3_output_0 = Add(%/layers.1/Add_2_output_0, %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_3_output_0, %onnx::Conv_965, %onnx::Conv_966) %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Add_4_output_0 = Add(%/layers.1/vertex_op.1/maxpool/MaxPool_output_0, %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_4_output_0, %onnx::Conv_968, %onnx::Conv_969) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_971, %onnx::Conv_972) %/layers.1/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Add_5_output_0 = Add(%/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_5_output_0, %onnx::Conv_974, %onnx::Conv_975) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_977, %onnx::Conv_978) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_5_output_0, %onnx::Conv_980, %onnx::Conv_981) %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_983, %onnx::Conv_984) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/Add_3_output_0 = Add(%/layers.2/Add_2_output_0, %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_3_output_0, %onnx::Conv_986, %onnx::Conv_987) %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Add_4_output_0 = Add(%/layers.2/vertex_op.1/maxpool/MaxPool_output_0, %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_4_output_0, %onnx::Conv_989, %onnx::Conv_990) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_5_output_0, %onnx::Conv_992, %onnx::Conv_993) %/layers.2/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Add_5_output_0 = Add(%/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_5_output_0, %onnx::Conv_995, %onnx::Conv_996) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_998, %onnx::Conv_999) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_5_output_0, %onnx::Conv_1001, %onnx::Conv_1002) %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_1004, %onnx::Conv_1005) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/Add_3_output_0 = Add(%/layers.3/Add_2_output_0, %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_3_output_0, %onnx::Conv_1007, %onnx::Conv_1008) %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Add_4_output_0 = Add(%/layers.3/vertex_op.1/maxpool/MaxPool_output_0, %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_4_output_0, %onnx::Conv_1010, %onnx::Conv_1011) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_5_output_0, %onnx::Conv_1013, %onnx::Conv_1014) %/layers.3/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Add_5_output_0 = Add(%/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Add_5_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_1016, %onnx::Conv_1017) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_1019, %onnx::Conv_1020) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_1022, %onnx::Conv_1023) %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_1025, %onnx::Conv_1026) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/Add_3_output_0 = Add(%/layers.5/Add_2_output_0, %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_3_output_0, %onnx::Conv_1028, %onnx::Conv_1029) %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Add_4_output_0 = Add(%/layers.5/vertex_op.1/maxpool/MaxPool_output_0, %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_4_output_0, %onnx::Conv_1031, %onnx::Conv_1032) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_1034, %onnx::Conv_1035) %/layers.5/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Add_5_output_0 = Add(%/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_5_output_0, %onnx::Conv_1037, %onnx::Conv_1038) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_1040, %onnx::Conv_1041) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_5_output_0, %onnx::Conv_1043, %onnx::Conv_1044) %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_1046, %onnx::Conv_1047) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/Add_3_output_0 = Add(%/layers.6/Add_2_output_0, %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_3_output_0, %onnx::Conv_1049, %onnx::Conv_1050) %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Add_4_output_0 = Add(%/layers.6/vertex_op.1/maxpool/MaxPool_output_0, %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_4_output_0, %onnx::Conv_1052, %onnx::Conv_1053) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_5_output_0, %onnx::Conv_1055, %onnx::Conv_1056) %/layers.6/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Add_5_output_0 = Add(%/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_5_output_0, %onnx::Conv_1058, %onnx::Conv_1059) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_1061, %onnx::Conv_1062) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_5_output_0, %onnx::Conv_1064, %onnx::Conv_1065) %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_1067, %onnx::Conv_1068) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/Add_3_output_0 = Add(%/layers.7/Add_2_output_0, %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_3_output_0, %onnx::Conv_1070, %onnx::Conv_1071) %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Add_4_output_0 = Add(%/layers.7/vertex_op.1/maxpool/MaxPool_output_0, %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_4_output_0, %onnx::Conv_1073, %onnx::Conv_1074) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_5_output_0, %onnx::Conv_1076, %onnx::Conv_1077) %/layers.7/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Add_5_output_0 = Add(%/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Add_5_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1079, %onnx::Conv_1080) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_1082, %onnx::Conv_1083) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1085, %onnx::Conv_1086) %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_1088, %onnx::Conv_1089) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/Add_3_output_0 = Add(%/layers.9/Add_2_output_0, %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_3_output_0, %onnx::Conv_1091, %onnx::Conv_1092) %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Add_4_output_0 = Add(%/layers.9/vertex_op.1/maxpool/MaxPool_output_0, %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_4_output_0, %onnx::Conv_1094, %onnx::Conv_1095) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1097, %onnx::Conv_1098) %/layers.9/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Add_5_output_0 = Add(%/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_5_output_0, %onnx::Conv_1100, %onnx::Conv_1101) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_1103, %onnx::Conv_1104) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_5_output_0, %onnx::Conv_1106, %onnx::Conv_1107) %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_1109, %onnx::Conv_1110) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/Add_3_output_0 = Add(%/layers.10/Add_2_output_0, %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_3_output_0, %onnx::Conv_1112, %onnx::Conv_1113) %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Add_4_output_0 = Add(%/layers.10/vertex_op.1/maxpool/MaxPool_output_0, %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_4_output_0, %onnx::Conv_1115, %onnx::Conv_1116) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_5_output_0, %onnx::Conv_1118, %onnx::Conv_1119) %/layers.10/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Add_5_output_0 = Add(%/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_5_output_0, %onnx::Conv_1121, %onnx::Conv_1122) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_1124, %onnx::Conv_1125) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_5_output_0, %onnx::Conv_1127, %onnx::Conv_1128) %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_1130, %onnx::Conv_1131) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/Add_3_output_0 = Add(%/layers.11/Add_2_output_0, %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_3_output_0, %onnx::Conv_1133, %onnx::Conv_1134) %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Add_4_output_0 = Add(%/layers.11/vertex_op.1/maxpool/MaxPool_output_0, %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_4_output_0, %onnx::Conv_1136, %onnx::Conv_1137) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_5_output_0, %onnx::Conv_1139, %onnx::Conv_1140) %/layers.11/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Add_5_output_0 = Add(%/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Add_5_output_0) %948 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %948 }
val_accuracy
94.48117
9,307,695,104
31,552,906
{'zcp_epe_nas': 146.26664919880832, 'zcp_fisher': 4.92814302444458, 'zcp_flops': 148923121664.0, 'zcp_grad_norm': 51.02153015136719, 'zcp_grasp': -2.069305419921875, 'zcp_jacov': -16.048329316840576, 'zcp_l2_norm': 1437.9427490234375, 'zcp_nwot': 237.01915582857998, 'zcp_params': 31552906.0, 'zcp_plain': 0.046952676028013, 'zcp_snip': 458.199462890625, 'zcp_synflow': 135.5224249633922, 'zcp_zen': 141.54478454589844, 'zcp_val_accuracy': 0.907752394676208}
NASBench101_333809
NASBench101
333809
c9daf9524ad89d65c06fd73ccfb678f7
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_788[FLOAT, 128x3x3x3] %onnx::Conv_789[FLOAT, 128] %onnx::Conv_791[FLOAT, 64x128x1x1] %onnx::Conv_792[FLOAT, 64] %onnx::Conv_794[FLOAT, 64x64x1x1] %onnx::Conv_797[FLOAT, 64x64x3x3] %onnx::Conv_800[FLOAT, 64x64x3x3] %onnx::Conv_803[FLOAT, 64x64x1x1] %onnx::Conv_806[FLOAT, 64x128x1x1] %onnx::Conv_809[FLOAT, 64x64x1x1] %onnx::Conv_812[FLOAT, 64x64x3x3] %onnx::Conv_815[FLOAT, 64x64x3x3] %onnx::Conv_818[FLOAT, 64x64x1x1] %onnx::Conv_821[FLOAT, 64x128x1x1] %onnx::Conv_824[FLOAT, 64x64x1x1] %onnx::Conv_827[FLOAT, 64x64x3x3] %onnx::Conv_830[FLOAT, 64x64x3x3] %onnx::Conv_833[FLOAT, 64x64x1x1] %onnx::Conv_836[FLOAT, 128x128x1x1] %onnx::Conv_839[FLOAT, 128x128x1x1] %onnx::Conv_842[FLOAT, 128x128x3x3] %onnx::Conv_845[FLOAT, 128x128x3x3] %onnx::Conv_848[FLOAT, 128x128x1x1] %onnx::Conv_851[FLOAT, 128x256x1x1] %onnx::Conv_854[FLOAT, 128x128x1x1] %onnx::Conv_857[FLOAT, 128x128x3x3] %onnx::Conv_860[FLOAT, 128x128x3x3] %onnx::Conv_863[FLOAT, 128x128x1x1] %onnx::Conv_866[FLOAT, 128x256x1x1] %onnx::Conv_869[FLOAT, 128x128x1x1] %onnx::Conv_872[FLOAT, 128x128x3x3] %onnx::Conv_875[FLOAT, 128x128x3x3] %onnx::Conv_878[FLOAT, 128x128x1x1] %onnx::Conv_881[FLOAT, 256x256x1x1] %onnx::Conv_882[FLOAT, 256] %onnx::Conv_884[FLOAT, 256x256x1x1] %onnx::Conv_887[FLOAT, 256x256x3x3] %onnx::Conv_890[FLOAT, 256x256x3x3] %onnx::Conv_893[FLOAT, 256x256x1x1] %onnx::Conv_896[FLOAT, 256x512x1x1] %onnx::Conv_899[FLOAT, 256x256x1x1] %onnx::Conv_902[FLOAT, 256x256x3x3] %onnx::Conv_905[FLOAT, 256x256x3x3] %onnx::Conv_908[FLOAT, 256x256x1x1] %onnx::Conv_911[FLOAT, 256x512x1x1] %onnx::Conv_914[FLOAT, 256x256x1x1] %onnx::Conv_917[FLOAT, 256x256x3x3] %onnx::Conv_920[FLOAT, 256x256x3x3] %onnx::Conv_923[FLOAT, 256x256x1x1] ) { %onnx::Conv_924 = Identity(%onnx::Conv_882) %onnx::Conv_921 = Identity(%onnx::Conv_882) %onnx::Conv_918 = Identity(%onnx::Conv_882) %onnx::Conv_915 = Identity(%onnx::Conv_882) %onnx::Conv_912 = Identity(%onnx::Conv_882) %onnx::Conv_909 = Identity(%onnx::Conv_882) %onnx::Conv_906 = Identity(%onnx::Conv_882) %onnx::Conv_903 = Identity(%onnx::Conv_882) %onnx::Conv_900 = Identity(%onnx::Conv_882) %onnx::Conv_897 = Identity(%onnx::Conv_882) %onnx::Conv_894 = Identity(%onnx::Conv_882) %onnx::Conv_891 = Identity(%onnx::Conv_882) %onnx::Conv_888 = Identity(%onnx::Conv_882) %onnx::Conv_885 = Identity(%onnx::Conv_882) %onnx::Conv_879 = Identity(%onnx::Conv_789) %onnx::Conv_876 = Identity(%onnx::Conv_789) %onnx::Conv_873 = Identity(%onnx::Conv_789) %onnx::Conv_870 = Identity(%onnx::Conv_789) %onnx::Conv_867 = Identity(%onnx::Conv_789) %onnx::Conv_864 = Identity(%onnx::Conv_789) %onnx::Conv_861 = Identity(%onnx::Conv_789) %onnx::Conv_858 = Identity(%onnx::Conv_789) %onnx::Conv_855 = Identity(%onnx::Conv_789) %onnx::Conv_852 = Identity(%onnx::Conv_789) %onnx::Conv_849 = Identity(%onnx::Conv_789) %onnx::Conv_846 = Identity(%onnx::Conv_789) %onnx::Conv_843 = Identity(%onnx::Conv_789) %onnx::Conv_840 = Identity(%onnx::Conv_789) %onnx::Conv_837 = Identity(%onnx::Conv_789) %onnx::Conv_834 = Identity(%onnx::Conv_792) %onnx::Conv_831 = Identity(%onnx::Conv_792) %onnx::Conv_828 = Identity(%onnx::Conv_792) %onnx::Conv_825 = Identity(%onnx::Conv_792) %onnx::Conv_822 = Identity(%onnx::Conv_792) %onnx::Conv_819 = Identity(%onnx::Conv_792) %onnx::Conv_816 = Identity(%onnx::Conv_792) %onnx::Conv_813 = Identity(%onnx::Conv_792) %onnx::Conv_810 = Identity(%onnx::Conv_792) %onnx::Conv_807 = Identity(%onnx::Conv_792) %onnx::Conv_804 = Identity(%onnx::Conv_792) %onnx::Conv_801 = Identity(%onnx::Conv_792) %onnx::Conv_798 = Identity(%onnx::Conv_792) %onnx::Conv_795 = Identity(%onnx::Conv_792) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_788, %onnx::Conv_789) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_791, %onnx::Conv_792) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_794, %onnx::Conv_795) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_797, %onnx::Conv_798) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_2_output_0, %onnx::Conv_800, %onnx::Conv_801) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_3_output_0 = Add(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_3_output_0) %/layers.1/Add_4_output_0 = Add(%/layers.1/Add_3_output_0, %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_4_output_0) %/layers.1/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_5_output_0 = Add(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_4_output_0) %/layers.1/Add_6_output_0 = Add(%/layers.1/Add_5_output_0, %/layers.1/vertex_op.4/maxpool/MaxPool_output_0) %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_6_output_0, %onnx::Conv_803, %onnx::Conv_804) %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_806, %onnx::Conv_807) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_809, %onnx::Conv_810) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_812, %onnx::Conv_813) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_2_output_0, %onnx::Conv_815, %onnx::Conv_816) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_3_output_0 = Add(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_3_output_0) %/layers.2/Add_4_output_0 = Add(%/layers.2/Add_3_output_0, %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_4_output_0) %/layers.2/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_5_output_0 = Add(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_4_output_0) %/layers.2/Add_6_output_0 = Add(%/layers.2/Add_5_output_0, %/layers.2/vertex_op.4/maxpool/MaxPool_output_0) %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_6_output_0, %onnx::Conv_818, %onnx::Conv_819) %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_821, %onnx::Conv_822) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_824, %onnx::Conv_825) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_827, %onnx::Conv_828) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_2_output_0, %onnx::Conv_830, %onnx::Conv_831) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_3_output_0 = Add(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_3_output_0) %/layers.3/Add_4_output_0 = Add(%/layers.3/Add_3_output_0, %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_4_output_0) %/layers.3/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_5_output_0 = Add(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_4_output_0) %/layers.3/Add_6_output_0 = Add(%/layers.3/Add_5_output_0, %/layers.3/vertex_op.4/maxpool/MaxPool_output_0) %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_6_output_0, %onnx::Conv_833, %onnx::Conv_834) %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Concat_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_836, %onnx::Conv_837) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_839, %onnx::Conv_840) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_842, %onnx::Conv_843) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_2_output_0, %onnx::Conv_845, %onnx::Conv_846) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_3_output_0 = Add(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_3_output_0) %/layers.5/Add_4_output_0 = Add(%/layers.5/Add_3_output_0, %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_4_output_0) %/layers.5/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_5_output_0 = Add(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_4_output_0) %/layers.5/Add_6_output_0 = Add(%/layers.5/Add_5_output_0, %/layers.5/vertex_op.4/maxpool/MaxPool_output_0) %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_6_output_0, %onnx::Conv_848, %onnx::Conv_849) %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_851, %onnx::Conv_852) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_854, %onnx::Conv_855) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_857, %onnx::Conv_858) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_2_output_0, %onnx::Conv_860, %onnx::Conv_861) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_3_output_0 = Add(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_3_output_0) %/layers.6/Add_4_output_0 = Add(%/layers.6/Add_3_output_0, %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_4_output_0) %/layers.6/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_5_output_0 = Add(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_4_output_0) %/layers.6/Add_6_output_0 = Add(%/layers.6/Add_5_output_0, %/layers.6/vertex_op.4/maxpool/MaxPool_output_0) %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_6_output_0, %onnx::Conv_863, %onnx::Conv_864) %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_866, %onnx::Conv_867) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_869, %onnx::Conv_870) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_872, %onnx::Conv_873) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_2_output_0, %onnx::Conv_875, %onnx::Conv_876) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_3_output_0 = Add(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_3_output_0) %/layers.7/Add_4_output_0 = Add(%/layers.7/Add_3_output_0, %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_4_output_0) %/layers.7/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_5_output_0 = Add(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_4_output_0) %/layers.7/Add_6_output_0 = Add(%/layers.7/Add_5_output_0, %/layers.7/vertex_op.4/maxpool/MaxPool_output_0) %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_6_output_0, %onnx::Conv_878, %onnx::Conv_879) %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Concat_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_881, %onnx::Conv_882) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_884, %onnx::Conv_885) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_887, %onnx::Conv_888) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_2_output_0, %onnx::Conv_890, %onnx::Conv_891) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_3_output_0 = Add(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_3_output_0) %/layers.9/Add_4_output_0 = Add(%/layers.9/Add_3_output_0, %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_4_output_0) %/layers.9/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_5_output_0 = Add(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_4_output_0) %/layers.9/Add_6_output_0 = Add(%/layers.9/Add_5_output_0, %/layers.9/vertex_op.4/maxpool/MaxPool_output_0) %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_6_output_0, %onnx::Conv_893, %onnx::Conv_894) %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_896, %onnx::Conv_897) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_899, %onnx::Conv_900) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_902, %onnx::Conv_903) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_2_output_0, %onnx::Conv_905, %onnx::Conv_906) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_3_output_0 = Add(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_3_output_0) %/layers.10/Add_4_output_0 = Add(%/layers.10/Add_3_output_0, %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_4_output_0) %/layers.10/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_5_output_0 = Add(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_4_output_0) %/layers.10/Add_6_output_0 = Add(%/layers.10/Add_5_output_0, %/layers.10/vertex_op.4/maxpool/MaxPool_output_0) %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_6_output_0, %onnx::Conv_908, %onnx::Conv_909) %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_911, %onnx::Conv_912) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_914, %onnx::Conv_915) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_917, %onnx::Conv_918) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_2_output_0, %onnx::Conv_920, %onnx::Conv_921) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_3_output_0 = Add(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_3_output_0) %/layers.11/Add_4_output_0 = Add(%/layers.11/Add_3_output_0, %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_4_output_0) %/layers.11/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_5_output_0 = Add(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_4_output_0) %/layers.11/Add_6_output_0 = Add(%/layers.11/Add_5_output_0, %/layers.11/vertex_op.4/maxpool/MaxPool_output_0) %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_6_output_0, %onnx::Conv_923, %onnx::Conv_924) %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Concat_output_0) %786 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %786 }
val_accuracy
91.266024
1,666,066,432
5,617,418
{'zcp_epe_nas': 101.85189600770562, 'zcp_fisher': 478.0875244140625, 'zcp_flops': 26657062912.0, 'zcp_grad_norm': 375.75189208984375, 'zcp_grasp': -877.625, 'zcp_jacov': -16.036845396139217, 'zcp_l2_norm': 798.2724609375, 'zcp_nwot': 221.9655230320628, 'zcp_params': 5617418.0, 'zcp_plain': 0.07204627990722601, 'zcp_snip': 2041.6219482421875, 'zcp_synflow': 121.42527828392284, 'zcp_zen': 84.30341339111328, 'zcp_val_accuracy': 0.929487168788909}
NASBench101_353927
NASBench101
353927
d5f197e628180a47adce01e2ee86bf6b
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_788[FLOAT, 128x3x3x3] %onnx::Conv_789[FLOAT, 128] %onnx::Conv_791[FLOAT, 64x128x1x1] %onnx::Conv_792[FLOAT, 64] %onnx::Conv_794[FLOAT, 64x128x1x1] %onnx::Conv_797[FLOAT, 64x128x1x1] %onnx::Conv_800[FLOAT, 64x64x1x1] %onnx::Conv_803[FLOAT, 64x64x1x1] %onnx::Conv_806[FLOAT, 64x128x1x1] %onnx::Conv_809[FLOAT, 64x128x1x1] %onnx::Conv_812[FLOAT, 64x128x1x1] %onnx::Conv_815[FLOAT, 64x64x1x1] %onnx::Conv_818[FLOAT, 64x64x1x1] %onnx::Conv_821[FLOAT, 64x128x1x1] %onnx::Conv_824[FLOAT, 64x128x1x1] %onnx::Conv_827[FLOAT, 64x128x1x1] %onnx::Conv_830[FLOAT, 64x64x1x1] %onnx::Conv_833[FLOAT, 64x64x1x1] %onnx::Conv_836[FLOAT, 128x128x1x1] %onnx::Conv_839[FLOAT, 128x128x1x1] %onnx::Conv_842[FLOAT, 128x128x1x1] %onnx::Conv_845[FLOAT, 128x128x1x1] %onnx::Conv_848[FLOAT, 128x128x1x1] %onnx::Conv_851[FLOAT, 128x256x1x1] %onnx::Conv_854[FLOAT, 128x256x1x1] %onnx::Conv_857[FLOAT, 128x256x1x1] %onnx::Conv_860[FLOAT, 128x128x1x1] %onnx::Conv_863[FLOAT, 128x128x1x1] %onnx::Conv_866[FLOAT, 128x256x1x1] %onnx::Conv_869[FLOAT, 128x256x1x1] %onnx::Conv_872[FLOAT, 128x256x1x1] %onnx::Conv_875[FLOAT, 128x128x1x1] %onnx::Conv_878[FLOAT, 128x128x1x1] %onnx::Conv_881[FLOAT, 256x256x1x1] %onnx::Conv_882[FLOAT, 256] %onnx::Conv_884[FLOAT, 256x256x1x1] %onnx::Conv_887[FLOAT, 256x256x1x1] %onnx::Conv_890[FLOAT, 256x256x1x1] %onnx::Conv_893[FLOAT, 256x256x1x1] %onnx::Conv_896[FLOAT, 256x512x1x1] %onnx::Conv_899[FLOAT, 256x512x1x1] %onnx::Conv_902[FLOAT, 256x512x1x1] %onnx::Conv_905[FLOAT, 256x256x1x1] %onnx::Conv_908[FLOAT, 256x256x1x1] %onnx::Conv_911[FLOAT, 256x512x1x1] %onnx::Conv_914[FLOAT, 256x512x1x1] %onnx::Conv_917[FLOAT, 256x512x1x1] %onnx::Conv_920[FLOAT, 256x256x1x1] %onnx::Conv_923[FLOAT, 256x256x1x1] ) { %onnx::Conv_924 = Identity(%onnx::Conv_882) %onnx::Conv_921 = Identity(%onnx::Conv_882) %onnx::Conv_918 = Identity(%onnx::Conv_882) %onnx::Conv_915 = Identity(%onnx::Conv_882) %onnx::Conv_912 = Identity(%onnx::Conv_882) %onnx::Conv_909 = Identity(%onnx::Conv_882) %onnx::Conv_906 = Identity(%onnx::Conv_882) %onnx::Conv_903 = Identity(%onnx::Conv_882) %onnx::Conv_900 = Identity(%onnx::Conv_882) %onnx::Conv_897 = Identity(%onnx::Conv_882) %onnx::Conv_894 = Identity(%onnx::Conv_882) %onnx::Conv_891 = Identity(%onnx::Conv_882) %onnx::Conv_888 = Identity(%onnx::Conv_882) %onnx::Conv_885 = Identity(%onnx::Conv_882) %onnx::Conv_879 = Identity(%onnx::Conv_789) %onnx::Conv_876 = Identity(%onnx::Conv_789) %onnx::Conv_873 = Identity(%onnx::Conv_789) %onnx::Conv_870 = Identity(%onnx::Conv_789) %onnx::Conv_867 = Identity(%onnx::Conv_789) %onnx::Conv_864 = Identity(%onnx::Conv_789) %onnx::Conv_861 = Identity(%onnx::Conv_789) %onnx::Conv_858 = Identity(%onnx::Conv_789) %onnx::Conv_855 = Identity(%onnx::Conv_789) %onnx::Conv_852 = Identity(%onnx::Conv_789) %onnx::Conv_849 = Identity(%onnx::Conv_789) %onnx::Conv_846 = Identity(%onnx::Conv_789) %onnx::Conv_843 = Identity(%onnx::Conv_789) %onnx::Conv_840 = Identity(%onnx::Conv_789) %onnx::Conv_837 = Identity(%onnx::Conv_789) %onnx::Conv_834 = Identity(%onnx::Conv_792) %onnx::Conv_831 = Identity(%onnx::Conv_792) %onnx::Conv_828 = Identity(%onnx::Conv_792) %onnx::Conv_825 = Identity(%onnx::Conv_792) %onnx::Conv_822 = Identity(%onnx::Conv_792) %onnx::Conv_819 = Identity(%onnx::Conv_792) %onnx::Conv_816 = Identity(%onnx::Conv_792) %onnx::Conv_813 = Identity(%onnx::Conv_792) %onnx::Conv_810 = Identity(%onnx::Conv_792) %onnx::Conv_807 = Identity(%onnx::Conv_792) %onnx::Conv_804 = Identity(%onnx::Conv_792) %onnx::Conv_801 = Identity(%onnx::Conv_792) %onnx::Conv_798 = Identity(%onnx::Conv_792) %onnx::Conv_795 = Identity(%onnx::Conv_792) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_788, %onnx::Conv_789) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_791, %onnx::Conv_792) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_794, %onnx::Conv_795) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/maxpool/MaxPool_output_0, %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_1_output_0) %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_797, %onnx::Conv_798) %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_2_output_0, %onnx::Conv_800, %onnx::Conv_801) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_3_output_0 = Add(%/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_3_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_4_output_0 = Add(%/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_3_output_0) %/layers.1/Add_5_output_0 = Add(%/layers.1/Add_4_output_0, %/layers.1/vertex_op.4/maxpool/MaxPool_output_0) %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_5_output_0, %onnx::Conv_803, %onnx::Conv_804) %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.2/maxpool/MaxPool_output_0, %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_806, %onnx::Conv_807) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_809, %onnx::Conv_810) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/maxpool/MaxPool_output_0, %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_1_output_0) %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_812, %onnx::Conv_813) %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_2_output_0, %onnx::Conv_815, %onnx::Conv_816) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_3_output_0 = Add(%/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_3_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_4_output_0 = Add(%/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_3_output_0) %/layers.2/Add_5_output_0 = Add(%/layers.2/Add_4_output_0, %/layers.2/vertex_op.4/maxpool/MaxPool_output_0) %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_5_output_0, %onnx::Conv_818, %onnx::Conv_819) %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.2/maxpool/MaxPool_output_0, %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_821, %onnx::Conv_822) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_824, %onnx::Conv_825) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/maxpool/MaxPool_output_0, %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_1_output_0) %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_827, %onnx::Conv_828) %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_2_output_0, %onnx::Conv_830, %onnx::Conv_831) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_3_output_0 = Add(%/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_3_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_4_output_0 = Add(%/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_3_output_0) %/layers.3/Add_5_output_0 = Add(%/layers.3/Add_4_output_0, %/layers.3/vertex_op.4/maxpool/MaxPool_output_0) %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_5_output_0, %onnx::Conv_833, %onnx::Conv_834) %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.2/maxpool/MaxPool_output_0, %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Concat_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_836, %onnx::Conv_837) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_839, %onnx::Conv_840) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.1/maxpool/MaxPool_output_0, %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_1_output_0) %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_842, %onnx::Conv_843) %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_2_output_0, %onnx::Conv_845, %onnx::Conv_846) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_3_output_0 = Add(%/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_3_output_0) %/layers.5/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_4_output_0 = Add(%/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_3_output_0) %/layers.5/Add_5_output_0 = Add(%/layers.5/Add_4_output_0, %/layers.5/vertex_op.4/maxpool/MaxPool_output_0) %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_5_output_0, %onnx::Conv_848, %onnx::Conv_849) %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.2/maxpool/MaxPool_output_0, %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_851, %onnx::Conv_852) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_854, %onnx::Conv_855) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.1/maxpool/MaxPool_output_0, %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_1_output_0) %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_857, %onnx::Conv_858) %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_2_output_0, %onnx::Conv_860, %onnx::Conv_861) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_3_output_0 = Add(%/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_3_output_0) %/layers.6/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_4_output_0 = Add(%/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_3_output_0) %/layers.6/Add_5_output_0 = Add(%/layers.6/Add_4_output_0, %/layers.6/vertex_op.4/maxpool/MaxPool_output_0) %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_5_output_0, %onnx::Conv_863, %onnx::Conv_864) %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.2/maxpool/MaxPool_output_0, %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_866, %onnx::Conv_867) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_869, %onnx::Conv_870) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.1/maxpool/MaxPool_output_0, %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_1_output_0) %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_872, %onnx::Conv_873) %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_2_output_0, %onnx::Conv_875, %onnx::Conv_876) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_3_output_0 = Add(%/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_3_output_0) %/layers.7/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_4_output_0 = Add(%/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_3_output_0) %/layers.7/Add_5_output_0 = Add(%/layers.7/Add_4_output_0, %/layers.7/vertex_op.4/maxpool/MaxPool_output_0) %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_5_output_0, %onnx::Conv_878, %onnx::Conv_879) %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.2/maxpool/MaxPool_output_0, %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Concat_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_881, %onnx::Conv_882) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_884, %onnx::Conv_885) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/maxpool/MaxPool_output_0, %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_1_output_0) %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_887, %onnx::Conv_888) %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_2_output_0, %onnx::Conv_890, %onnx::Conv_891) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_3_output_0 = Add(%/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_3_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_4_output_0 = Add(%/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_3_output_0) %/layers.9/Add_5_output_0 = Add(%/layers.9/Add_4_output_0, %/layers.9/vertex_op.4/maxpool/MaxPool_output_0) %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_5_output_0, %onnx::Conv_893, %onnx::Conv_894) %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.2/maxpool/MaxPool_output_0, %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_896, %onnx::Conv_897) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_899, %onnx::Conv_900) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/maxpool/MaxPool_output_0, %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_1_output_0) %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_902, %onnx::Conv_903) %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_2_output_0, %onnx::Conv_905, %onnx::Conv_906) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_3_output_0 = Add(%/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_3_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_4_output_0 = Add(%/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_3_output_0) %/layers.10/Add_5_output_0 = Add(%/layers.10/Add_4_output_0, %/layers.10/vertex_op.4/maxpool/MaxPool_output_0) %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_5_output_0, %onnx::Conv_908, %onnx::Conv_909) %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.2/maxpool/MaxPool_output_0, %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_911, %onnx::Conv_912) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_914, %onnx::Conv_915) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/maxpool/MaxPool_output_0, %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_1_output_0) %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_917, %onnx::Conv_918) %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_2_output_0, %onnx::Conv_920, %onnx::Conv_921) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_3_output_0 = Add(%/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_3_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_4_output_0 = Add(%/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_3_output_0) %/layers.11/Add_5_output_0 = Add(%/layers.11/Add_4_output_0, %/layers.11/vertex_op.4/maxpool/MaxPool_output_0) %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_5_output_0, %onnx::Conv_923, %onnx::Conv_924) %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.2/maxpool/MaxPool_output_0, %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Concat_output_0) %786 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %786 }
val_accuracy
88.902241
575,547,392
1,840,906
{'zcp_epe_nas': 102.3757236740058, 'zcp_fisher': 3.677070379257202, 'zcp_flops': 9208758272.0, 'zcp_grad_norm': 42.873779296875, 'zcp_grasp': -4.8835296630859375, 'zcp_jacov': -16.05274907111784, 'zcp_l2_norm': 890.5538940429688, 'zcp_nwot': 221.883588269942, 'zcp_params': 1840906.0, 'zcp_plain': 0.16957309842109602, 'zcp_snip': 248.19215393066406, 'zcp_synflow': 80.66260936187467, 'zcp_zen': 77.35649108886719, 'zcp_val_accuracy': 0.9065504670143121}
NASBench101_404631
NASBench101
404631
f49d845e830a9eca67ccb5f2469b1b44
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_887[FLOAT, 128x3x3x3] %onnx::Conv_888[FLOAT, 128] %onnx::Conv_890[FLOAT, 64x128x1x1] %onnx::Conv_891[FLOAT, 64] %onnx::Conv_893[FLOAT, 64x64x1x1] %onnx::Conv_896[FLOAT, 64x64x1x1] %onnx::Conv_899[FLOAT, 64x64x1x1] %onnx::Conv_902[FLOAT, 64x128x1x1] %onnx::Conv_905[FLOAT, 64x64x3x3] %onnx::Conv_908[FLOAT, 64x128x1x1] %onnx::Conv_911[FLOAT, 64x64x1x1] %onnx::Conv_914[FLOAT, 64x64x1x1] %onnx::Conv_917[FLOAT, 64x64x1x1] %onnx::Conv_920[FLOAT, 64x128x1x1] %onnx::Conv_923[FLOAT, 64x64x3x3] %onnx::Conv_926[FLOAT, 64x128x1x1] %onnx::Conv_929[FLOAT, 64x64x1x1] %onnx::Conv_932[FLOAT, 64x64x1x1] %onnx::Conv_935[FLOAT, 64x64x1x1] %onnx::Conv_938[FLOAT, 64x128x1x1] %onnx::Conv_941[FLOAT, 64x64x3x3] %onnx::Conv_944[FLOAT, 128x128x1x1] %onnx::Conv_947[FLOAT, 128x128x1x1] %onnx::Conv_950[FLOAT, 128x128x1x1] %onnx::Conv_953[FLOAT, 128x128x1x1] %onnx::Conv_956[FLOAT, 128x128x1x1] %onnx::Conv_959[FLOAT, 128x128x3x3] %onnx::Conv_962[FLOAT, 128x256x1x1] %onnx::Conv_965[FLOAT, 128x128x1x1] %onnx::Conv_968[FLOAT, 128x128x1x1] %onnx::Conv_971[FLOAT, 128x128x1x1] %onnx::Conv_974[FLOAT, 128x256x1x1] %onnx::Conv_977[FLOAT, 128x128x3x3] %onnx::Conv_980[FLOAT, 128x256x1x1] %onnx::Conv_983[FLOAT, 128x128x1x1] %onnx::Conv_986[FLOAT, 128x128x1x1] %onnx::Conv_989[FLOAT, 128x128x1x1] %onnx::Conv_992[FLOAT, 128x256x1x1] %onnx::Conv_995[FLOAT, 128x128x3x3] %onnx::Conv_998[FLOAT, 256x256x1x1] %onnx::Conv_999[FLOAT, 256] %onnx::Conv_1001[FLOAT, 256x256x1x1] %onnx::Conv_1004[FLOAT, 256x256x1x1] %onnx::Conv_1007[FLOAT, 256x256x1x1] %onnx::Conv_1010[FLOAT, 256x256x1x1] %onnx::Conv_1013[FLOAT, 256x256x3x3] %onnx::Conv_1016[FLOAT, 256x512x1x1] %onnx::Conv_1019[FLOAT, 256x256x1x1] %onnx::Conv_1022[FLOAT, 256x256x1x1] %onnx::Conv_1025[FLOAT, 256x256x1x1] %onnx::Conv_1028[FLOAT, 256x512x1x1] %onnx::Conv_1031[FLOAT, 256x256x3x3] %onnx::Conv_1034[FLOAT, 256x512x1x1] %onnx::Conv_1037[FLOAT, 256x256x1x1] %onnx::Conv_1040[FLOAT, 256x256x1x1] %onnx::Conv_1043[FLOAT, 256x256x1x1] %onnx::Conv_1046[FLOAT, 256x512x1x1] %onnx::Conv_1049[FLOAT, 256x256x3x3] ) { %onnx::Conv_1050 = Identity(%onnx::Conv_999) %onnx::Conv_1047 = Identity(%onnx::Conv_999) %onnx::Conv_1044 = Identity(%onnx::Conv_999) %onnx::Conv_1041 = Identity(%onnx::Conv_999) %onnx::Conv_1038 = Identity(%onnx::Conv_999) %onnx::Conv_1035 = Identity(%onnx::Conv_999) %onnx::Conv_1032 = Identity(%onnx::Conv_999) %onnx::Conv_1029 = Identity(%onnx::Conv_999) %onnx::Conv_1026 = Identity(%onnx::Conv_999) %onnx::Conv_1023 = Identity(%onnx::Conv_999) %onnx::Conv_1020 = Identity(%onnx::Conv_999) %onnx::Conv_1017 = Identity(%onnx::Conv_999) %onnx::Conv_1014 = Identity(%onnx::Conv_999) %onnx::Conv_1011 = Identity(%onnx::Conv_999) %onnx::Conv_1008 = Identity(%onnx::Conv_999) %onnx::Conv_1005 = Identity(%onnx::Conv_999) %onnx::Conv_1002 = Identity(%onnx::Conv_999) %onnx::Conv_996 = Identity(%onnx::Conv_888) %onnx::Conv_993 = Identity(%onnx::Conv_888) %onnx::Conv_990 = Identity(%onnx::Conv_888) %onnx::Conv_987 = Identity(%onnx::Conv_888) %onnx::Conv_984 = Identity(%onnx::Conv_888) %onnx::Conv_981 = Identity(%onnx::Conv_888) %onnx::Conv_978 = Identity(%onnx::Conv_888) %onnx::Conv_975 = Identity(%onnx::Conv_888) %onnx::Conv_972 = Identity(%onnx::Conv_888) %onnx::Conv_969 = Identity(%onnx::Conv_888) %onnx::Conv_966 = Identity(%onnx::Conv_888) %onnx::Conv_963 = Identity(%onnx::Conv_888) %onnx::Conv_960 = Identity(%onnx::Conv_888) %onnx::Conv_957 = Identity(%onnx::Conv_888) %onnx::Conv_954 = Identity(%onnx::Conv_888) %onnx::Conv_951 = Identity(%onnx::Conv_888) %onnx::Conv_948 = Identity(%onnx::Conv_888) %onnx::Conv_945 = Identity(%onnx::Conv_888) %onnx::Conv_942 = Identity(%onnx::Conv_891) %onnx::Conv_939 = Identity(%onnx::Conv_891) %onnx::Conv_936 = Identity(%onnx::Conv_891) %onnx::Conv_933 = Identity(%onnx::Conv_891) %onnx::Conv_930 = Identity(%onnx::Conv_891) %onnx::Conv_927 = Identity(%onnx::Conv_891) %onnx::Conv_924 = Identity(%onnx::Conv_891) %onnx::Conv_921 = Identity(%onnx::Conv_891) %onnx::Conv_918 = Identity(%onnx::Conv_891) %onnx::Conv_915 = Identity(%onnx::Conv_891) %onnx::Conv_912 = Identity(%onnx::Conv_891) %onnx::Conv_909 = Identity(%onnx::Conv_891) %onnx::Conv_906 = Identity(%onnx::Conv_891) %onnx::Conv_903 = Identity(%onnx::Conv_891) %onnx::Conv_900 = Identity(%onnx::Conv_891) %onnx::Conv_897 = Identity(%onnx::Conv_891) %onnx::Conv_894 = Identity(%onnx::Conv_891) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_887, %onnx::Conv_888) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_890, %onnx::Conv_891) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_893, %onnx::Conv_894) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_896, %onnx::Conv_897) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/Add_3_output_0 = Add(%/layers.1/Add_2_output_0, %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_3_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_4_output_0 = Add(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_3_output_0) %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_4_output_0, %onnx::Conv_899, %onnx::Conv_900) %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_902, %onnx::Conv_903) %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_5_output_0 = Add(%/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_4_output_0) %/layers.1/Add_6_output_0 = Add(%/layers.1/Add_5_output_0, %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_6_output_0, %onnx::Conv_905, %onnx::Conv_906) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.3/maxpool/MaxPool_output_0, %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_908, %onnx::Conv_909) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_911, %onnx::Conv_912) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_914, %onnx::Conv_915) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/Add_3_output_0 = Add(%/layers.2/Add_2_output_0, %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_3_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_4_output_0 = Add(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_3_output_0) %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_4_output_0, %onnx::Conv_917, %onnx::Conv_918) %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_920, %onnx::Conv_921) %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_5_output_0 = Add(%/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_4_output_0) %/layers.2/Add_6_output_0 = Add(%/layers.2/Add_5_output_0, %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_6_output_0, %onnx::Conv_923, %onnx::Conv_924) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.3/maxpool/MaxPool_output_0, %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_926, %onnx::Conv_927) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_929, %onnx::Conv_930) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_932, %onnx::Conv_933) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/Add_3_output_0 = Add(%/layers.3/Add_2_output_0, %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_3_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_4_output_0 = Add(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_3_output_0) %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_4_output_0, %onnx::Conv_935, %onnx::Conv_936) %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_938, %onnx::Conv_939) %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_5_output_0 = Add(%/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_4_output_0) %/layers.3/Add_6_output_0 = Add(%/layers.3/Add_5_output_0, %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_6_output_0, %onnx::Conv_941, %onnx::Conv_942) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.3/maxpool/MaxPool_output_0, %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Concat_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_944, %onnx::Conv_945) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_947, %onnx::Conv_948) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_950, %onnx::Conv_951) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/Add_3_output_0 = Add(%/layers.5/Add_2_output_0, %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_3_output_0) %/layers.5/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_4_output_0 = Add(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_3_output_0) %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_4_output_0, %onnx::Conv_953, %onnx::Conv_954) %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_956, %onnx::Conv_957) %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_5_output_0 = Add(%/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_4_output_0) %/layers.5/Add_6_output_0 = Add(%/layers.5/Add_5_output_0, %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_6_output_0, %onnx::Conv_959, %onnx::Conv_960) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.3/maxpool/MaxPool_output_0, %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_962, %onnx::Conv_963) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_965, %onnx::Conv_966) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_968, %onnx::Conv_969) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/Add_3_output_0 = Add(%/layers.6/Add_2_output_0, %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_3_output_0) %/layers.6/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_4_output_0 = Add(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_3_output_0) %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_4_output_0, %onnx::Conv_971, %onnx::Conv_972) %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_974, %onnx::Conv_975) %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_5_output_0 = Add(%/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_4_output_0) %/layers.6/Add_6_output_0 = Add(%/layers.6/Add_5_output_0, %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_6_output_0, %onnx::Conv_977, %onnx::Conv_978) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.3/maxpool/MaxPool_output_0, %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_980, %onnx::Conv_981) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_983, %onnx::Conv_984) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_986, %onnx::Conv_987) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/Add_3_output_0 = Add(%/layers.7/Add_2_output_0, %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_3_output_0) %/layers.7/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_4_output_0 = Add(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_3_output_0) %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_4_output_0, %onnx::Conv_989, %onnx::Conv_990) %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_992, %onnx::Conv_993) %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_5_output_0 = Add(%/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_4_output_0) %/layers.7/Add_6_output_0 = Add(%/layers.7/Add_5_output_0, %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_6_output_0, %onnx::Conv_995, %onnx::Conv_996) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.3/maxpool/MaxPool_output_0, %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Concat_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_998, %onnx::Conv_999) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_1001, %onnx::Conv_1002) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_1004, %onnx::Conv_1005) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/Add_3_output_0 = Add(%/layers.9/Add_2_output_0, %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_3_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_4_output_0 = Add(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_3_output_0) %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_4_output_0, %onnx::Conv_1007, %onnx::Conv_1008) %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1010, %onnx::Conv_1011) %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_5_output_0 = Add(%/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_4_output_0) %/layers.9/Add_6_output_0 = Add(%/layers.9/Add_5_output_0, %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_6_output_0, %onnx::Conv_1013, %onnx::Conv_1014) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.3/maxpool/MaxPool_output_0, %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_1016, %onnx::Conv_1017) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_1019, %onnx::Conv_1020) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_1022, %onnx::Conv_1023) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/Add_3_output_0 = Add(%/layers.10/Add_2_output_0, %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_3_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_4_output_0 = Add(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_3_output_0) %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_4_output_0, %onnx::Conv_1025, %onnx::Conv_1026) %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_1028, %onnx::Conv_1029) %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_5_output_0 = Add(%/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_4_output_0) %/layers.10/Add_6_output_0 = Add(%/layers.10/Add_5_output_0, %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_6_output_0, %onnx::Conv_1031, %onnx::Conv_1032) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.3/maxpool/MaxPool_output_0, %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_1034, %onnx::Conv_1035) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_1037, %onnx::Conv_1038) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_1040, %onnx::Conv_1041) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/Add_3_output_0 = Add(%/layers.11/Add_2_output_0, %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_3_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_4_output_0 = Add(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_3_output_0) %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_4_output_0, %onnx::Conv_1043, %onnx::Conv_1044) %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_1046, %onnx::Conv_1047) %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_5_output_0 = Add(%/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_4_output_0) %/layers.11/Add_6_output_0 = Add(%/layers.11/Add_5_output_0, %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_6_output_0, %onnx::Conv_1049, %onnx::Conv_1050) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.3/maxpool/MaxPool_output_0, %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Concat_output_0) %885 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %885 }
val_accuracy
91.346157
1,199,056,896
3,989,898
{'zcp_epe_nas': 118.81600264799548, 'zcp_fisher': 52.160011291503906, 'zcp_flops': 19184910336.0, 'zcp_grad_norm': 161.9016876220703, 'zcp_grasp': 51.64306640625, 'zcp_jacov': -16.063199022731247, 'zcp_l2_norm': 994.805908203125, 'zcp_nwot': 224.64577202957872, 'zcp_params': 3989898.0, 'zcp_plain': 0.027804465964436004, 'zcp_snip': 848.4238891601562, 'zcp_synflow': 107.3535515301655, 'zcp_zen': 89.25443267822266, 'zcp_val_accuracy': 0.916766822338104}
NASBench101_337589
NASBench101
337589
cc2238d47014e4a2a7010776a6422952
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_878[FLOAT, 128x3x3x3] %onnx::Conv_879[FLOAT, 128] %onnx::Conv_881[FLOAT, 64x128x1x1] %onnx::Conv_882[FLOAT, 64] %onnx::Conv_884[FLOAT, 64x64x3x3] %onnx::Conv_887[FLOAT, 64x64x1x1] %onnx::Conv_890[FLOAT, 64x64x1x1] %onnx::Conv_893[FLOAT, 64x64x3x3] %onnx::Conv_896[FLOAT, 64x64x1x1] %onnx::Conv_899[FLOAT, 64x128x1x1] %onnx::Conv_902[FLOAT, 64x64x3x3] %onnx::Conv_905[FLOAT, 64x64x1x1] %onnx::Conv_908[FLOAT, 64x64x1x1] %onnx::Conv_911[FLOAT, 64x64x3x3] %onnx::Conv_914[FLOAT, 64x64x1x1] %onnx::Conv_917[FLOAT, 64x128x1x1] %onnx::Conv_920[FLOAT, 64x64x3x3] %onnx::Conv_923[FLOAT, 64x64x1x1] %onnx::Conv_926[FLOAT, 64x64x1x1] %onnx::Conv_929[FLOAT, 64x64x3x3] %onnx::Conv_932[FLOAT, 64x64x1x1] %onnx::Conv_935[FLOAT, 128x128x1x1] %onnx::Conv_938[FLOAT, 128x128x3x3] %onnx::Conv_941[FLOAT, 128x128x1x1] %onnx::Conv_944[FLOAT, 128x128x1x1] %onnx::Conv_947[FLOAT, 128x128x3x3] %onnx::Conv_950[FLOAT, 128x128x1x1] %onnx::Conv_953[FLOAT, 128x256x1x1] %onnx::Conv_956[FLOAT, 128x128x3x3] %onnx::Conv_959[FLOAT, 128x128x1x1] %onnx::Conv_962[FLOAT, 128x128x1x1] %onnx::Conv_965[FLOAT, 128x128x3x3] %onnx::Conv_968[FLOAT, 128x128x1x1] %onnx::Conv_971[FLOAT, 128x256x1x1] %onnx::Conv_974[FLOAT, 128x128x3x3] %onnx::Conv_977[FLOAT, 128x128x1x1] %onnx::Conv_980[FLOAT, 128x128x1x1] %onnx::Conv_983[FLOAT, 128x128x3x3] %onnx::Conv_986[FLOAT, 128x128x1x1] %onnx::Conv_989[FLOAT, 256x256x1x1] %onnx::Conv_990[FLOAT, 256] %onnx::Conv_992[FLOAT, 256x256x3x3] %onnx::Conv_995[FLOAT, 256x256x1x1] %onnx::Conv_998[FLOAT, 256x256x1x1] %onnx::Conv_1001[FLOAT, 256x256x3x3] %onnx::Conv_1004[FLOAT, 256x256x1x1] %onnx::Conv_1007[FLOAT, 256x512x1x1] %onnx::Conv_1010[FLOAT, 256x256x3x3] %onnx::Conv_1013[FLOAT, 256x256x1x1] %onnx::Conv_1016[FLOAT, 256x256x1x1] %onnx::Conv_1019[FLOAT, 256x256x3x3] %onnx::Conv_1022[FLOAT, 256x256x1x1] %onnx::Conv_1025[FLOAT, 256x512x1x1] %onnx::Conv_1028[FLOAT, 256x256x3x3] %onnx::Conv_1031[FLOAT, 256x256x1x1] %onnx::Conv_1034[FLOAT, 256x256x1x1] %onnx::Conv_1037[FLOAT, 256x256x3x3] %onnx::Conv_1040[FLOAT, 256x256x1x1] ) { %onnx::Conv_1041 = Identity(%onnx::Conv_990) %onnx::Conv_1038 = Identity(%onnx::Conv_990) %onnx::Conv_1035 = Identity(%onnx::Conv_990) %onnx::Conv_1032 = Identity(%onnx::Conv_990) %onnx::Conv_1029 = Identity(%onnx::Conv_990) %onnx::Conv_1026 = Identity(%onnx::Conv_990) %onnx::Conv_1023 = Identity(%onnx::Conv_990) %onnx::Conv_1020 = Identity(%onnx::Conv_990) %onnx::Conv_1017 = Identity(%onnx::Conv_990) %onnx::Conv_1014 = Identity(%onnx::Conv_990) %onnx::Conv_1011 = Identity(%onnx::Conv_990) %onnx::Conv_1008 = Identity(%onnx::Conv_990) %onnx::Conv_1005 = Identity(%onnx::Conv_990) %onnx::Conv_1002 = Identity(%onnx::Conv_990) %onnx::Conv_999 = Identity(%onnx::Conv_990) %onnx::Conv_996 = Identity(%onnx::Conv_990) %onnx::Conv_993 = Identity(%onnx::Conv_990) %onnx::Conv_987 = Identity(%onnx::Conv_879) %onnx::Conv_984 = Identity(%onnx::Conv_879) %onnx::Conv_981 = Identity(%onnx::Conv_879) %onnx::Conv_978 = Identity(%onnx::Conv_879) %onnx::Conv_975 = Identity(%onnx::Conv_879) %onnx::Conv_972 = Identity(%onnx::Conv_879) %onnx::Conv_969 = Identity(%onnx::Conv_879) %onnx::Conv_966 = Identity(%onnx::Conv_879) %onnx::Conv_963 = Identity(%onnx::Conv_879) %onnx::Conv_960 = Identity(%onnx::Conv_879) %onnx::Conv_957 = Identity(%onnx::Conv_879) %onnx::Conv_954 = Identity(%onnx::Conv_879) %onnx::Conv_951 = Identity(%onnx::Conv_879) %onnx::Conv_948 = Identity(%onnx::Conv_879) %onnx::Conv_945 = Identity(%onnx::Conv_879) %onnx::Conv_942 = Identity(%onnx::Conv_879) %onnx::Conv_939 = Identity(%onnx::Conv_879) %onnx::Conv_936 = Identity(%onnx::Conv_879) %onnx::Conv_933 = Identity(%onnx::Conv_882) %onnx::Conv_930 = Identity(%onnx::Conv_882) %onnx::Conv_927 = Identity(%onnx::Conv_882) %onnx::Conv_924 = Identity(%onnx::Conv_882) %onnx::Conv_921 = Identity(%onnx::Conv_882) %onnx::Conv_918 = Identity(%onnx::Conv_882) %onnx::Conv_915 = Identity(%onnx::Conv_882) %onnx::Conv_912 = Identity(%onnx::Conv_882) %onnx::Conv_909 = Identity(%onnx::Conv_882) %onnx::Conv_906 = Identity(%onnx::Conv_882) %onnx::Conv_903 = Identity(%onnx::Conv_882) %onnx::Conv_900 = Identity(%onnx::Conv_882) %onnx::Conv_897 = Identity(%onnx::Conv_882) %onnx::Conv_894 = Identity(%onnx::Conv_882) %onnx::Conv_891 = Identity(%onnx::Conv_882) %onnx::Conv_888 = Identity(%onnx::Conv_882) %onnx::Conv_885 = Identity(%onnx::Conv_882) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_878, %onnx::Conv_879) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_881, %onnx::Conv_882) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_884, %onnx::Conv_885) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_887, %onnx::Conv_888) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_2_output_0, %onnx::Conv_890, %onnx::Conv_891) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_3_output_0 = Add(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_3_output_0) %/layers.1/Add_4_output_0 = Add(%/layers.1/Add_3_output_0, %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_4_output_0, %onnx::Conv_893, %onnx::Conv_894) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_5_output_0 = Add(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_4_output_0) %/layers.1/Add_6_output_0 = Add(%/layers.1/Add_5_output_0, %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_6_output_0, %onnx::Conv_896, %onnx::Conv_897) %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_899, %onnx::Conv_900) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_902, %onnx::Conv_903) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_905, %onnx::Conv_906) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_2_output_0, %onnx::Conv_908, %onnx::Conv_909) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_3_output_0 = Add(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_3_output_0) %/layers.2/Add_4_output_0 = Add(%/layers.2/Add_3_output_0, %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_4_output_0, %onnx::Conv_911, %onnx::Conv_912) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_5_output_0 = Add(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_4_output_0) %/layers.2/Add_6_output_0 = Add(%/layers.2/Add_5_output_0, %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_6_output_0, %onnx::Conv_914, %onnx::Conv_915) %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_917, %onnx::Conv_918) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_920, %onnx::Conv_921) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_923, %onnx::Conv_924) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_2_output_0, %onnx::Conv_926, %onnx::Conv_927) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_3_output_0 = Add(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_3_output_0) %/layers.3/Add_4_output_0 = Add(%/layers.3/Add_3_output_0, %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_4_output_0, %onnx::Conv_929, %onnx::Conv_930) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_5_output_0 = Add(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_4_output_0) %/layers.3/Add_6_output_0 = Add(%/layers.3/Add_5_output_0, %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_6_output_0, %onnx::Conv_932, %onnx::Conv_933) %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Concat_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_935, %onnx::Conv_936) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_938, %onnx::Conv_939) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_941, %onnx::Conv_942) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_2_output_0, %onnx::Conv_944, %onnx::Conv_945) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_3_output_0 = Add(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_3_output_0) %/layers.5/Add_4_output_0 = Add(%/layers.5/Add_3_output_0, %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_4_output_0, %onnx::Conv_947, %onnx::Conv_948) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_5_output_0 = Add(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_4_output_0) %/layers.5/Add_6_output_0 = Add(%/layers.5/Add_5_output_0, %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_6_output_0, %onnx::Conv_950, %onnx::Conv_951) %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_953, %onnx::Conv_954) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_956, %onnx::Conv_957) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_959, %onnx::Conv_960) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_2_output_0, %onnx::Conv_962, %onnx::Conv_963) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_3_output_0 = Add(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_3_output_0) %/layers.6/Add_4_output_0 = Add(%/layers.6/Add_3_output_0, %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_4_output_0, %onnx::Conv_965, %onnx::Conv_966) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_5_output_0 = Add(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_4_output_0) %/layers.6/Add_6_output_0 = Add(%/layers.6/Add_5_output_0, %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_6_output_0, %onnx::Conv_968, %onnx::Conv_969) %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_971, %onnx::Conv_972) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_974, %onnx::Conv_975) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_977, %onnx::Conv_978) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_2_output_0, %onnx::Conv_980, %onnx::Conv_981) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_3_output_0 = Add(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_3_output_0) %/layers.7/Add_4_output_0 = Add(%/layers.7/Add_3_output_0, %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_4_output_0, %onnx::Conv_983, %onnx::Conv_984) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_5_output_0 = Add(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_4_output_0) %/layers.7/Add_6_output_0 = Add(%/layers.7/Add_5_output_0, %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_6_output_0, %onnx::Conv_986, %onnx::Conv_987) %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Concat_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_989, %onnx::Conv_990) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_992, %onnx::Conv_993) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_995, %onnx::Conv_996) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_2_output_0, %onnx::Conv_998, %onnx::Conv_999) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_3_output_0 = Add(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_3_output_0) %/layers.9/Add_4_output_0 = Add(%/layers.9/Add_3_output_0, %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_4_output_0, %onnx::Conv_1001, %onnx::Conv_1002) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_5_output_0 = Add(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_4_output_0) %/layers.9/Add_6_output_0 = Add(%/layers.9/Add_5_output_0, %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_6_output_0, %onnx::Conv_1004, %onnx::Conv_1005) %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_1007, %onnx::Conv_1008) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_1010, %onnx::Conv_1011) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_1013, %onnx::Conv_1014) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_2_output_0, %onnx::Conv_1016, %onnx::Conv_1017) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_3_output_0 = Add(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_3_output_0) %/layers.10/Add_4_output_0 = Add(%/layers.10/Add_3_output_0, %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_4_output_0, %onnx::Conv_1019, %onnx::Conv_1020) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_5_output_0 = Add(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_4_output_0) %/layers.10/Add_6_output_0 = Add(%/layers.10/Add_5_output_0, %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_6_output_0, %onnx::Conv_1022, %onnx::Conv_1023) %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_1025, %onnx::Conv_1026) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_1028, %onnx::Conv_1029) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_1031, %onnx::Conv_1032) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_2_output_0, %onnx::Conv_1034, %onnx::Conv_1035) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_3_output_0 = Add(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_3_output_0) %/layers.11/Add_4_output_0 = Add(%/layers.11/Add_3_output_0, %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_4_output_0, %onnx::Conv_1037, %onnx::Conv_1038) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_5_output_0 = Add(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_4_output_0) %/layers.11/Add_6_output_0 = Add(%/layers.11/Add_5_output_0, %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_6_output_0, %onnx::Conv_1040, %onnx::Conv_1041) %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Concat_output_0) %876 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %876 }
val_accuracy
90.895432
1,744,316,416
5,878,154
{'zcp_epe_nas': 177.7267054133914, 'zcp_fisher': 495.86431884765625, 'zcp_flops': 27909062656.0, 'zcp_grad_norm': 392.31793212890625, 'zcp_grasp': -471.021484375, 'zcp_jacov': -16.054142754897754, 'zcp_l2_norm': 947.4288940429688, 'zcp_nwot': 224.43403126406645, 'zcp_params': 5878154.0, 'zcp_plain': -0.028417188674211002, 'zcp_snip': 2091.531494140625, 'zcp_synflow': 142.9387846381361, 'zcp_zen': 94.44828796386719, 'zcp_val_accuracy': 0.8714944124221801}
NASBench101_188131
NASBench101
188131
71c1f582018276a20744547c486ee3d2
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_1076[FLOAT, 128x3x3x3] %onnx::Conv_1077[FLOAT, 128] %onnx::Conv_1079[FLOAT, 64x128x1x1] %onnx::Conv_1080[FLOAT, 64] %onnx::Conv_1082[FLOAT, 64x64x1x1] %onnx::Conv_1085[FLOAT, 64x64x3x3] %onnx::Conv_1088[FLOAT, 64x128x1x1] %onnx::Conv_1091[FLOAT, 64x64x3x3] %onnx::Conv_1094[FLOAT, 64x128x1x1] %onnx::Conv_1097[FLOAT, 64x64x3x3] %onnx::Conv_1100[FLOAT, 64x64x1x1] %onnx::Conv_1103[FLOAT, 64x128x1x1] %onnx::Conv_1106[FLOAT, 64x64x1x1] %onnx::Conv_1109[FLOAT, 64x64x3x3] %onnx::Conv_1112[FLOAT, 64x128x1x1] %onnx::Conv_1115[FLOAT, 64x64x3x3] %onnx::Conv_1118[FLOAT, 64x128x1x1] %onnx::Conv_1121[FLOAT, 64x64x3x3] %onnx::Conv_1124[FLOAT, 64x64x1x1] %onnx::Conv_1127[FLOAT, 64x128x1x1] %onnx::Conv_1130[FLOAT, 64x64x1x1] %onnx::Conv_1133[FLOAT, 64x64x3x3] %onnx::Conv_1136[FLOAT, 64x128x1x1] %onnx::Conv_1139[FLOAT, 64x64x3x3] %onnx::Conv_1142[FLOAT, 64x128x1x1] %onnx::Conv_1145[FLOAT, 64x64x3x3] %onnx::Conv_1148[FLOAT, 64x64x1x1] %onnx::Conv_1151[FLOAT, 128x128x1x1] %onnx::Conv_1154[FLOAT, 128x128x1x1] %onnx::Conv_1157[FLOAT, 128x128x3x3] %onnx::Conv_1160[FLOAT, 128x128x1x1] %onnx::Conv_1163[FLOAT, 128x128x3x3] %onnx::Conv_1166[FLOAT, 128x128x1x1] %onnx::Conv_1169[FLOAT, 128x128x3x3] %onnx::Conv_1172[FLOAT, 128x128x1x1] %onnx::Conv_1175[FLOAT, 128x256x1x1] %onnx::Conv_1178[FLOAT, 128x128x1x1] %onnx::Conv_1181[FLOAT, 128x128x3x3] %onnx::Conv_1184[FLOAT, 128x256x1x1] %onnx::Conv_1187[FLOAT, 128x128x3x3] %onnx::Conv_1190[FLOAT, 128x256x1x1] %onnx::Conv_1193[FLOAT, 128x128x3x3] %onnx::Conv_1196[FLOAT, 128x128x1x1] %onnx::Conv_1199[FLOAT, 128x256x1x1] %onnx::Conv_1202[FLOAT, 128x128x1x1] %onnx::Conv_1205[FLOAT, 128x128x3x3] %onnx::Conv_1208[FLOAT, 128x256x1x1] %onnx::Conv_1211[FLOAT, 128x128x3x3] %onnx::Conv_1214[FLOAT, 128x256x1x1] %onnx::Conv_1217[FLOAT, 128x128x3x3] %onnx::Conv_1220[FLOAT, 128x128x1x1] %onnx::Conv_1223[FLOAT, 256x256x1x1] %onnx::Conv_1224[FLOAT, 256] %onnx::Conv_1226[FLOAT, 256x256x1x1] %onnx::Conv_1229[FLOAT, 256x256x3x3] %onnx::Conv_1232[FLOAT, 256x256x1x1] %onnx::Conv_1235[FLOAT, 256x256x3x3] %onnx::Conv_1238[FLOAT, 256x256x1x1] %onnx::Conv_1241[FLOAT, 256x256x3x3] %onnx::Conv_1244[FLOAT, 256x256x1x1] %onnx::Conv_1247[FLOAT, 256x512x1x1] %onnx::Conv_1250[FLOAT, 256x256x1x1] %onnx::Conv_1253[FLOAT, 256x256x3x3] %onnx::Conv_1256[FLOAT, 256x512x1x1] %onnx::Conv_1259[FLOAT, 256x256x3x3] %onnx::Conv_1262[FLOAT, 256x512x1x1] %onnx::Conv_1265[FLOAT, 256x256x3x3] %onnx::Conv_1268[FLOAT, 256x256x1x1] %onnx::Conv_1271[FLOAT, 256x512x1x1] %onnx::Conv_1274[FLOAT, 256x256x1x1] %onnx::Conv_1277[FLOAT, 256x256x3x3] %onnx::Conv_1280[FLOAT, 256x512x1x1] %onnx::Conv_1283[FLOAT, 256x256x3x3] %onnx::Conv_1286[FLOAT, 256x512x1x1] %onnx::Conv_1289[FLOAT, 256x256x3x3] %onnx::Conv_1292[FLOAT, 256x256x1x1] ) { %onnx::Conv_1293 = Identity(%onnx::Conv_1224) %onnx::Conv_1290 = Identity(%onnx::Conv_1224) %onnx::Conv_1287 = Identity(%onnx::Conv_1224) %onnx::Conv_1284 = Identity(%onnx::Conv_1224) %onnx::Conv_1281 = Identity(%onnx::Conv_1224) %onnx::Conv_1278 = Identity(%onnx::Conv_1224) %onnx::Conv_1275 = Identity(%onnx::Conv_1224) %onnx::Conv_1272 = Identity(%onnx::Conv_1224) %onnx::Conv_1269 = Identity(%onnx::Conv_1224) %onnx::Conv_1266 = Identity(%onnx::Conv_1224) %onnx::Conv_1263 = Identity(%onnx::Conv_1224) %onnx::Conv_1260 = Identity(%onnx::Conv_1224) %onnx::Conv_1257 = Identity(%onnx::Conv_1224) %onnx::Conv_1254 = Identity(%onnx::Conv_1224) %onnx::Conv_1251 = Identity(%onnx::Conv_1224) %onnx::Conv_1248 = Identity(%onnx::Conv_1224) %onnx::Conv_1245 = Identity(%onnx::Conv_1224) %onnx::Conv_1242 = Identity(%onnx::Conv_1224) %onnx::Conv_1239 = Identity(%onnx::Conv_1224) %onnx::Conv_1236 = Identity(%onnx::Conv_1224) %onnx::Conv_1233 = Identity(%onnx::Conv_1224) %onnx::Conv_1230 = Identity(%onnx::Conv_1224) %onnx::Conv_1227 = Identity(%onnx::Conv_1224) %onnx::Conv_1221 = Identity(%onnx::Conv_1077) %onnx::Conv_1218 = Identity(%onnx::Conv_1077) %onnx::Conv_1215 = Identity(%onnx::Conv_1077) %onnx::Conv_1212 = Identity(%onnx::Conv_1077) %onnx::Conv_1209 = Identity(%onnx::Conv_1077) %onnx::Conv_1206 = Identity(%onnx::Conv_1077) %onnx::Conv_1203 = Identity(%onnx::Conv_1077) %onnx::Conv_1200 = Identity(%onnx::Conv_1077) %onnx::Conv_1197 = Identity(%onnx::Conv_1077) %onnx::Conv_1194 = Identity(%onnx::Conv_1077) %onnx::Conv_1191 = Identity(%onnx::Conv_1077) %onnx::Conv_1188 = Identity(%onnx::Conv_1077) %onnx::Conv_1185 = Identity(%onnx::Conv_1077) %onnx::Conv_1182 = Identity(%onnx::Conv_1077) %onnx::Conv_1179 = Identity(%onnx::Conv_1077) %onnx::Conv_1176 = Identity(%onnx::Conv_1077) %onnx::Conv_1173 = Identity(%onnx::Conv_1077) %onnx::Conv_1170 = Identity(%onnx::Conv_1077) %onnx::Conv_1167 = Identity(%onnx::Conv_1077) %onnx::Conv_1164 = Identity(%onnx::Conv_1077) %onnx::Conv_1161 = Identity(%onnx::Conv_1077) %onnx::Conv_1158 = Identity(%onnx::Conv_1077) %onnx::Conv_1155 = Identity(%onnx::Conv_1077) %onnx::Conv_1152 = Identity(%onnx::Conv_1077) %onnx::Conv_1149 = Identity(%onnx::Conv_1080) %onnx::Conv_1146 = Identity(%onnx::Conv_1080) %onnx::Conv_1143 = Identity(%onnx::Conv_1080) %onnx::Conv_1140 = Identity(%onnx::Conv_1080) %onnx::Conv_1137 = Identity(%onnx::Conv_1080) %onnx::Conv_1134 = Identity(%onnx::Conv_1080) %onnx::Conv_1131 = Identity(%onnx::Conv_1080) %onnx::Conv_1128 = Identity(%onnx::Conv_1080) %onnx::Conv_1125 = Identity(%onnx::Conv_1080) %onnx::Conv_1122 = Identity(%onnx::Conv_1080) %onnx::Conv_1119 = Identity(%onnx::Conv_1080) %onnx::Conv_1116 = Identity(%onnx::Conv_1080) %onnx::Conv_1113 = Identity(%onnx::Conv_1080) %onnx::Conv_1110 = Identity(%onnx::Conv_1080) %onnx::Conv_1107 = Identity(%onnx::Conv_1080) %onnx::Conv_1104 = Identity(%onnx::Conv_1080) %onnx::Conv_1101 = Identity(%onnx::Conv_1080) %onnx::Conv_1098 = Identity(%onnx::Conv_1080) %onnx::Conv_1095 = Identity(%onnx::Conv_1080) %onnx::Conv_1092 = Identity(%onnx::Conv_1080) %onnx::Conv_1089 = Identity(%onnx::Conv_1080) %onnx::Conv_1086 = Identity(%onnx::Conv_1080) %onnx::Conv_1083 = Identity(%onnx::Conv_1080) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_1076, %onnx::Conv_1077) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1079, %onnx::Conv_1080) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_1082, %onnx::Conv_1083) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_1085, %onnx::Conv_1086) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1088, %onnx::Conv_1089) %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/Add_3_output_0 = Add(%/layers.1/Add_2_output_0, %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_3_output_0, %onnx::Conv_1091, %onnx::Conv_1092) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1094, %onnx::Conv_1095) %/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_4_output_0 = Add(%/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_3_output_0) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_4_output_0, %onnx::Conv_1097, %onnx::Conv_1098) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_5_output_0 = Add(%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_4_output_0) %/layers.1/Add_6_output_0 = Add(%/layers.1/Add_5_output_0, %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_6_output_0, %onnx::Conv_1100, %onnx::Conv_1101) %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_1103, %onnx::Conv_1104) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_1106, %onnx::Conv_1107) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_1109, %onnx::Conv_1110) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_1112, %onnx::Conv_1113) %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/Add_3_output_0 = Add(%/layers.2/Add_2_output_0, %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_3_output_0, %onnx::Conv_1115, %onnx::Conv_1116) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_1118, %onnx::Conv_1119) %/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_4_output_0 = Add(%/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_3_output_0) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_4_output_0, %onnx::Conv_1121, %onnx::Conv_1122) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_5_output_0 = Add(%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_4_output_0) %/layers.2/Add_6_output_0 = Add(%/layers.2/Add_5_output_0, %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_6_output_0, %onnx::Conv_1124, %onnx::Conv_1125) %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_1127, %onnx::Conv_1128) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_1130, %onnx::Conv_1131) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_1133, %onnx::Conv_1134) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_1136, %onnx::Conv_1137) %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/Add_3_output_0 = Add(%/layers.3/Add_2_output_0, %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_3_output_0, %onnx::Conv_1139, %onnx::Conv_1140) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_1142, %onnx::Conv_1143) %/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_4_output_0 = Add(%/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_3_output_0) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_4_output_0, %onnx::Conv_1145, %onnx::Conv_1146) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_5_output_0 = Add(%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_4_output_0) %/layers.3/Add_6_output_0 = Add(%/layers.3/Add_5_output_0, %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_6_output_0, %onnx::Conv_1148, %onnx::Conv_1149) %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Concat_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_1151, %onnx::Conv_1152) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_1154, %onnx::Conv_1155) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_1157, %onnx::Conv_1158) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_1160, %onnx::Conv_1161) %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/Add_3_output_0 = Add(%/layers.5/Add_2_output_0, %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_3_output_0, %onnx::Conv_1163, %onnx::Conv_1164) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_1166, %onnx::Conv_1167) %/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_4_output_0 = Add(%/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_3_output_0) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_4_output_0, %onnx::Conv_1169, %onnx::Conv_1170) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_5_output_0 = Add(%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_4_output_0) %/layers.5/Add_6_output_0 = Add(%/layers.5/Add_5_output_0, %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_6_output_0, %onnx::Conv_1172, %onnx::Conv_1173) %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_1175, %onnx::Conv_1176) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_1178, %onnx::Conv_1179) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_1181, %onnx::Conv_1182) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_1184, %onnx::Conv_1185) %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/Add_3_output_0 = Add(%/layers.6/Add_2_output_0, %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_3_output_0, %onnx::Conv_1187, %onnx::Conv_1188) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_1190, %onnx::Conv_1191) %/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_4_output_0 = Add(%/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_3_output_0) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_4_output_0, %onnx::Conv_1193, %onnx::Conv_1194) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_5_output_0 = Add(%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_4_output_0) %/layers.6/Add_6_output_0 = Add(%/layers.6/Add_5_output_0, %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_6_output_0, %onnx::Conv_1196, %onnx::Conv_1197) %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_1199, %onnx::Conv_1200) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_1202, %onnx::Conv_1203) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_1205, %onnx::Conv_1206) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_1208, %onnx::Conv_1209) %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/Add_3_output_0 = Add(%/layers.7/Add_2_output_0, %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_3_output_0, %onnx::Conv_1211, %onnx::Conv_1212) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_1214, %onnx::Conv_1215) %/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_4_output_0 = Add(%/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_3_output_0) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_4_output_0, %onnx::Conv_1217, %onnx::Conv_1218) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_5_output_0 = Add(%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_4_output_0) %/layers.7/Add_6_output_0 = Add(%/layers.7/Add_5_output_0, %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_6_output_0, %onnx::Conv_1220, %onnx::Conv_1221) %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Concat_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1223, %onnx::Conv_1224) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_1226, %onnx::Conv_1227) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_1229, %onnx::Conv_1230) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1232, %onnx::Conv_1233) %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/Add_3_output_0 = Add(%/layers.9/Add_2_output_0, %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_3_output_0, %onnx::Conv_1235, %onnx::Conv_1236) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1238, %onnx::Conv_1239) %/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_4_output_0 = Add(%/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_3_output_0) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_4_output_0, %onnx::Conv_1241, %onnx::Conv_1242) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_5_output_0 = Add(%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_4_output_0) %/layers.9/Add_6_output_0 = Add(%/layers.9/Add_5_output_0, %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_6_output_0, %onnx::Conv_1244, %onnx::Conv_1245) %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_1247, %onnx::Conv_1248) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_1250, %onnx::Conv_1251) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_1253, %onnx::Conv_1254) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_1256, %onnx::Conv_1257) %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/Add_3_output_0 = Add(%/layers.10/Add_2_output_0, %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_3_output_0, %onnx::Conv_1259, %onnx::Conv_1260) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_1262, %onnx::Conv_1263) %/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_4_output_0 = Add(%/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_3_output_0) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_4_output_0, %onnx::Conv_1265, %onnx::Conv_1266) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_5_output_0 = Add(%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_4_output_0) %/layers.10/Add_6_output_0 = Add(%/layers.10/Add_5_output_0, %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_6_output_0, %onnx::Conv_1268, %onnx::Conv_1269) %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_1271, %onnx::Conv_1272) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_1274, %onnx::Conv_1275) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_1277, %onnx::Conv_1278) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_1280, %onnx::Conv_1281) %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/Add_3_output_0 = Add(%/layers.11/Add_2_output_0, %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_3_output_0, %onnx::Conv_1283, %onnx::Conv_1284) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_1286, %onnx::Conv_1287) %/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_4_output_0 = Add(%/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_3_output_0) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_4_output_0, %onnx::Conv_1289, %onnx::Conv_1290) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_5_output_0 = Add(%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_4_output_0) %/layers.11/Add_6_output_0 = Add(%/layers.11/Add_5_output_0, %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_6_output_0, %onnx::Conv_1292, %onnx::Conv_1293) %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Concat_output_0) %1074 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %1074 }
val_accuracy
93.679887
2,622,236,672
8,816,266
{'zcp_epe_nas': 126.22417603264863, 'zcp_fisher': 28.504053115844727, 'zcp_flops': 41955786752.0, 'zcp_grad_norm': 112.9689712524414, 'zcp_grasp': 4.61083984375, 'zcp_jacov': -16.04934849674992, 'zcp_l2_norm': 1339.8001708984375, 'zcp_nwot': 228.89736754254116, 'zcp_params': 8816266.0, 'zcp_plain': -0.033320479094982, 'zcp_snip': 710.7835083007812, 'zcp_synflow': 140.38568040603818, 'zcp_zen': 128.1326446533203, 'zcp_val_accuracy': 0.9018429517745971}
NASBench101_169076
NASBench101
169076
665dec9c1e1461defc29066a29723a00
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_770[FLOAT, 128x3x3x3] %onnx::Conv_771[FLOAT, 128] %onnx::Conv_773[FLOAT, 64x128x1x1] %onnx::Conv_774[FLOAT, 64] %onnx::Conv_776[FLOAT, 64x128x1x1] %onnx::Conv_779[FLOAT, 64x64x1x1] %onnx::Conv_782[FLOAT, 64x128x1x1] %onnx::Conv_785[FLOAT, 64x64x3x3] %onnx::Conv_788[FLOAT, 64x128x1x1] %onnx::Conv_791[FLOAT, 64x128x1x1] %onnx::Conv_794[FLOAT, 64x64x1x1] %onnx::Conv_797[FLOAT, 64x128x1x1] %onnx::Conv_800[FLOAT, 64x64x3x3] %onnx::Conv_803[FLOAT, 64x128x1x1] %onnx::Conv_806[FLOAT, 64x128x1x1] %onnx::Conv_809[FLOAT, 64x64x1x1] %onnx::Conv_812[FLOAT, 64x128x1x1] %onnx::Conv_815[FLOAT, 64x64x3x3] %onnx::Conv_818[FLOAT, 128x128x1x1] %onnx::Conv_821[FLOAT, 128x128x1x1] %onnx::Conv_824[FLOAT, 128x128x1x1] %onnx::Conv_827[FLOAT, 128x128x1x1] %onnx::Conv_830[FLOAT, 128x128x3x3] %onnx::Conv_833[FLOAT, 128x256x1x1] %onnx::Conv_836[FLOAT, 128x256x1x1] %onnx::Conv_839[FLOAT, 128x128x1x1] %onnx::Conv_842[FLOAT, 128x256x1x1] %onnx::Conv_845[FLOAT, 128x128x3x3] %onnx::Conv_848[FLOAT, 128x256x1x1] %onnx::Conv_851[FLOAT, 128x256x1x1] %onnx::Conv_854[FLOAT, 128x128x1x1] %onnx::Conv_857[FLOAT, 128x256x1x1] %onnx::Conv_860[FLOAT, 128x128x3x3] %onnx::Conv_863[FLOAT, 256x256x1x1] %onnx::Conv_864[FLOAT, 256] %onnx::Conv_866[FLOAT, 256x256x1x1] %onnx::Conv_869[FLOAT, 256x256x1x1] %onnx::Conv_872[FLOAT, 256x256x1x1] %onnx::Conv_875[FLOAT, 256x256x3x3] %onnx::Conv_878[FLOAT, 256x512x1x1] %onnx::Conv_881[FLOAT, 256x512x1x1] %onnx::Conv_884[FLOAT, 256x256x1x1] %onnx::Conv_887[FLOAT, 256x512x1x1] %onnx::Conv_890[FLOAT, 256x256x3x3] %onnx::Conv_893[FLOAT, 256x512x1x1] %onnx::Conv_896[FLOAT, 256x512x1x1] %onnx::Conv_899[FLOAT, 256x256x1x1] %onnx::Conv_902[FLOAT, 256x512x1x1] %onnx::Conv_905[FLOAT, 256x256x3x3] ) { %onnx::Conv_906 = Identity(%onnx::Conv_864) %onnx::Conv_903 = Identity(%onnx::Conv_864) %onnx::Conv_900 = Identity(%onnx::Conv_864) %onnx::Conv_897 = Identity(%onnx::Conv_864) %onnx::Conv_894 = Identity(%onnx::Conv_864) %onnx::Conv_891 = Identity(%onnx::Conv_864) %onnx::Conv_888 = Identity(%onnx::Conv_864) %onnx::Conv_885 = Identity(%onnx::Conv_864) %onnx::Conv_882 = Identity(%onnx::Conv_864) %onnx::Conv_879 = Identity(%onnx::Conv_864) %onnx::Conv_876 = Identity(%onnx::Conv_864) %onnx::Conv_873 = Identity(%onnx::Conv_864) %onnx::Conv_870 = Identity(%onnx::Conv_864) %onnx::Conv_867 = Identity(%onnx::Conv_864) %onnx::Conv_861 = Identity(%onnx::Conv_771) %onnx::Conv_858 = Identity(%onnx::Conv_771) %onnx::Conv_855 = Identity(%onnx::Conv_771) %onnx::Conv_852 = Identity(%onnx::Conv_771) %onnx::Conv_849 = Identity(%onnx::Conv_771) %onnx::Conv_846 = Identity(%onnx::Conv_771) %onnx::Conv_843 = Identity(%onnx::Conv_771) %onnx::Conv_840 = Identity(%onnx::Conv_771) %onnx::Conv_837 = Identity(%onnx::Conv_771) %onnx::Conv_834 = Identity(%onnx::Conv_771) %onnx::Conv_831 = Identity(%onnx::Conv_771) %onnx::Conv_828 = Identity(%onnx::Conv_771) %onnx::Conv_825 = Identity(%onnx::Conv_771) %onnx::Conv_822 = Identity(%onnx::Conv_771) %onnx::Conv_819 = Identity(%onnx::Conv_771) %onnx::Conv_816 = Identity(%onnx::Conv_774) %onnx::Conv_813 = Identity(%onnx::Conv_774) %onnx::Conv_810 = Identity(%onnx::Conv_774) %onnx::Conv_807 = Identity(%onnx::Conv_774) %onnx::Conv_804 = Identity(%onnx::Conv_774) %onnx::Conv_801 = Identity(%onnx::Conv_774) %onnx::Conv_798 = Identity(%onnx::Conv_774) %onnx::Conv_795 = Identity(%onnx::Conv_774) %onnx::Conv_792 = Identity(%onnx::Conv_774) %onnx::Conv_789 = Identity(%onnx::Conv_774) %onnx::Conv_786 = Identity(%onnx::Conv_774) %onnx::Conv_783 = Identity(%onnx::Conv_774) %onnx::Conv_780 = Identity(%onnx::Conv_774) %onnx::Conv_777 = Identity(%onnx::Conv_774) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_770, %onnx::Conv_771) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_773, %onnx::Conv_774) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_776, %onnx::Conv_777) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/maxpool/MaxPool_output_0, %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_779, %onnx::Conv_780) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_782, %onnx::Conv_783) %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/Add_3_output_0 = Add(%/layers.1/Add_2_output_0, %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_3_output_0) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/vertex_op.3/maxpool/MaxPool_output_0, %onnx::Conv_785, %onnx::Conv_786) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_4_output_0 = Add(%/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_4_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.5/maxpool/MaxPool_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_788, %onnx::Conv_789) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_791, %onnx::Conv_792) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/maxpool/MaxPool_output_0, %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_794, %onnx::Conv_795) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_797, %onnx::Conv_798) %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/Add_3_output_0 = Add(%/layers.2/Add_2_output_0, %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_3_output_0) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/vertex_op.3/maxpool/MaxPool_output_0, %onnx::Conv_800, %onnx::Conv_801) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_4_output_0 = Add(%/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_4_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.5/maxpool/MaxPool_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_803, %onnx::Conv_804) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_806, %onnx::Conv_807) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/maxpool/MaxPool_output_0, %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_809, %onnx::Conv_810) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_812, %onnx::Conv_813) %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/Add_3_output_0 = Add(%/layers.3/Add_2_output_0, %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_3_output_0) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/vertex_op.3/maxpool/MaxPool_output_0, %onnx::Conv_815, %onnx::Conv_816) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_4_output_0 = Add(%/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_4_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.5/maxpool/MaxPool_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Concat_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_818, %onnx::Conv_819) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_821, %onnx::Conv_822) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.1/maxpool/MaxPool_output_0, %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_824, %onnx::Conv_825) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_827, %onnx::Conv_828) %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/Add_3_output_0 = Add(%/layers.5/Add_2_output_0, %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_3_output_0) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/vertex_op.3/maxpool/MaxPool_output_0, %onnx::Conv_830, %onnx::Conv_831) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_4_output_0 = Add(%/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_4_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.5/maxpool/MaxPool_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_833, %onnx::Conv_834) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_836, %onnx::Conv_837) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.1/maxpool/MaxPool_output_0, %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_839, %onnx::Conv_840) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_842, %onnx::Conv_843) %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/Add_3_output_0 = Add(%/layers.6/Add_2_output_0, %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_3_output_0) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/vertex_op.3/maxpool/MaxPool_output_0, %onnx::Conv_845, %onnx::Conv_846) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_4_output_0 = Add(%/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_4_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.5/maxpool/MaxPool_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_848, %onnx::Conv_849) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_851, %onnx::Conv_852) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.1/maxpool/MaxPool_output_0, %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_854, %onnx::Conv_855) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_857, %onnx::Conv_858) %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/Add_3_output_0 = Add(%/layers.7/Add_2_output_0, %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_3_output_0) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/vertex_op.3/maxpool/MaxPool_output_0, %onnx::Conv_860, %onnx::Conv_861) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_4_output_0 = Add(%/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_4_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.5/maxpool/MaxPool_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Concat_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_863, %onnx::Conv_864) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_866, %onnx::Conv_867) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/maxpool/MaxPool_output_0, %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_869, %onnx::Conv_870) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_872, %onnx::Conv_873) %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/Add_3_output_0 = Add(%/layers.9/Add_2_output_0, %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_3_output_0) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/vertex_op.3/maxpool/MaxPool_output_0, %onnx::Conv_875, %onnx::Conv_876) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_4_output_0 = Add(%/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_4_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.5/maxpool/MaxPool_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_878, %onnx::Conv_879) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_881, %onnx::Conv_882) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/maxpool/MaxPool_output_0, %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_884, %onnx::Conv_885) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_887, %onnx::Conv_888) %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/Add_3_output_0 = Add(%/layers.10/Add_2_output_0, %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_3_output_0) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/vertex_op.3/maxpool/MaxPool_output_0, %onnx::Conv_890, %onnx::Conv_891) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_4_output_0 = Add(%/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_4_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.5/maxpool/MaxPool_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_893, %onnx::Conv_894) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_896, %onnx::Conv_897) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/maxpool/MaxPool_output_0, %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_899, %onnx::Conv_900) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_902, %onnx::Conv_903) %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/Add_3_output_0 = Add(%/layers.11/Add_2_output_0, %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_3_output_0) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/vertex_op.3/maxpool/MaxPool_output_0, %onnx::Conv_905, %onnx::Conv_906) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_4_output_0 = Add(%/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_4_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.5/maxpool/MaxPool_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Concat_output_0) %768 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %768 }
val_accuracy
92.147434
1,179,527,168
3,905,290
{'zcp_epe_nas': 79.01507576675286, 'zcp_fisher': 22.760257720947266, 'zcp_flops': 18872434688.0, 'zcp_grad_norm': 78.70089721679688, 'zcp_grasp': -1.44873046875, 'zcp_jacov': -16.061239439321938, 'zcp_l2_norm': 889.2993774414062, 'zcp_nwot': 221.39382447137558, 'zcp_params': 3905290.0, 'zcp_plain': 0.047207541763782, 'zcp_snip': 497.6155090332031, 'zcp_synflow': 90.99192071698319, 'zcp_zen': 85.37226104736328, 'zcp_val_accuracy': 0.8613781929016111}
NASBench101_242297
NASBench101
242297
92a9033869a0547104e43436285837c5
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_986[FLOAT, 128x3x3x3] %onnx::Conv_987[FLOAT, 128] %onnx::Conv_989[FLOAT, 128x128x1x1] %onnx::Conv_992[FLOAT, 128x128x1x1] %onnx::Conv_995[FLOAT, 128x128x1x1] %onnx::Conv_998[FLOAT, 128x128x3x3] %onnx::Conv_1001[FLOAT, 128x128x1x1] %onnx::Conv_1004[FLOAT, 128x128x3x3] %onnx::Conv_1007[FLOAT, 128x128x3x3] %onnx::Conv_1010[FLOAT, 128x128x1x1] %onnx::Conv_1013[FLOAT, 128x128x1x1] %onnx::Conv_1016[FLOAT, 128x128x1x1] %onnx::Conv_1019[FLOAT, 128x128x3x3] %onnx::Conv_1022[FLOAT, 128x128x1x1] %onnx::Conv_1025[FLOAT, 128x128x3x3] %onnx::Conv_1028[FLOAT, 128x128x3x3] %onnx::Conv_1031[FLOAT, 128x128x1x1] %onnx::Conv_1034[FLOAT, 128x128x1x1] %onnx::Conv_1037[FLOAT, 128x128x1x1] %onnx::Conv_1040[FLOAT, 128x128x3x3] %onnx::Conv_1043[FLOAT, 128x128x1x1] %onnx::Conv_1046[FLOAT, 128x128x3x3] %onnx::Conv_1049[FLOAT, 128x128x3x3] %onnx::Conv_1052[FLOAT, 256x128x1x1] %onnx::Conv_1053[FLOAT, 256] %onnx::Conv_1055[FLOAT, 256x256x1x1] %onnx::Conv_1058[FLOAT, 256x128x1x1] %onnx::Conv_1061[FLOAT, 256x256x3x3] %onnx::Conv_1064[FLOAT, 256x128x1x1] %onnx::Conv_1067[FLOAT, 256x256x3x3] %onnx::Conv_1070[FLOAT, 256x256x3x3] %onnx::Conv_1073[FLOAT, 256x256x1x1] %onnx::Conv_1076[FLOAT, 256x256x1x1] %onnx::Conv_1079[FLOAT, 256x256x1x1] %onnx::Conv_1082[FLOAT, 256x256x3x3] %onnx::Conv_1085[FLOAT, 256x256x1x1] %onnx::Conv_1088[FLOAT, 256x256x3x3] %onnx::Conv_1091[FLOAT, 256x256x3x3] %onnx::Conv_1094[FLOAT, 256x256x1x1] %onnx::Conv_1097[FLOAT, 256x256x1x1] %onnx::Conv_1100[FLOAT, 256x256x1x1] %onnx::Conv_1103[FLOAT, 256x256x3x3] %onnx::Conv_1106[FLOAT, 256x256x1x1] %onnx::Conv_1109[FLOAT, 256x256x3x3] %onnx::Conv_1112[FLOAT, 256x256x3x3] %onnx::Conv_1115[FLOAT, 512x256x1x1] %onnx::Conv_1116[FLOAT, 512] %onnx::Conv_1118[FLOAT, 512x512x1x1] %onnx::Conv_1121[FLOAT, 512x256x1x1] %onnx::Conv_1124[FLOAT, 512x512x3x3] %onnx::Conv_1127[FLOAT, 512x256x1x1] %onnx::Conv_1130[FLOAT, 512x512x3x3] %onnx::Conv_1133[FLOAT, 512x512x3x3] %onnx::Conv_1136[FLOAT, 512x512x1x1] %onnx::Conv_1139[FLOAT, 512x512x1x1] %onnx::Conv_1142[FLOAT, 512x512x1x1] %onnx::Conv_1145[FLOAT, 512x512x3x3] %onnx::Conv_1148[FLOAT, 512x512x1x1] %onnx::Conv_1151[FLOAT, 512x512x3x3] %onnx::Conv_1154[FLOAT, 512x512x3x3] %onnx::Conv_1157[FLOAT, 512x512x1x1] %onnx::Conv_1160[FLOAT, 512x512x1x1] %onnx::Conv_1163[FLOAT, 512x512x1x1] %onnx::Conv_1166[FLOAT, 512x512x3x3] %onnx::Conv_1169[FLOAT, 512x512x1x1] %onnx::Conv_1172[FLOAT, 512x512x3x3] %onnx::Conv_1175[FLOAT, 512x512x3x3] ) { %onnx::Conv_1176 = Identity(%onnx::Conv_1116) %onnx::Conv_1173 = Identity(%onnx::Conv_1116) %onnx::Conv_1170 = Identity(%onnx::Conv_1116) %onnx::Conv_1167 = Identity(%onnx::Conv_1116) %onnx::Conv_1164 = Identity(%onnx::Conv_1116) %onnx::Conv_1161 = Identity(%onnx::Conv_1116) %onnx::Conv_1158 = Identity(%onnx::Conv_1116) %onnx::Conv_1155 = Identity(%onnx::Conv_1116) %onnx::Conv_1152 = Identity(%onnx::Conv_1116) %onnx::Conv_1149 = Identity(%onnx::Conv_1116) %onnx::Conv_1146 = Identity(%onnx::Conv_1116) %onnx::Conv_1143 = Identity(%onnx::Conv_1116) %onnx::Conv_1140 = Identity(%onnx::Conv_1116) %onnx::Conv_1137 = Identity(%onnx::Conv_1116) %onnx::Conv_1134 = Identity(%onnx::Conv_1116) %onnx::Conv_1131 = Identity(%onnx::Conv_1116) %onnx::Conv_1128 = Identity(%onnx::Conv_1116) %onnx::Conv_1125 = Identity(%onnx::Conv_1116) %onnx::Conv_1122 = Identity(%onnx::Conv_1116) %onnx::Conv_1119 = Identity(%onnx::Conv_1116) %onnx::Conv_1113 = Identity(%onnx::Conv_1053) %onnx::Conv_1110 = Identity(%onnx::Conv_1053) %onnx::Conv_1107 = Identity(%onnx::Conv_1053) %onnx::Conv_1104 = Identity(%onnx::Conv_1053) %onnx::Conv_1101 = Identity(%onnx::Conv_1053) %onnx::Conv_1098 = Identity(%onnx::Conv_1053) %onnx::Conv_1095 = Identity(%onnx::Conv_1053) %onnx::Conv_1092 = Identity(%onnx::Conv_1053) %onnx::Conv_1089 = Identity(%onnx::Conv_1053) %onnx::Conv_1086 = Identity(%onnx::Conv_1053) %onnx::Conv_1083 = Identity(%onnx::Conv_1053) %onnx::Conv_1080 = Identity(%onnx::Conv_1053) %onnx::Conv_1077 = Identity(%onnx::Conv_1053) %onnx::Conv_1074 = Identity(%onnx::Conv_1053) %onnx::Conv_1071 = Identity(%onnx::Conv_1053) %onnx::Conv_1068 = Identity(%onnx::Conv_1053) %onnx::Conv_1065 = Identity(%onnx::Conv_1053) %onnx::Conv_1062 = Identity(%onnx::Conv_1053) %onnx::Conv_1059 = Identity(%onnx::Conv_1053) %onnx::Conv_1056 = Identity(%onnx::Conv_1053) %onnx::Conv_1050 = Identity(%onnx::Conv_987) %onnx::Conv_1047 = Identity(%onnx::Conv_987) %onnx::Conv_1044 = Identity(%onnx::Conv_987) %onnx::Conv_1041 = Identity(%onnx::Conv_987) %onnx::Conv_1038 = Identity(%onnx::Conv_987) %onnx::Conv_1035 = Identity(%onnx::Conv_987) %onnx::Conv_1032 = Identity(%onnx::Conv_987) %onnx::Conv_1029 = Identity(%onnx::Conv_987) %onnx::Conv_1026 = Identity(%onnx::Conv_987) %onnx::Conv_1023 = Identity(%onnx::Conv_987) %onnx::Conv_1020 = Identity(%onnx::Conv_987) %onnx::Conv_1017 = Identity(%onnx::Conv_987) %onnx::Conv_1014 = Identity(%onnx::Conv_987) %onnx::Conv_1011 = Identity(%onnx::Conv_987) %onnx::Conv_1008 = Identity(%onnx::Conv_987) %onnx::Conv_1005 = Identity(%onnx::Conv_987) %onnx::Conv_1002 = Identity(%onnx::Conv_987) %onnx::Conv_999 = Identity(%onnx::Conv_987) %onnx::Conv_996 = Identity(%onnx::Conv_987) %onnx::Conv_993 = Identity(%onnx::Conv_987) %onnx::Conv_990 = Identity(%onnx::Conv_987) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_986, %onnx::Conv_987) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_989, %onnx::Conv_990) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_992, %onnx::Conv_993) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_995, %onnx::Conv_996) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_998, %onnx::Conv_999) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1001, %onnx::Conv_1002) %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/Add_3_output_0 = Add(%/layers.1/Add_2_output_0, %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_3_output_0, %onnx::Conv_1004, %onnx::Conv_1005) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_4_output_0 = Add(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_3_output_0) %/layers.1/Add_5_output_0 = Add(%/layers.1/Add_4_output_0, %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_5_output_0, %onnx::Conv_1007, %onnx::Conv_1008) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_6_output_0 = Add(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_4_output_0) %/layers.1/Add_7_output_0 = Add(%/layers.1/Add_6_output_0, %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_7_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_1010, %onnx::Conv_1011) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_1013, %onnx::Conv_1014) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_1016, %onnx::Conv_1017) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_1019, %onnx::Conv_1020) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_1022, %onnx::Conv_1023) %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/Add_3_output_0 = Add(%/layers.2/Add_2_output_0, %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_3_output_0, %onnx::Conv_1025, %onnx::Conv_1026) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_4_output_0 = Add(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_3_output_0) %/layers.2/Add_5_output_0 = Add(%/layers.2/Add_4_output_0, %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_5_output_0, %onnx::Conv_1028, %onnx::Conv_1029) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_6_output_0 = Add(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_4_output_0) %/layers.2/Add_7_output_0 = Add(%/layers.2/Add_6_output_0, %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_7_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_1031, %onnx::Conv_1032) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_1034, %onnx::Conv_1035) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_1037, %onnx::Conv_1038) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_1040, %onnx::Conv_1041) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_1043, %onnx::Conv_1044) %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/Add_3_output_0 = Add(%/layers.3/Add_2_output_0, %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_3_output_0, %onnx::Conv_1046, %onnx::Conv_1047) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_4_output_0 = Add(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_3_output_0) %/layers.3/Add_5_output_0 = Add(%/layers.3/Add_4_output_0, %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_5_output_0, %onnx::Conv_1049, %onnx::Conv_1050) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_6_output_0 = Add(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_4_output_0) %/layers.3/Add_7_output_0 = Add(%/layers.3/Add_6_output_0, %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_7_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/vertex_op.5/maxpool/MaxPool_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_1052, %onnx::Conv_1053) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_1055, %onnx::Conv_1056) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_1058, %onnx::Conv_1059) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_1061, %onnx::Conv_1062) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_1064, %onnx::Conv_1065) %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/Add_3_output_0 = Add(%/layers.5/Add_2_output_0, %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_3_output_0, %onnx::Conv_1067, %onnx::Conv_1068) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_4_output_0 = Add(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_3_output_0) %/layers.5/Add_5_output_0 = Add(%/layers.5/Add_4_output_0, %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_5_output_0, %onnx::Conv_1070, %onnx::Conv_1071) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_6_output_0 = Add(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_4_output_0) %/layers.5/Add_7_output_0 = Add(%/layers.5/Add_6_output_0, %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_7_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_1073, %onnx::Conv_1074) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_1076, %onnx::Conv_1077) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_1079, %onnx::Conv_1080) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_1082, %onnx::Conv_1083) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_1085, %onnx::Conv_1086) %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/Add_3_output_0 = Add(%/layers.6/Add_2_output_0, %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_3_output_0, %onnx::Conv_1088, %onnx::Conv_1089) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_4_output_0 = Add(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_3_output_0) %/layers.6/Add_5_output_0 = Add(%/layers.6/Add_4_output_0, %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_5_output_0, %onnx::Conv_1091, %onnx::Conv_1092) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_6_output_0 = Add(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_4_output_0) %/layers.6/Add_7_output_0 = Add(%/layers.6/Add_6_output_0, %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_7_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_1094, %onnx::Conv_1095) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_1097, %onnx::Conv_1098) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_1100, %onnx::Conv_1101) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_1103, %onnx::Conv_1104) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_1106, %onnx::Conv_1107) %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/Add_3_output_0 = Add(%/layers.7/Add_2_output_0, %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_3_output_0, %onnx::Conv_1109, %onnx::Conv_1110) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_4_output_0 = Add(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_3_output_0) %/layers.7/Add_5_output_0 = Add(%/layers.7/Add_4_output_0, %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_5_output_0, %onnx::Conv_1112, %onnx::Conv_1113) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_6_output_0 = Add(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_4_output_0) %/layers.7/Add_7_output_0 = Add(%/layers.7/Add_6_output_0, %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_7_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/vertex_op.5/maxpool/MaxPool_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1115, %onnx::Conv_1116) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_1118, %onnx::Conv_1119) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1121, %onnx::Conv_1122) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_1124, %onnx::Conv_1125) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1127, %onnx::Conv_1128) %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/Add_3_output_0 = Add(%/layers.9/Add_2_output_0, %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_3_output_0, %onnx::Conv_1130, %onnx::Conv_1131) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_4_output_0 = Add(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_3_output_0) %/layers.9/Add_5_output_0 = Add(%/layers.9/Add_4_output_0, %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_5_output_0, %onnx::Conv_1133, %onnx::Conv_1134) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_6_output_0 = Add(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_4_output_0) %/layers.9/Add_7_output_0 = Add(%/layers.9/Add_6_output_0, %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_7_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_1136, %onnx::Conv_1137) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_1139, %onnx::Conv_1140) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_1142, %onnx::Conv_1143) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_1145, %onnx::Conv_1146) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_1148, %onnx::Conv_1149) %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/Add_3_output_0 = Add(%/layers.10/Add_2_output_0, %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_3_output_0, %onnx::Conv_1151, %onnx::Conv_1152) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_4_output_0 = Add(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_3_output_0) %/layers.10/Add_5_output_0 = Add(%/layers.10/Add_4_output_0, %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_5_output_0, %onnx::Conv_1154, %onnx::Conv_1155) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_6_output_0 = Add(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_4_output_0) %/layers.10/Add_7_output_0 = Add(%/layers.10/Add_6_output_0, %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_7_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_1157, %onnx::Conv_1158) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_1160, %onnx::Conv_1161) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_1163, %onnx::Conv_1164) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_1166, %onnx::Conv_1167) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_1169, %onnx::Conv_1170) %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/Add_3_output_0 = Add(%/layers.11/Add_2_output_0, %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_3_output_0, %onnx::Conv_1172, %onnx::Conv_1173) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_4_output_0 = Add(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_3_output_0) %/layers.11/Add_5_output_0 = Add(%/layers.11/Add_4_output_0, %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_5_output_0, %onnx::Conv_1175, %onnx::Conv_1176) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_6_output_0 = Add(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_4_output_0) %/layers.11/Add_7_output_0 = Add(%/layers.11/Add_6_output_0, %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_7_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/vertex_op.5/maxpool/MaxPool_output_0) %984 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %984 }
val_accuracy
91.816908
9,307,695,104
31,552,906
{'zcp_epe_nas': 173.9898032185381, 'zcp_fisher': 291.4535217285156, 'zcp_flops': 148923121664.0, 'zcp_grad_norm': 353.5015563964844, 'zcp_grasp': -342.52685546875, 'zcp_jacov': -16.052882047473524, 'zcp_l2_norm': 1438.6767578125, 'zcp_nwot': 237.26702942215644, 'zcp_params': 31552906.0, 'zcp_plain': 0.190230429172515, 'zcp_snip': 3029.85546875, 'zcp_synflow': 139.69327558097575, 'zcp_zen': 141.46710205078125, 'zcp_val_accuracy': 0.905949532985687}
NASBench101_174197
NASBench101
174197
69766d76ff15639ab5362f25cd16aac9
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_1028[FLOAT, 128x3x3x3] %onnx::Conv_1029[FLOAT, 128] %onnx::Conv_1031[FLOAT, 43x128x1x1] %onnx::Conv_1032[FLOAT, 43] %onnx::Conv_1034[FLOAT, 43x43x1x1] %onnx::Conv_1037[FLOAT, 43x43x1x1] %onnx::Conv_1040[FLOAT, 42x128x1x1] %onnx::Conv_1041[FLOAT, 42] %onnx::Conv_1043[FLOAT, 42x42x3x3] %onnx::Conv_1046[FLOAT, 42x42x1x1] %onnx::Conv_1049[FLOAT, 42x42x3x3] %onnx::Conv_1052[FLOAT, 43x128x1x1] %onnx::Conv_1055[FLOAT, 43x43x1x1] %onnx::Conv_1058[FLOAT, 43x43x1x1] %onnx::Conv_1061[FLOAT, 42x128x1x1] %onnx::Conv_1064[FLOAT, 42x42x3x3] %onnx::Conv_1067[FLOAT, 42x42x1x1] %onnx::Conv_1070[FLOAT, 42x42x3x3] %onnx::Conv_1073[FLOAT, 43x128x1x1] %onnx::Conv_1076[FLOAT, 43x43x1x1] %onnx::Conv_1079[FLOAT, 43x43x1x1] %onnx::Conv_1082[FLOAT, 42x128x1x1] %onnx::Conv_1085[FLOAT, 42x42x3x3] %onnx::Conv_1088[FLOAT, 42x42x1x1] %onnx::Conv_1091[FLOAT, 42x42x3x3] %onnx::Conv_1094[FLOAT, 86x128x1x1] %onnx::Conv_1095[FLOAT, 86] %onnx::Conv_1097[FLOAT, 86x86x1x1] %onnx::Conv_1100[FLOAT, 85x85x1x1] %onnx::Conv_1101[FLOAT, 85] %onnx::Conv_1103[FLOAT, 85x128x1x1] %onnx::Conv_1106[FLOAT, 85x85x3x3] %onnx::Conv_1109[FLOAT, 85x85x1x1] %onnx::Conv_1112[FLOAT, 85x85x3x3] %onnx::Conv_1115[FLOAT, 86x256x1x1] %onnx::Conv_1118[FLOAT, 86x86x1x1] %onnx::Conv_1121[FLOAT, 85x85x1x1] %onnx::Conv_1124[FLOAT, 85x256x1x1] %onnx::Conv_1127[FLOAT, 85x85x3x3] %onnx::Conv_1130[FLOAT, 85x85x1x1] %onnx::Conv_1133[FLOAT, 85x85x3x3] %onnx::Conv_1136[FLOAT, 86x256x1x1] %onnx::Conv_1139[FLOAT, 86x86x1x1] %onnx::Conv_1142[FLOAT, 85x85x1x1] %onnx::Conv_1145[FLOAT, 85x256x1x1] %onnx::Conv_1148[FLOAT, 85x85x3x3] %onnx::Conv_1151[FLOAT, 85x85x1x1] %onnx::Conv_1154[FLOAT, 85x85x3x3] %onnx::Conv_1157[FLOAT, 171x256x1x1] %onnx::Conv_1158[FLOAT, 171] %onnx::Conv_1160[FLOAT, 171x171x1x1] %onnx::Conv_1163[FLOAT, 171x171x1x1] %onnx::Conv_1166[FLOAT, 170x256x1x1] %onnx::Conv_1167[FLOAT, 170] %onnx::Conv_1169[FLOAT, 170x170x3x3] %onnx::Conv_1172[FLOAT, 170x170x1x1] %onnx::Conv_1175[FLOAT, 170x170x3x3] %onnx::Conv_1178[FLOAT, 171x512x1x1] %onnx::Conv_1181[FLOAT, 171x171x1x1] %onnx::Conv_1184[FLOAT, 171x171x1x1] %onnx::Conv_1187[FLOAT, 170x512x1x1] %onnx::Conv_1190[FLOAT, 170x170x3x3] %onnx::Conv_1193[FLOAT, 170x170x1x1] %onnx::Conv_1196[FLOAT, 170x170x3x3] %onnx::Conv_1199[FLOAT, 171x512x1x1] %onnx::Conv_1202[FLOAT, 171x171x1x1] %onnx::Conv_1205[FLOAT, 171x171x1x1] %onnx::Conv_1208[FLOAT, 170x512x1x1] %onnx::Conv_1211[FLOAT, 170x170x3x3] %onnx::Conv_1214[FLOAT, 170x170x1x1] %onnx::Conv_1217[FLOAT, 170x170x3x3] ) { %onnx::Conv_1218 = Identity(%onnx::Conv_1167) %onnx::Conv_1215 = Identity(%onnx::Conv_1167) %onnx::Conv_1212 = Identity(%onnx::Conv_1167) %onnx::Conv_1209 = Identity(%onnx::Conv_1167) %onnx::Conv_1206 = Identity(%onnx::Conv_1158) %onnx::Conv_1203 = Identity(%onnx::Conv_1158) %onnx::Conv_1200 = Identity(%onnx::Conv_1158) %onnx::Conv_1197 = Identity(%onnx::Conv_1167) %onnx::Conv_1194 = Identity(%onnx::Conv_1167) %onnx::Conv_1191 = Identity(%onnx::Conv_1167) %onnx::Conv_1188 = Identity(%onnx::Conv_1167) %onnx::Conv_1185 = Identity(%onnx::Conv_1158) %onnx::Conv_1182 = Identity(%onnx::Conv_1158) %onnx::Conv_1179 = Identity(%onnx::Conv_1158) %onnx::Conv_1176 = Identity(%onnx::Conv_1167) %onnx::Conv_1173 = Identity(%onnx::Conv_1167) %onnx::Conv_1170 = Identity(%onnx::Conv_1167) %onnx::Conv_1164 = Identity(%onnx::Conv_1158) %onnx::Conv_1161 = Identity(%onnx::Conv_1158) %onnx::Conv_1155 = Identity(%onnx::Conv_1101) %onnx::Conv_1152 = Identity(%onnx::Conv_1101) %onnx::Conv_1149 = Identity(%onnx::Conv_1101) %onnx::Conv_1146 = Identity(%onnx::Conv_1101) %onnx::Conv_1143 = Identity(%onnx::Conv_1101) %onnx::Conv_1140 = Identity(%onnx::Conv_1095) %onnx::Conv_1137 = Identity(%onnx::Conv_1095) %onnx::Conv_1134 = Identity(%onnx::Conv_1101) %onnx::Conv_1131 = Identity(%onnx::Conv_1101) %onnx::Conv_1128 = Identity(%onnx::Conv_1101) %onnx::Conv_1125 = Identity(%onnx::Conv_1101) %onnx::Conv_1122 = Identity(%onnx::Conv_1101) %onnx::Conv_1119 = Identity(%onnx::Conv_1095) %onnx::Conv_1116 = Identity(%onnx::Conv_1095) %onnx::Conv_1113 = Identity(%onnx::Conv_1101) %onnx::Conv_1110 = Identity(%onnx::Conv_1101) %onnx::Conv_1107 = Identity(%onnx::Conv_1101) %onnx::Conv_1104 = Identity(%onnx::Conv_1101) %onnx::Conv_1098 = Identity(%onnx::Conv_1095) %onnx::Conv_1092 = Identity(%onnx::Conv_1041) %onnx::Conv_1089 = Identity(%onnx::Conv_1041) %onnx::Conv_1086 = Identity(%onnx::Conv_1041) %onnx::Conv_1083 = Identity(%onnx::Conv_1041) %onnx::Conv_1080 = Identity(%onnx::Conv_1032) %onnx::Conv_1077 = Identity(%onnx::Conv_1032) %onnx::Conv_1074 = Identity(%onnx::Conv_1032) %onnx::Conv_1071 = Identity(%onnx::Conv_1041) %onnx::Conv_1068 = Identity(%onnx::Conv_1041) %onnx::Conv_1065 = Identity(%onnx::Conv_1041) %onnx::Conv_1062 = Identity(%onnx::Conv_1041) %onnx::Conv_1059 = Identity(%onnx::Conv_1032) %onnx::Conv_1056 = Identity(%onnx::Conv_1032) %onnx::Conv_1053 = Identity(%onnx::Conv_1032) %onnx::Conv_1050 = Identity(%onnx::Conv_1041) %onnx::Conv_1047 = Identity(%onnx::Conv_1041) %onnx::Conv_1044 = Identity(%onnx::Conv_1041) %onnx::Conv_1038 = Identity(%onnx::Conv_1032) %onnx::Conv_1035 = Identity(%onnx::Conv_1032) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_1028, %onnx::Conv_1029) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1031, %onnx::Conv_1032) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_1034, %onnx::Conv_1035) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_1037, %onnx::Conv_1038) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1040, %onnx::Conv_1041) %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_2_output_0, %onnx::Conv_1043, %onnx::Conv_1044) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_3_output_0 = Add(%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_3_output_0) %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_3_output_0, %onnx::Conv_1046, %onnx::Conv_1047) %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.1/Slice_output_0 = Slice(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_5_output_0, %/layers.1/Constant_6_output_0, %/layers.1/Constant_4_output_0, %/layers.1/Constant_7_output_0) %/layers.1/Constant_8_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_4_output_0 = Add(%/layers.1/Slice_output_0, %/layers.1/Constant_8_output_0) %/layers.1/Add_5_output_0 = Add(%/layers.1/Add_4_output_0, %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_5_output_0, %onnx::Conv_1049, %onnx::Conv_1050) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_1052, %onnx::Conv_1053) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_1055, %onnx::Conv_1056) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_1058, %onnx::Conv_1059) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_1061, %onnx::Conv_1062) %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_2_output_0, %onnx::Conv_1064, %onnx::Conv_1065) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_3_output_0 = Add(%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_3_output_0) %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_3_output_0, %onnx::Conv_1067, %onnx::Conv_1068) %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.2/Slice_output_0 = Slice(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_5_output_0, %/layers.2/Constant_6_output_0, %/layers.2/Constant_4_output_0, %/layers.2/Constant_7_output_0) %/layers.2/Constant_8_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_4_output_0 = Add(%/layers.2/Slice_output_0, %/layers.2/Constant_8_output_0) %/layers.2/Add_5_output_0 = Add(%/layers.2/Add_4_output_0, %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_5_output_0, %onnx::Conv_1070, %onnx::Conv_1071) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_1073, %onnx::Conv_1074) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_1076, %onnx::Conv_1077) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_1079, %onnx::Conv_1080) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_1082, %onnx::Conv_1083) %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_2_output_0, %onnx::Conv_1085, %onnx::Conv_1086) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_3_output_0 = Add(%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_3_output_0) %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_3_output_0, %onnx::Conv_1088, %onnx::Conv_1089) %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.3/Slice_output_0 = Slice(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_5_output_0, %/layers.3/Constant_6_output_0, %/layers.3/Constant_4_output_0, %/layers.3/Constant_7_output_0) %/layers.3/Constant_8_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_4_output_0 = Add(%/layers.3/Slice_output_0, %/layers.3/Constant_8_output_0) %/layers.3/Add_5_output_0 = Add(%/layers.3/Add_4_output_0, %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_5_output_0, %onnx::Conv_1091, %onnx::Conv_1092) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Concat_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_1094, %onnx::Conv_1095) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_1097, %onnx::Conv_1098) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.5/Slice_output_0 = Slice(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0, %/layers.5/Constant_3_output_0, %/layers.5/Constant_1_output_0, %/layers.5/Constant_4_output_0) %/layers.5/Constant_5_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/Slice_output_0, %/layers.5/Constant_5_output_0) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_1100, %onnx::Conv_1101) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_1103, %onnx::Conv_1104) %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_6_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_6_output_0) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_2_output_0, %onnx::Conv_1106, %onnx::Conv_1107) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_3_output_0 = Add(%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_7_output_0) %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_3_output_0, %onnx::Conv_1109, %onnx::Conv_1110) %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_8_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_9_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_10_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_11_output_0 = Constant[value = <Tensor>]() %/layers.5/Slice_1_output_0 = Slice(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_9_output_0, %/layers.5/Constant_10_output_0, %/layers.5/Constant_8_output_0, %/layers.5/Constant_11_output_0) %/layers.5/Constant_12_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_4_output_0 = Add(%/layers.5/Slice_1_output_0, %/layers.5/Constant_12_output_0) %/layers.5/Add_5_output_0 = Add(%/layers.5/Add_4_output_0, %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_5_output_0, %onnx::Conv_1112, %onnx::Conv_1113) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_1115, %onnx::Conv_1116) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_1118, %onnx::Conv_1119) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.6/Slice_output_0 = Slice(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0, %/layers.6/Constant_3_output_0, %/layers.6/Constant_1_output_0, %/layers.6/Constant_4_output_0) %/layers.6/Constant_5_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/Slice_output_0, %/layers.6/Constant_5_output_0) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_1121, %onnx::Conv_1122) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_1124, %onnx::Conv_1125) %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_6_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_6_output_0) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_2_output_0, %onnx::Conv_1127, %onnx::Conv_1128) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_3_output_0 = Add(%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_7_output_0) %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_3_output_0, %onnx::Conv_1130, %onnx::Conv_1131) %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_8_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_9_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_10_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_11_output_0 = Constant[value = <Tensor>]() %/layers.6/Slice_1_output_0 = Slice(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_9_output_0, %/layers.6/Constant_10_output_0, %/layers.6/Constant_8_output_0, %/layers.6/Constant_11_output_0) %/layers.6/Constant_12_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_4_output_0 = Add(%/layers.6/Slice_1_output_0, %/layers.6/Constant_12_output_0) %/layers.6/Add_5_output_0 = Add(%/layers.6/Add_4_output_0, %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_5_output_0, %onnx::Conv_1133, %onnx::Conv_1134) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_1136, %onnx::Conv_1137) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_1139, %onnx::Conv_1140) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.7/Slice_output_0 = Slice(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0, %/layers.7/Constant_3_output_0, %/layers.7/Constant_1_output_0, %/layers.7/Constant_4_output_0) %/layers.7/Constant_5_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/Slice_output_0, %/layers.7/Constant_5_output_0) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_1142, %onnx::Conv_1143) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_1145, %onnx::Conv_1146) %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_6_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_6_output_0) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_2_output_0, %onnx::Conv_1148, %onnx::Conv_1149) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_3_output_0 = Add(%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_7_output_0) %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_3_output_0, %onnx::Conv_1151, %onnx::Conv_1152) %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_8_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_9_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_10_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_11_output_0 = Constant[value = <Tensor>]() %/layers.7/Slice_1_output_0 = Slice(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_9_output_0, %/layers.7/Constant_10_output_0, %/layers.7/Constant_8_output_0, %/layers.7/Constant_11_output_0) %/layers.7/Constant_12_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_4_output_0 = Add(%/layers.7/Slice_1_output_0, %/layers.7/Constant_12_output_0) %/layers.7/Add_5_output_0 = Add(%/layers.7/Add_4_output_0, %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_5_output_0, %onnx::Conv_1154, %onnx::Conv_1155) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Concat_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1157, %onnx::Conv_1158) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_1160, %onnx::Conv_1161) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_1163, %onnx::Conv_1164) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1166, %onnx::Conv_1167) %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_2_output_0, %onnx::Conv_1169, %onnx::Conv_1170) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_3_output_0 = Add(%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_3_output_0) %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_3_output_0, %onnx::Conv_1172, %onnx::Conv_1173) %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.9/Slice_output_0 = Slice(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_5_output_0, %/layers.9/Constant_6_output_0, %/layers.9/Constant_4_output_0, %/layers.9/Constant_7_output_0) %/layers.9/Constant_8_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_4_output_0 = Add(%/layers.9/Slice_output_0, %/layers.9/Constant_8_output_0) %/layers.9/Add_5_output_0 = Add(%/layers.9/Add_4_output_0, %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_5_output_0, %onnx::Conv_1175, %onnx::Conv_1176) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_1178, %onnx::Conv_1179) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_1181, %onnx::Conv_1182) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_1184, %onnx::Conv_1185) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_1187, %onnx::Conv_1188) %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_2_output_0, %onnx::Conv_1190, %onnx::Conv_1191) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_3_output_0 = Add(%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_3_output_0) %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_3_output_0, %onnx::Conv_1193, %onnx::Conv_1194) %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.10/Slice_output_0 = Slice(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_5_output_0, %/layers.10/Constant_6_output_0, %/layers.10/Constant_4_output_0, %/layers.10/Constant_7_output_0) %/layers.10/Constant_8_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_4_output_0 = Add(%/layers.10/Slice_output_0, %/layers.10/Constant_8_output_0) %/layers.10/Add_5_output_0 = Add(%/layers.10/Add_4_output_0, %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_5_output_0, %onnx::Conv_1196, %onnx::Conv_1197) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_1199, %onnx::Conv_1200) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_1202, %onnx::Conv_1203) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_1205, %onnx::Conv_1206) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_1208, %onnx::Conv_1209) %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_2_output_0, %onnx::Conv_1211, %onnx::Conv_1212) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_3_output_0 = Add(%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_3_output_0) %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_3_output_0, %onnx::Conv_1214, %onnx::Conv_1215) %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.11/Slice_output_0 = Slice(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_5_output_0, %/layers.11/Constant_6_output_0, %/layers.11/Constant_4_output_0, %/layers.11/Constant_7_output_0) %/layers.11/Constant_8_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_4_output_0 = Add(%/layers.11/Slice_output_0, %/layers.11/Constant_8_output_0) %/layers.11/Add_5_output_0 = Add(%/layers.11/Add_4_output_0, %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_5_output_0, %onnx::Conv_1217, %onnx::Conv_1218) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Concat_output_0) %1026 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %1026 }
val_accuracy
92.718351
894,952,192
2,990,000
{'zcp_epe_nas': 118.51749258737472, 'zcp_fisher': 3.408486366271972, 'zcp_flops': 14319235072.0, 'zcp_grad_norm': 42.20686340332031, 'zcp_grasp': 0.9480895996093751, 'zcp_jacov': -16.044948229912535, 'zcp_l2_norm': 1005.3204956054688, 'zcp_nwot': 221.01345767819578, 'zcp_params': 2990000.0, 'zcp_plain': -0.017312206327915, 'zcp_snip': 207.1467742919922, 'zcp_synflow': 109.39816589083676, 'zcp_zen': 94.70834350585938, 'zcp_val_accuracy': 0.858273208141326}
NASBench101_328880
NASBench101
328880
c6edbf587c3b6d31fe2cfd206bd20a13
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_977[FLOAT, 128x3x3x3] %onnx::Conv_978[FLOAT, 128] %onnx::Conv_980[FLOAT, 128x128x1x1] %onnx::Conv_983[FLOAT, 128x128x1x1] %onnx::Conv_986[FLOAT, 128x128x1x1] %onnx::Conv_989[FLOAT, 128x128x1x1] %onnx::Conv_992[FLOAT, 128x128x3x3] %onnx::Conv_995[FLOAT, 128x128x3x3] %onnx::Conv_998[FLOAT, 128x128x1x1] %onnx::Conv_1001[FLOAT, 128x128x1x1] %onnx::Conv_1004[FLOAT, 128x128x1x1] %onnx::Conv_1007[FLOAT, 128x128x1x1] %onnx::Conv_1010[FLOAT, 128x128x1x1] %onnx::Conv_1013[FLOAT, 128x128x3x3] %onnx::Conv_1016[FLOAT, 128x128x3x3] %onnx::Conv_1019[FLOAT, 128x128x1x1] %onnx::Conv_1022[FLOAT, 128x128x1x1] %onnx::Conv_1025[FLOAT, 128x128x1x1] %onnx::Conv_1028[FLOAT, 128x128x1x1] %onnx::Conv_1031[FLOAT, 128x128x1x1] %onnx::Conv_1034[FLOAT, 128x128x3x3] %onnx::Conv_1037[FLOAT, 128x128x3x3] %onnx::Conv_1040[FLOAT, 128x128x1x1] %onnx::Conv_1043[FLOAT, 256x128x1x1] %onnx::Conv_1044[FLOAT, 256] %onnx::Conv_1046[FLOAT, 256x256x1x1] %onnx::Conv_1049[FLOAT, 256x128x1x1] %onnx::Conv_1052[FLOAT, 256x256x1x1] %onnx::Conv_1055[FLOAT, 256x256x3x3] %onnx::Conv_1058[FLOAT, 256x256x3x3] %onnx::Conv_1061[FLOAT, 256x256x1x1] %onnx::Conv_1064[FLOAT, 256x256x1x1] %onnx::Conv_1067[FLOAT, 256x256x1x1] %onnx::Conv_1070[FLOAT, 256x256x1x1] %onnx::Conv_1073[FLOAT, 256x256x1x1] %onnx::Conv_1076[FLOAT, 256x256x3x3] %onnx::Conv_1079[FLOAT, 256x256x3x3] %onnx::Conv_1082[FLOAT, 256x256x1x1] %onnx::Conv_1085[FLOAT, 256x256x1x1] %onnx::Conv_1088[FLOAT, 256x256x1x1] %onnx::Conv_1091[FLOAT, 256x256x1x1] %onnx::Conv_1094[FLOAT, 256x256x1x1] %onnx::Conv_1097[FLOAT, 256x256x3x3] %onnx::Conv_1100[FLOAT, 256x256x3x3] %onnx::Conv_1103[FLOAT, 256x256x1x1] %onnx::Conv_1106[FLOAT, 512x256x1x1] %onnx::Conv_1107[FLOAT, 512] %onnx::Conv_1109[FLOAT, 512x512x1x1] %onnx::Conv_1112[FLOAT, 512x256x1x1] %onnx::Conv_1115[FLOAT, 512x512x1x1] %onnx::Conv_1118[FLOAT, 512x512x3x3] %onnx::Conv_1121[FLOAT, 512x512x3x3] %onnx::Conv_1124[FLOAT, 512x512x1x1] %onnx::Conv_1127[FLOAT, 512x512x1x1] %onnx::Conv_1130[FLOAT, 512x512x1x1] %onnx::Conv_1133[FLOAT, 512x512x1x1] %onnx::Conv_1136[FLOAT, 512x512x1x1] %onnx::Conv_1139[FLOAT, 512x512x3x3] %onnx::Conv_1142[FLOAT, 512x512x3x3] %onnx::Conv_1145[FLOAT, 512x512x1x1] %onnx::Conv_1148[FLOAT, 512x512x1x1] %onnx::Conv_1151[FLOAT, 512x512x1x1] %onnx::Conv_1154[FLOAT, 512x512x1x1] %onnx::Conv_1157[FLOAT, 512x512x1x1] %onnx::Conv_1160[FLOAT, 512x512x3x3] %onnx::Conv_1163[FLOAT, 512x512x3x3] %onnx::Conv_1166[FLOAT, 512x512x1x1] ) { %onnx::Conv_1167 = Identity(%onnx::Conv_1107) %onnx::Conv_1164 = Identity(%onnx::Conv_1107) %onnx::Conv_1161 = Identity(%onnx::Conv_1107) %onnx::Conv_1158 = Identity(%onnx::Conv_1107) %onnx::Conv_1155 = Identity(%onnx::Conv_1107) %onnx::Conv_1152 = Identity(%onnx::Conv_1107) %onnx::Conv_1149 = Identity(%onnx::Conv_1107) %onnx::Conv_1146 = Identity(%onnx::Conv_1107) %onnx::Conv_1143 = Identity(%onnx::Conv_1107) %onnx::Conv_1140 = Identity(%onnx::Conv_1107) %onnx::Conv_1137 = Identity(%onnx::Conv_1107) %onnx::Conv_1134 = Identity(%onnx::Conv_1107) %onnx::Conv_1131 = Identity(%onnx::Conv_1107) %onnx::Conv_1128 = Identity(%onnx::Conv_1107) %onnx::Conv_1125 = Identity(%onnx::Conv_1107) %onnx::Conv_1122 = Identity(%onnx::Conv_1107) %onnx::Conv_1119 = Identity(%onnx::Conv_1107) %onnx::Conv_1116 = Identity(%onnx::Conv_1107) %onnx::Conv_1113 = Identity(%onnx::Conv_1107) %onnx::Conv_1110 = Identity(%onnx::Conv_1107) %onnx::Conv_1104 = Identity(%onnx::Conv_1044) %onnx::Conv_1101 = Identity(%onnx::Conv_1044) %onnx::Conv_1098 = Identity(%onnx::Conv_1044) %onnx::Conv_1095 = Identity(%onnx::Conv_1044) %onnx::Conv_1092 = Identity(%onnx::Conv_1044) %onnx::Conv_1089 = Identity(%onnx::Conv_1044) %onnx::Conv_1086 = Identity(%onnx::Conv_1044) %onnx::Conv_1083 = Identity(%onnx::Conv_1044) %onnx::Conv_1080 = Identity(%onnx::Conv_1044) %onnx::Conv_1077 = Identity(%onnx::Conv_1044) %onnx::Conv_1074 = Identity(%onnx::Conv_1044) %onnx::Conv_1071 = Identity(%onnx::Conv_1044) %onnx::Conv_1068 = Identity(%onnx::Conv_1044) %onnx::Conv_1065 = Identity(%onnx::Conv_1044) %onnx::Conv_1062 = Identity(%onnx::Conv_1044) %onnx::Conv_1059 = Identity(%onnx::Conv_1044) %onnx::Conv_1056 = Identity(%onnx::Conv_1044) %onnx::Conv_1053 = Identity(%onnx::Conv_1044) %onnx::Conv_1050 = Identity(%onnx::Conv_1044) %onnx::Conv_1047 = Identity(%onnx::Conv_1044) %onnx::Conv_1041 = Identity(%onnx::Conv_978) %onnx::Conv_1038 = Identity(%onnx::Conv_978) %onnx::Conv_1035 = Identity(%onnx::Conv_978) %onnx::Conv_1032 = Identity(%onnx::Conv_978) %onnx::Conv_1029 = Identity(%onnx::Conv_978) %onnx::Conv_1026 = Identity(%onnx::Conv_978) %onnx::Conv_1023 = Identity(%onnx::Conv_978) %onnx::Conv_1020 = Identity(%onnx::Conv_978) %onnx::Conv_1017 = Identity(%onnx::Conv_978) %onnx::Conv_1014 = Identity(%onnx::Conv_978) %onnx::Conv_1011 = Identity(%onnx::Conv_978) %onnx::Conv_1008 = Identity(%onnx::Conv_978) %onnx::Conv_1005 = Identity(%onnx::Conv_978) %onnx::Conv_1002 = Identity(%onnx::Conv_978) %onnx::Conv_999 = Identity(%onnx::Conv_978) %onnx::Conv_996 = Identity(%onnx::Conv_978) %onnx::Conv_993 = Identity(%onnx::Conv_978) %onnx::Conv_990 = Identity(%onnx::Conv_978) %onnx::Conv_987 = Identity(%onnx::Conv_978) %onnx::Conv_984 = Identity(%onnx::Conv_978) %onnx::Conv_981 = Identity(%onnx::Conv_978) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_977, %onnx::Conv_978) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_980, %onnx::Conv_981) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_983, %onnx::Conv_984) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_986, %onnx::Conv_987) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/Add_2_output_0 = Add(%/layers.1/Add_1_output_0, %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_2_output_0, %onnx::Conv_989, %onnx::Conv_990) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_3_output_0 = Add(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_3_output_0, %onnx::Conv_992, %onnx::Conv_993) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_4_output_0 = Add(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_3_output_0) %/layers.1/Add_5_output_0 = Add(%/layers.1/Add_4_output_0, %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_5_output_0, %onnx::Conv_995, %onnx::Conv_996) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_6_output_0 = Add(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_4_output_0) %/layers.1/Add_7_output_0 = Add(%/layers.1/Add_6_output_0, %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_7_output_0, %onnx::Conv_998, %onnx::Conv_999) %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1001, %onnx::Conv_1002) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_1004, %onnx::Conv_1005) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1007, %onnx::Conv_1008) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/Add_2_output_0 = Add(%/layers.2/Add_1_output_0, %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_2_output_0, %onnx::Conv_1010, %onnx::Conv_1011) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_3_output_0 = Add(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_3_output_0, %onnx::Conv_1013, %onnx::Conv_1014) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_4_output_0 = Add(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_3_output_0) %/layers.2/Add_5_output_0 = Add(%/layers.2/Add_4_output_0, %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_5_output_0, %onnx::Conv_1016, %onnx::Conv_1017) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_6_output_0 = Add(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_4_output_0) %/layers.2/Add_7_output_0 = Add(%/layers.2/Add_6_output_0, %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_7_output_0, %onnx::Conv_1019, %onnx::Conv_1020) %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1022, %onnx::Conv_1023) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_1025, %onnx::Conv_1026) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1028, %onnx::Conv_1029) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/Add_2_output_0 = Add(%/layers.3/Add_1_output_0, %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_2_output_0, %onnx::Conv_1031, %onnx::Conv_1032) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_3_output_0 = Add(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_3_output_0, %onnx::Conv_1034, %onnx::Conv_1035) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_4_output_0 = Add(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_3_output_0) %/layers.3/Add_5_output_0 = Add(%/layers.3/Add_4_output_0, %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_5_output_0, %onnx::Conv_1037, %onnx::Conv_1038) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_6_output_0 = Add(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_4_output_0) %/layers.3/Add_7_output_0 = Add(%/layers.3/Add_6_output_0, %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_7_output_0, %onnx::Conv_1040, %onnx::Conv_1041) %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_1043, %onnx::Conv_1044) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_1046, %onnx::Conv_1047) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_1049, %onnx::Conv_1050) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/Add_2_output_0 = Add(%/layers.5/Add_1_output_0, %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_2_output_0, %onnx::Conv_1052, %onnx::Conv_1053) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_3_output_0 = Add(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_3_output_0, %onnx::Conv_1055, %onnx::Conv_1056) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_4_output_0 = Add(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_3_output_0) %/layers.5/Add_5_output_0 = Add(%/layers.5/Add_4_output_0, %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_5_output_0, %onnx::Conv_1058, %onnx::Conv_1059) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_6_output_0 = Add(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_4_output_0) %/layers.5/Add_7_output_0 = Add(%/layers.5/Add_6_output_0, %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_7_output_0, %onnx::Conv_1061, %onnx::Conv_1062) %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1064, %onnx::Conv_1065) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_1067, %onnx::Conv_1068) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1070, %onnx::Conv_1071) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/Add_2_output_0 = Add(%/layers.6/Add_1_output_0, %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_2_output_0, %onnx::Conv_1073, %onnx::Conv_1074) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_3_output_0 = Add(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_3_output_0, %onnx::Conv_1076, %onnx::Conv_1077) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_4_output_0 = Add(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_3_output_0) %/layers.6/Add_5_output_0 = Add(%/layers.6/Add_4_output_0, %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_5_output_0, %onnx::Conv_1079, %onnx::Conv_1080) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_6_output_0 = Add(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_4_output_0) %/layers.6/Add_7_output_0 = Add(%/layers.6/Add_6_output_0, %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_7_output_0, %onnx::Conv_1082, %onnx::Conv_1083) %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1085, %onnx::Conv_1086) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_1088, %onnx::Conv_1089) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1091, %onnx::Conv_1092) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/Add_2_output_0 = Add(%/layers.7/Add_1_output_0, %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_2_output_0, %onnx::Conv_1094, %onnx::Conv_1095) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_3_output_0 = Add(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_3_output_0, %onnx::Conv_1097, %onnx::Conv_1098) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_4_output_0 = Add(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_3_output_0) %/layers.7/Add_5_output_0 = Add(%/layers.7/Add_4_output_0, %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_5_output_0, %onnx::Conv_1100, %onnx::Conv_1101) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_6_output_0 = Add(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_4_output_0) %/layers.7/Add_7_output_0 = Add(%/layers.7/Add_6_output_0, %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_7_output_0, %onnx::Conv_1103, %onnx::Conv_1104) %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1106, %onnx::Conv_1107) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_1109, %onnx::Conv_1110) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1112, %onnx::Conv_1113) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/Add_2_output_0 = Add(%/layers.9/Add_1_output_0, %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_2_output_0, %onnx::Conv_1115, %onnx::Conv_1116) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_3_output_0 = Add(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_3_output_0, %onnx::Conv_1118, %onnx::Conv_1119) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_4_output_0 = Add(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_3_output_0) %/layers.9/Add_5_output_0 = Add(%/layers.9/Add_4_output_0, %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_5_output_0, %onnx::Conv_1121, %onnx::Conv_1122) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_6_output_0 = Add(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_4_output_0) %/layers.9/Add_7_output_0 = Add(%/layers.9/Add_6_output_0, %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_7_output_0, %onnx::Conv_1124, %onnx::Conv_1125) %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1127, %onnx::Conv_1128) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_1130, %onnx::Conv_1131) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1133, %onnx::Conv_1134) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/Add_2_output_0 = Add(%/layers.10/Add_1_output_0, %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_2_output_0, %onnx::Conv_1136, %onnx::Conv_1137) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_3_output_0 = Add(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_3_output_0, %onnx::Conv_1139, %onnx::Conv_1140) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_4_output_0 = Add(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_3_output_0) %/layers.10/Add_5_output_0 = Add(%/layers.10/Add_4_output_0, %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_5_output_0, %onnx::Conv_1142, %onnx::Conv_1143) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_6_output_0 = Add(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_4_output_0) %/layers.10/Add_7_output_0 = Add(%/layers.10/Add_6_output_0, %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_7_output_0, %onnx::Conv_1145, %onnx::Conv_1146) %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1148, %onnx::Conv_1149) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_1151, %onnx::Conv_1152) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1154, %onnx::Conv_1155) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/Add_2_output_0 = Add(%/layers.11/Add_1_output_0, %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_2_output_0, %onnx::Conv_1157, %onnx::Conv_1158) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_3_output_0 = Add(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_3_output_0, %onnx::Conv_1160, %onnx::Conv_1161) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_4_output_0 = Add(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_3_output_0) %/layers.11/Add_5_output_0 = Add(%/layers.11/Add_4_output_0, %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_5_output_0, %onnx::Conv_1163, %onnx::Conv_1164) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_6_output_0 = Add(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_4_output_0) %/layers.11/Add_7_output_0 = Add(%/layers.11/Add_6_output_0, %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_7_output_0, %onnx::Conv_1166, %onnx::Conv_1167) %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %975 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %975 }
val_accuracy
91.636616
6,925,330,432
23,459,210
{'zcp_epe_nas': 177.6143712345311, 'zcp_fisher': 192.42098999023438, 'zcp_flops': 110805286912.0, 'zcp_grad_norm': 280.8973388671875, 'zcp_grasp': 119.19921875, 'zcp_jacov': -16.05474189144119, 'zcp_l2_norm': 1454.028564453125, 'zcp_nwot': 237.72517195593, 'zcp_params': 23459210.0, 'zcp_plain': 0.018772399052977, 'zcp_snip': 2153.669921875, 'zcp_synflow': 181.91382877385976, 'zcp_zen': 124.5503921508789, 'zcp_val_accuracy': 0.912760436534881}
NASBench101_174936
NASBench101
174936
69e723b7f42c4663500bae3e8668ac94
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_671[FLOAT, 128x3x3x3] %onnx::Conv_672[FLOAT, 128] %onnx::Conv_674[FLOAT, 64x128x1x1] %onnx::Conv_675[FLOAT, 64] %onnx::Conv_677[FLOAT, 64x128x1x1] %onnx::Conv_680[FLOAT, 64x64x1x1] %onnx::Conv_683[FLOAT, 64x64x3x3] %onnx::Conv_686[FLOAT, 64x128x1x1] %onnx::Conv_689[FLOAT, 64x128x1x1] %onnx::Conv_692[FLOAT, 64x64x1x1] %onnx::Conv_695[FLOAT, 64x64x3x3] %onnx::Conv_698[FLOAT, 64x128x1x1] %onnx::Conv_701[FLOAT, 64x128x1x1] %onnx::Conv_704[FLOAT, 64x64x1x1] %onnx::Conv_707[FLOAT, 64x64x3x3] %onnx::Conv_710[FLOAT, 128x128x1x1] %onnx::Conv_713[FLOAT, 128x128x1x1] %onnx::Conv_716[FLOAT, 128x128x1x1] %onnx::Conv_719[FLOAT, 128x128x3x3] %onnx::Conv_722[FLOAT, 128x256x1x1] %onnx::Conv_725[FLOAT, 128x256x1x1] %onnx::Conv_728[FLOAT, 128x128x1x1] %onnx::Conv_731[FLOAT, 128x128x3x3] %onnx::Conv_734[FLOAT, 128x256x1x1] %onnx::Conv_737[FLOAT, 128x256x1x1] %onnx::Conv_740[FLOAT, 128x128x1x1] %onnx::Conv_743[FLOAT, 128x128x3x3] %onnx::Conv_746[FLOAT, 256x256x1x1] %onnx::Conv_747[FLOAT, 256] %onnx::Conv_749[FLOAT, 256x256x1x1] %onnx::Conv_752[FLOAT, 256x256x1x1] %onnx::Conv_755[FLOAT, 256x256x3x3] %onnx::Conv_758[FLOAT, 256x512x1x1] %onnx::Conv_761[FLOAT, 256x512x1x1] %onnx::Conv_764[FLOAT, 256x256x1x1] %onnx::Conv_767[FLOAT, 256x256x3x3] %onnx::Conv_770[FLOAT, 256x512x1x1] %onnx::Conv_773[FLOAT, 256x512x1x1] %onnx::Conv_776[FLOAT, 256x256x1x1] %onnx::Conv_779[FLOAT, 256x256x3x3] ) { %onnx::Conv_780 = Identity(%onnx::Conv_747) %onnx::Conv_777 = Identity(%onnx::Conv_747) %onnx::Conv_774 = Identity(%onnx::Conv_747) %onnx::Conv_771 = Identity(%onnx::Conv_747) %onnx::Conv_768 = Identity(%onnx::Conv_747) %onnx::Conv_765 = Identity(%onnx::Conv_747) %onnx::Conv_762 = Identity(%onnx::Conv_747) %onnx::Conv_759 = Identity(%onnx::Conv_747) %onnx::Conv_756 = Identity(%onnx::Conv_747) %onnx::Conv_753 = Identity(%onnx::Conv_747) %onnx::Conv_750 = Identity(%onnx::Conv_747) %onnx::Conv_744 = Identity(%onnx::Conv_672) %onnx::Conv_741 = Identity(%onnx::Conv_672) %onnx::Conv_738 = Identity(%onnx::Conv_672) %onnx::Conv_735 = Identity(%onnx::Conv_672) %onnx::Conv_732 = Identity(%onnx::Conv_672) %onnx::Conv_729 = Identity(%onnx::Conv_672) %onnx::Conv_726 = Identity(%onnx::Conv_672) %onnx::Conv_723 = Identity(%onnx::Conv_672) %onnx::Conv_720 = Identity(%onnx::Conv_672) %onnx::Conv_717 = Identity(%onnx::Conv_672) %onnx::Conv_714 = Identity(%onnx::Conv_672) %onnx::Conv_711 = Identity(%onnx::Conv_672) %onnx::Conv_708 = Identity(%onnx::Conv_675) %onnx::Conv_705 = Identity(%onnx::Conv_675) %onnx::Conv_702 = Identity(%onnx::Conv_675) %onnx::Conv_699 = Identity(%onnx::Conv_675) %onnx::Conv_696 = Identity(%onnx::Conv_675) %onnx::Conv_693 = Identity(%onnx::Conv_675) %onnx::Conv_690 = Identity(%onnx::Conv_675) %onnx::Conv_687 = Identity(%onnx::Conv_675) %onnx::Conv_684 = Identity(%onnx::Conv_675) %onnx::Conv_681 = Identity(%onnx::Conv_675) %onnx::Conv_678 = Identity(%onnx::Conv_675) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_671, %onnx::Conv_672) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_674, %onnx::Conv_675) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0) %/layers.1/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/vertex_op.1/maxpool/MaxPool_output_0) %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_677, %onnx::Conv_678) %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_680, %onnx::Conv_681) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.1/maxpool/MaxPool_output_0, %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_2_output_0, %onnx::Conv_683, %onnx::Conv_684) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_3_output_0 = Add(%/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/Add_4_output_0 = Add(%/layers.1/Add_3_output_0, %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_4_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.2/maxpool/MaxPool_output_0, %/layers.1/vertex_op.5/maxpool/MaxPool_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_686, %onnx::Conv_687) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0) %/layers.2/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/vertex_op.1/maxpool/MaxPool_output_0) %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_689, %onnx::Conv_690) %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_692, %onnx::Conv_693) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.1/maxpool/MaxPool_output_0, %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_2_output_0, %onnx::Conv_695, %onnx::Conv_696) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_3_output_0 = Add(%/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/Add_4_output_0 = Add(%/layers.2/Add_3_output_0, %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_4_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.2/maxpool/MaxPool_output_0, %/layers.2/vertex_op.5/maxpool/MaxPool_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_698, %onnx::Conv_699) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0) %/layers.3/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/vertex_op.1/maxpool/MaxPool_output_0) %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_701, %onnx::Conv_702) %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_704, %onnx::Conv_705) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.1/maxpool/MaxPool_output_0, %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_2_output_0, %onnx::Conv_707, %onnx::Conv_708) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_3_output_0 = Add(%/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/Add_4_output_0 = Add(%/layers.3/Add_3_output_0, %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_4_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.2/maxpool/MaxPool_output_0, %/layers.3/vertex_op.5/maxpool/MaxPool_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Concat_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_710, %onnx::Conv_711) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0) %/layers.5/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/vertex_op.1/maxpool/MaxPool_output_0) %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_713, %onnx::Conv_714) %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_716, %onnx::Conv_717) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.1/maxpool/MaxPool_output_0, %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_2_output_0, %onnx::Conv_719, %onnx::Conv_720) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_3_output_0 = Add(%/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/Add_4_output_0 = Add(%/layers.5/Add_3_output_0, %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_4_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.2/maxpool/MaxPool_output_0, %/layers.5/vertex_op.5/maxpool/MaxPool_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_722, %onnx::Conv_723) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0) %/layers.6/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/vertex_op.1/maxpool/MaxPool_output_0) %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_725, %onnx::Conv_726) %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_728, %onnx::Conv_729) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.1/maxpool/MaxPool_output_0, %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_2_output_0, %onnx::Conv_731, %onnx::Conv_732) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_3_output_0 = Add(%/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/Add_4_output_0 = Add(%/layers.6/Add_3_output_0, %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_4_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.2/maxpool/MaxPool_output_0, %/layers.6/vertex_op.5/maxpool/MaxPool_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_734, %onnx::Conv_735) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0) %/layers.7/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/vertex_op.1/maxpool/MaxPool_output_0) %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_737, %onnx::Conv_738) %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_740, %onnx::Conv_741) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.1/maxpool/MaxPool_output_0, %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_2_output_0, %onnx::Conv_743, %onnx::Conv_744) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_3_output_0 = Add(%/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/Add_4_output_0 = Add(%/layers.7/Add_3_output_0, %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_4_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.2/maxpool/MaxPool_output_0, %/layers.7/vertex_op.5/maxpool/MaxPool_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Concat_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_746, %onnx::Conv_747) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0) %/layers.9/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/vertex_op.1/maxpool/MaxPool_output_0) %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_749, %onnx::Conv_750) %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_752, %onnx::Conv_753) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.1/maxpool/MaxPool_output_0, %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_2_output_0, %onnx::Conv_755, %onnx::Conv_756) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_3_output_0 = Add(%/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/Add_4_output_0 = Add(%/layers.9/Add_3_output_0, %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_4_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.2/maxpool/MaxPool_output_0, %/layers.9/vertex_op.5/maxpool/MaxPool_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_758, %onnx::Conv_759) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0) %/layers.10/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/vertex_op.1/maxpool/MaxPool_output_0) %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_761, %onnx::Conv_762) %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_764, %onnx::Conv_765) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.1/maxpool/MaxPool_output_0, %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_2_output_0, %onnx::Conv_767, %onnx::Conv_768) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_3_output_0 = Add(%/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/Add_4_output_0 = Add(%/layers.10/Add_3_output_0, %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_4_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.2/maxpool/MaxPool_output_0, %/layers.10/vertex_op.5/maxpool/MaxPool_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_770, %onnx::Conv_771) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0) %/layers.11/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/vertex_op.1/maxpool/MaxPool_output_0) %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_773, %onnx::Conv_774) %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_776, %onnx::Conv_777) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.1/maxpool/MaxPool_output_0, %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_2_output_0, %onnx::Conv_779, %onnx::Conv_780) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_3_output_0 = Add(%/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/Add_4_output_0 = Add(%/layers.11/Add_3_output_0, %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_4_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.2/maxpool/MaxPool_output_0, %/layers.11/vertex_op.5/maxpool/MaxPool_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Concat_output_0) %669 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %669 }
val_accuracy
90.705127
1,042,556,928
3,468,426
{'zcp_epe_nas': 81.59892153577945, 'zcp_fisher': 20.276973724365234, 'zcp_flops': 16680910848.0, 'zcp_grad_norm': 79.10485076904297, 'zcp_grasp': -21.60980224609375, 'zcp_jacov': -16.06103364940696, 'zcp_l2_norm': 693.8521728515625, 'zcp_nwot': 218.5216651112872, 'zcp_params': 3468426.0, 'zcp_plain': 0.113942474126815, 'zcp_snip': 466.5567626953125, 'zcp_synflow': 85.1235442303182, 'zcp_zen': 71.18913269042969, 'zcp_val_accuracy': 0.9320913553237911}
NASBench101_109766
NASBench101
109766
42462e8e0749d04e3323a90d6cae1c49
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_932[FLOAT, 128x3x3x3] %onnx::Conv_933[FLOAT, 128] %onnx::Conv_935[FLOAT, 43x128x1x1] %onnx::Conv_936[FLOAT, 43] %onnx::Conv_938[FLOAT, 43x43x1x1] %onnx::Conv_941[FLOAT, 43x128x1x1] %onnx::Conv_944[FLOAT, 43x43x1x1] %onnx::Conv_947[FLOAT, 42x128x1x1] %onnx::Conv_948[FLOAT, 42] %onnx::Conv_950[FLOAT, 42x42x3x3] %onnx::Conv_953[FLOAT, 43x128x1x1] %onnx::Conv_956[FLOAT, 43x43x1x1] %onnx::Conv_959[FLOAT, 43x128x1x1] %onnx::Conv_962[FLOAT, 43x43x1x1] %onnx::Conv_965[FLOAT, 42x128x1x1] %onnx::Conv_968[FLOAT, 42x42x3x3] %onnx::Conv_971[FLOAT, 43x128x1x1] %onnx::Conv_974[FLOAT, 43x43x1x1] %onnx::Conv_977[FLOAT, 43x128x1x1] %onnx::Conv_980[FLOAT, 43x43x1x1] %onnx::Conv_983[FLOAT, 42x128x1x1] %onnx::Conv_986[FLOAT, 42x42x3x3] %onnx::Conv_989[FLOAT, 86x128x1x1] %onnx::Conv_990[FLOAT, 86] %onnx::Conv_992[FLOAT, 86x86x1x1] %onnx::Conv_995[FLOAT, 85x128x1x1] %onnx::Conv_996[FLOAT, 85] %onnx::Conv_998[FLOAT, 85x85x1x1] %onnx::Conv_1001[FLOAT, 85x128x1x1] %onnx::Conv_1004[FLOAT, 85x85x3x3] %onnx::Conv_1007[FLOAT, 86x256x1x1] %onnx::Conv_1010[FLOAT, 86x86x1x1] %onnx::Conv_1013[FLOAT, 85x256x1x1] %onnx::Conv_1016[FLOAT, 85x85x1x1] %onnx::Conv_1019[FLOAT, 85x256x1x1] %onnx::Conv_1022[FLOAT, 85x85x3x3] %onnx::Conv_1025[FLOAT, 86x256x1x1] %onnx::Conv_1028[FLOAT, 86x86x1x1] %onnx::Conv_1031[FLOAT, 85x256x1x1] %onnx::Conv_1034[FLOAT, 85x85x1x1] %onnx::Conv_1037[FLOAT, 85x256x1x1] %onnx::Conv_1040[FLOAT, 85x85x3x3] %onnx::Conv_1043[FLOAT, 171x256x1x1] %onnx::Conv_1044[FLOAT, 171] %onnx::Conv_1046[FLOAT, 171x171x1x1] %onnx::Conv_1049[FLOAT, 171x256x1x1] %onnx::Conv_1052[FLOAT, 171x171x1x1] %onnx::Conv_1055[FLOAT, 170x256x1x1] %onnx::Conv_1056[FLOAT, 170] %onnx::Conv_1058[FLOAT, 170x170x3x3] %onnx::Conv_1061[FLOAT, 171x512x1x1] %onnx::Conv_1064[FLOAT, 171x171x1x1] %onnx::Conv_1067[FLOAT, 171x512x1x1] %onnx::Conv_1070[FLOAT, 171x171x1x1] %onnx::Conv_1073[FLOAT, 170x512x1x1] %onnx::Conv_1076[FLOAT, 170x170x3x3] %onnx::Conv_1079[FLOAT, 171x512x1x1] %onnx::Conv_1082[FLOAT, 171x171x1x1] %onnx::Conv_1085[FLOAT, 171x512x1x1] %onnx::Conv_1088[FLOAT, 171x171x1x1] %onnx::Conv_1091[FLOAT, 170x512x1x1] %onnx::Conv_1094[FLOAT, 170x170x3x3] ) { %onnx::Conv_1095 = Identity(%onnx::Conv_1056) %onnx::Conv_1092 = Identity(%onnx::Conv_1056) %onnx::Conv_1089 = Identity(%onnx::Conv_1044) %onnx::Conv_1086 = Identity(%onnx::Conv_1044) %onnx::Conv_1083 = Identity(%onnx::Conv_1044) %onnx::Conv_1080 = Identity(%onnx::Conv_1044) %onnx::Conv_1077 = Identity(%onnx::Conv_1056) %onnx::Conv_1074 = Identity(%onnx::Conv_1056) %onnx::Conv_1071 = Identity(%onnx::Conv_1044) %onnx::Conv_1068 = Identity(%onnx::Conv_1044) %onnx::Conv_1065 = Identity(%onnx::Conv_1044) %onnx::Conv_1062 = Identity(%onnx::Conv_1044) %onnx::Conv_1059 = Identity(%onnx::Conv_1056) %onnx::Conv_1053 = Identity(%onnx::Conv_1044) %onnx::Conv_1050 = Identity(%onnx::Conv_1044) %onnx::Conv_1047 = Identity(%onnx::Conv_1044) %onnx::Conv_1041 = Identity(%onnx::Conv_996) %onnx::Conv_1038 = Identity(%onnx::Conv_996) %onnx::Conv_1035 = Identity(%onnx::Conv_996) %onnx::Conv_1032 = Identity(%onnx::Conv_996) %onnx::Conv_1029 = Identity(%onnx::Conv_990) %onnx::Conv_1026 = Identity(%onnx::Conv_990) %onnx::Conv_1023 = Identity(%onnx::Conv_996) %onnx::Conv_1020 = Identity(%onnx::Conv_996) %onnx::Conv_1017 = Identity(%onnx::Conv_996) %onnx::Conv_1014 = Identity(%onnx::Conv_996) %onnx::Conv_1011 = Identity(%onnx::Conv_990) %onnx::Conv_1008 = Identity(%onnx::Conv_990) %onnx::Conv_1005 = Identity(%onnx::Conv_996) %onnx::Conv_1002 = Identity(%onnx::Conv_996) %onnx::Conv_999 = Identity(%onnx::Conv_996) %onnx::Conv_993 = Identity(%onnx::Conv_990) %onnx::Conv_987 = Identity(%onnx::Conv_948) %onnx::Conv_984 = Identity(%onnx::Conv_948) %onnx::Conv_981 = Identity(%onnx::Conv_936) %onnx::Conv_978 = Identity(%onnx::Conv_936) %onnx::Conv_975 = Identity(%onnx::Conv_936) %onnx::Conv_972 = Identity(%onnx::Conv_936) %onnx::Conv_969 = Identity(%onnx::Conv_948) %onnx::Conv_966 = Identity(%onnx::Conv_948) %onnx::Conv_963 = Identity(%onnx::Conv_936) %onnx::Conv_960 = Identity(%onnx::Conv_936) %onnx::Conv_957 = Identity(%onnx::Conv_936) %onnx::Conv_954 = Identity(%onnx::Conv_936) %onnx::Conv_951 = Identity(%onnx::Conv_948) %onnx::Conv_945 = Identity(%onnx::Conv_936) %onnx::Conv_942 = Identity(%onnx::Conv_936) %onnx::Conv_939 = Identity(%onnx::Conv_936) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_932, %onnx::Conv_933) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_935, %onnx::Conv_936) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_938, %onnx::Conv_939) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_941, %onnx::Conv_942) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_944, %onnx::Conv_945) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_947, %onnx::Conv_948) %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_2_output_0, %onnx::Conv_950, %onnx::Conv_951) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_3_output_0 = Add(%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_3_output_0) %/layers.1/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_3_output_0) %/layers.1/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.1/Slice_output_0 = Slice(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_5_output_0, %/layers.1/Constant_6_output_0, %/layers.1/Constant_4_output_0, %/layers.1/Constant_7_output_0) %/layers.1/Constant_8_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_4_output_0 = Add(%/layers.1/Slice_output_0, %/layers.1/Constant_8_output_0) %/layers.1/Add_5_output_0 = Add(%/layers.1/Add_4_output_0, %/layers.1/vertex_op.4/maxpool/MaxPool_output_0) %/layers.1/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_5_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.5/maxpool/MaxPool_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_953, %onnx::Conv_954) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_956, %onnx::Conv_957) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_959, %onnx::Conv_960) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_962, %onnx::Conv_963) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_965, %onnx::Conv_966) %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_2_output_0, %onnx::Conv_968, %onnx::Conv_969) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_3_output_0 = Add(%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_3_output_0) %/layers.2/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_3_output_0) %/layers.2/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.2/Slice_output_0 = Slice(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_5_output_0, %/layers.2/Constant_6_output_0, %/layers.2/Constant_4_output_0, %/layers.2/Constant_7_output_0) %/layers.2/Constant_8_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_4_output_0 = Add(%/layers.2/Slice_output_0, %/layers.2/Constant_8_output_0) %/layers.2/Add_5_output_0 = Add(%/layers.2/Add_4_output_0, %/layers.2/vertex_op.4/maxpool/MaxPool_output_0) %/layers.2/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_5_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.5/maxpool/MaxPool_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_971, %onnx::Conv_972) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_974, %onnx::Conv_975) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_977, %onnx::Conv_978) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_980, %onnx::Conv_981) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_983, %onnx::Conv_984) %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_2_output_0, %onnx::Conv_986, %onnx::Conv_987) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_3_output_0 = Add(%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_3_output_0) %/layers.3/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_3_output_0) %/layers.3/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.3/Slice_output_0 = Slice(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_5_output_0, %/layers.3/Constant_6_output_0, %/layers.3/Constant_4_output_0, %/layers.3/Constant_7_output_0) %/layers.3/Constant_8_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_4_output_0 = Add(%/layers.3/Slice_output_0, %/layers.3/Constant_8_output_0) %/layers.3/Add_5_output_0 = Add(%/layers.3/Add_4_output_0, %/layers.3/vertex_op.4/maxpool/MaxPool_output_0) %/layers.3/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_5_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.5/maxpool/MaxPool_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Concat_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_989, %onnx::Conv_990) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_992, %onnx::Conv_993) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_995, %onnx::Conv_996) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_998, %onnx::Conv_999) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_1001, %onnx::Conv_1002) %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_2_output_0, %onnx::Conv_1004, %onnx::Conv_1005) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_3_output_0 = Add(%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_3_output_0) %/layers.5/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_3_output_0) %/layers.5/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.5/Slice_output_0 = Slice(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_5_output_0, %/layers.5/Constant_6_output_0, %/layers.5/Constant_4_output_0, %/layers.5/Constant_7_output_0) %/layers.5/Constant_8_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_4_output_0 = Add(%/layers.5/Slice_output_0, %/layers.5/Constant_8_output_0) %/layers.5/Add_5_output_0 = Add(%/layers.5/Add_4_output_0, %/layers.5/vertex_op.4/maxpool/MaxPool_output_0) %/layers.5/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_5_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.5/maxpool/MaxPool_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_1007, %onnx::Conv_1008) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_1010, %onnx::Conv_1011) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_1013, %onnx::Conv_1014) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_1016, %onnx::Conv_1017) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_1019, %onnx::Conv_1020) %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_2_output_0, %onnx::Conv_1022, %onnx::Conv_1023) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_3_output_0 = Add(%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_3_output_0) %/layers.6/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_3_output_0) %/layers.6/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.6/Slice_output_0 = Slice(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_5_output_0, %/layers.6/Constant_6_output_0, %/layers.6/Constant_4_output_0, %/layers.6/Constant_7_output_0) %/layers.6/Constant_8_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_4_output_0 = Add(%/layers.6/Slice_output_0, %/layers.6/Constant_8_output_0) %/layers.6/Add_5_output_0 = Add(%/layers.6/Add_4_output_0, %/layers.6/vertex_op.4/maxpool/MaxPool_output_0) %/layers.6/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_5_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.5/maxpool/MaxPool_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_1025, %onnx::Conv_1026) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_1028, %onnx::Conv_1029) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_1031, %onnx::Conv_1032) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_1034, %onnx::Conv_1035) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_1037, %onnx::Conv_1038) %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_2_output_0, %onnx::Conv_1040, %onnx::Conv_1041) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_3_output_0 = Add(%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_3_output_0) %/layers.7/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_3_output_0) %/layers.7/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.7/Slice_output_0 = Slice(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_5_output_0, %/layers.7/Constant_6_output_0, %/layers.7/Constant_4_output_0, %/layers.7/Constant_7_output_0) %/layers.7/Constant_8_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_4_output_0 = Add(%/layers.7/Slice_output_0, %/layers.7/Constant_8_output_0) %/layers.7/Add_5_output_0 = Add(%/layers.7/Add_4_output_0, %/layers.7/vertex_op.4/maxpool/MaxPool_output_0) %/layers.7/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_5_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.5/maxpool/MaxPool_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Concat_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1043, %onnx::Conv_1044) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_1046, %onnx::Conv_1047) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1049, %onnx::Conv_1050) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_1052, %onnx::Conv_1053) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1055, %onnx::Conv_1056) %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_2_output_0, %onnx::Conv_1058, %onnx::Conv_1059) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_3_output_0 = Add(%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_3_output_0) %/layers.9/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_3_output_0) %/layers.9/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.9/Slice_output_0 = Slice(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_5_output_0, %/layers.9/Constant_6_output_0, %/layers.9/Constant_4_output_0, %/layers.9/Constant_7_output_0) %/layers.9/Constant_8_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_4_output_0 = Add(%/layers.9/Slice_output_0, %/layers.9/Constant_8_output_0) %/layers.9/Add_5_output_0 = Add(%/layers.9/Add_4_output_0, %/layers.9/vertex_op.4/maxpool/MaxPool_output_0) %/layers.9/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_5_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.5/maxpool/MaxPool_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_1061, %onnx::Conv_1062) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_1064, %onnx::Conv_1065) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_1067, %onnx::Conv_1068) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_1070, %onnx::Conv_1071) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_1073, %onnx::Conv_1074) %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_2_output_0, %onnx::Conv_1076, %onnx::Conv_1077) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_3_output_0 = Add(%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_3_output_0) %/layers.10/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_3_output_0) %/layers.10/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.10/Slice_output_0 = Slice(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_5_output_0, %/layers.10/Constant_6_output_0, %/layers.10/Constant_4_output_0, %/layers.10/Constant_7_output_0) %/layers.10/Constant_8_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_4_output_0 = Add(%/layers.10/Slice_output_0, %/layers.10/Constant_8_output_0) %/layers.10/Add_5_output_0 = Add(%/layers.10/Add_4_output_0, %/layers.10/vertex_op.4/maxpool/MaxPool_output_0) %/layers.10/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_5_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.5/maxpool/MaxPool_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_1079, %onnx::Conv_1080) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_1082, %onnx::Conv_1083) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_1085, %onnx::Conv_1086) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_1088, %onnx::Conv_1089) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_1091, %onnx::Conv_1092) %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_2_output_0, %onnx::Conv_1094, %onnx::Conv_1095) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_3_output_0 = Add(%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_3_output_0) %/layers.11/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_3_output_0) %/layers.11/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.11/Slice_output_0 = Slice(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_5_output_0, %/layers.11/Constant_6_output_0, %/layers.11/Constant_4_output_0, %/layers.11/Constant_7_output_0) %/layers.11/Constant_8_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_4_output_0 = Add(%/layers.11/Slice_output_0, %/layers.11/Constant_8_output_0) %/layers.11/Add_5_output_0 = Add(%/layers.11/Add_4_output_0, %/layers.11/vertex_op.4/maxpool/MaxPool_output_0) %/layers.11/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_5_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.5/maxpool/MaxPool_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Concat_output_0) %930 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %930 }
val_accuracy
91.346157
652,516,608
2,141,352
{'zcp_epe_nas': 98.57861272021782, 'zcp_fisher': 15.990256309509277, 'zcp_flops': 10440265728.0, 'zcp_grad_norm': 76.173583984375, 'zcp_grasp': -7.7535400390625, 'zcp_jacov': -16.05610153634117, 'zcp_l2_norm': 958.1776123046875, 'zcp_nwot': 218.56425695143085, 'zcp_params': 2141352.0, 'zcp_plain': 0.091753832995891, 'zcp_snip': 392.87322998046875, 'zcp_synflow': 63.51822094925691, 'zcp_zen': 84.10533142089844, 'zcp_val_accuracy': 0.921474337577819}
NASBench101_299268
NASBench101
299268
b5192137ef63f6e18914feaf25e3f74d
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_977[FLOAT, 128x3x3x3] %onnx::Conv_978[FLOAT, 128] %onnx::Conv_980[FLOAT, 64x128x1x1] %onnx::Conv_981[FLOAT, 64] %onnx::Conv_983[FLOAT, 64x64x1x1] %onnx::Conv_986[FLOAT, 64x64x1x1] %onnx::Conv_989[FLOAT, 64x128x1x1] %onnx::Conv_992[FLOAT, 64x64x1x1] %onnx::Conv_995[FLOAT, 64x64x3x3] %onnx::Conv_998[FLOAT, 64x64x3x3] %onnx::Conv_1001[FLOAT, 64x128x1x1] %onnx::Conv_1004[FLOAT, 64x64x1x1] %onnx::Conv_1007[FLOAT, 64x64x1x1] %onnx::Conv_1010[FLOAT, 64x128x1x1] %onnx::Conv_1013[FLOAT, 64x64x1x1] %onnx::Conv_1016[FLOAT, 64x64x3x3] %onnx::Conv_1019[FLOAT, 64x64x3x3] %onnx::Conv_1022[FLOAT, 64x128x1x1] %onnx::Conv_1025[FLOAT, 64x64x1x1] %onnx::Conv_1028[FLOAT, 64x64x1x1] %onnx::Conv_1031[FLOAT, 64x128x1x1] %onnx::Conv_1034[FLOAT, 64x64x1x1] %onnx::Conv_1037[FLOAT, 64x64x3x3] %onnx::Conv_1040[FLOAT, 64x64x3x3] %onnx::Conv_1043[FLOAT, 128x128x1x1] %onnx::Conv_1046[FLOAT, 128x128x1x1] %onnx::Conv_1049[FLOAT, 128x128x1x1] %onnx::Conv_1052[FLOAT, 128x128x1x1] %onnx::Conv_1055[FLOAT, 128x128x1x1] %onnx::Conv_1058[FLOAT, 128x128x3x3] %onnx::Conv_1061[FLOAT, 128x128x3x3] %onnx::Conv_1064[FLOAT, 128x256x1x1] %onnx::Conv_1067[FLOAT, 128x128x1x1] %onnx::Conv_1070[FLOAT, 128x128x1x1] %onnx::Conv_1073[FLOAT, 128x256x1x1] %onnx::Conv_1076[FLOAT, 128x128x1x1] %onnx::Conv_1079[FLOAT, 128x128x3x3] %onnx::Conv_1082[FLOAT, 128x128x3x3] %onnx::Conv_1085[FLOAT, 128x256x1x1] %onnx::Conv_1088[FLOAT, 128x128x1x1] %onnx::Conv_1091[FLOAT, 128x128x1x1] %onnx::Conv_1094[FLOAT, 128x256x1x1] %onnx::Conv_1097[FLOAT, 128x128x1x1] %onnx::Conv_1100[FLOAT, 128x128x3x3] %onnx::Conv_1103[FLOAT, 128x128x3x3] %onnx::Conv_1106[FLOAT, 256x256x1x1] %onnx::Conv_1107[FLOAT, 256] %onnx::Conv_1109[FLOAT, 256x256x1x1] %onnx::Conv_1112[FLOAT, 256x256x1x1] %onnx::Conv_1115[FLOAT, 256x256x1x1] %onnx::Conv_1118[FLOAT, 256x256x1x1] %onnx::Conv_1121[FLOAT, 256x256x3x3] %onnx::Conv_1124[FLOAT, 256x256x3x3] %onnx::Conv_1127[FLOAT, 256x512x1x1] %onnx::Conv_1130[FLOAT, 256x256x1x1] %onnx::Conv_1133[FLOAT, 256x256x1x1] %onnx::Conv_1136[FLOAT, 256x512x1x1] %onnx::Conv_1139[FLOAT, 256x256x1x1] %onnx::Conv_1142[FLOAT, 256x256x3x3] %onnx::Conv_1145[FLOAT, 256x256x3x3] %onnx::Conv_1148[FLOAT, 256x512x1x1] %onnx::Conv_1151[FLOAT, 256x256x1x1] %onnx::Conv_1154[FLOAT, 256x256x1x1] %onnx::Conv_1157[FLOAT, 256x512x1x1] %onnx::Conv_1160[FLOAT, 256x256x1x1] %onnx::Conv_1163[FLOAT, 256x256x3x3] %onnx::Conv_1166[FLOAT, 256x256x3x3] ) { %onnx::Conv_1167 = Identity(%onnx::Conv_1107) %onnx::Conv_1164 = Identity(%onnx::Conv_1107) %onnx::Conv_1161 = Identity(%onnx::Conv_1107) %onnx::Conv_1158 = Identity(%onnx::Conv_1107) %onnx::Conv_1155 = Identity(%onnx::Conv_1107) %onnx::Conv_1152 = Identity(%onnx::Conv_1107) %onnx::Conv_1149 = Identity(%onnx::Conv_1107) %onnx::Conv_1146 = Identity(%onnx::Conv_1107) %onnx::Conv_1143 = Identity(%onnx::Conv_1107) %onnx::Conv_1140 = Identity(%onnx::Conv_1107) %onnx::Conv_1137 = Identity(%onnx::Conv_1107) %onnx::Conv_1134 = Identity(%onnx::Conv_1107) %onnx::Conv_1131 = Identity(%onnx::Conv_1107) %onnx::Conv_1128 = Identity(%onnx::Conv_1107) %onnx::Conv_1125 = Identity(%onnx::Conv_1107) %onnx::Conv_1122 = Identity(%onnx::Conv_1107) %onnx::Conv_1119 = Identity(%onnx::Conv_1107) %onnx::Conv_1116 = Identity(%onnx::Conv_1107) %onnx::Conv_1113 = Identity(%onnx::Conv_1107) %onnx::Conv_1110 = Identity(%onnx::Conv_1107) %onnx::Conv_1104 = Identity(%onnx::Conv_978) %onnx::Conv_1101 = Identity(%onnx::Conv_978) %onnx::Conv_1098 = Identity(%onnx::Conv_978) %onnx::Conv_1095 = Identity(%onnx::Conv_978) %onnx::Conv_1092 = Identity(%onnx::Conv_978) %onnx::Conv_1089 = Identity(%onnx::Conv_978) %onnx::Conv_1086 = Identity(%onnx::Conv_978) %onnx::Conv_1083 = Identity(%onnx::Conv_978) %onnx::Conv_1080 = Identity(%onnx::Conv_978) %onnx::Conv_1077 = Identity(%onnx::Conv_978) %onnx::Conv_1074 = Identity(%onnx::Conv_978) %onnx::Conv_1071 = Identity(%onnx::Conv_978) %onnx::Conv_1068 = Identity(%onnx::Conv_978) %onnx::Conv_1065 = Identity(%onnx::Conv_978) %onnx::Conv_1062 = Identity(%onnx::Conv_978) %onnx::Conv_1059 = Identity(%onnx::Conv_978) %onnx::Conv_1056 = Identity(%onnx::Conv_978) %onnx::Conv_1053 = Identity(%onnx::Conv_978) %onnx::Conv_1050 = Identity(%onnx::Conv_978) %onnx::Conv_1047 = Identity(%onnx::Conv_978) %onnx::Conv_1044 = Identity(%onnx::Conv_978) %onnx::Conv_1041 = Identity(%onnx::Conv_981) %onnx::Conv_1038 = Identity(%onnx::Conv_981) %onnx::Conv_1035 = Identity(%onnx::Conv_981) %onnx::Conv_1032 = Identity(%onnx::Conv_981) %onnx::Conv_1029 = Identity(%onnx::Conv_981) %onnx::Conv_1026 = Identity(%onnx::Conv_981) %onnx::Conv_1023 = Identity(%onnx::Conv_981) %onnx::Conv_1020 = Identity(%onnx::Conv_981) %onnx::Conv_1017 = Identity(%onnx::Conv_981) %onnx::Conv_1014 = Identity(%onnx::Conv_981) %onnx::Conv_1011 = Identity(%onnx::Conv_981) %onnx::Conv_1008 = Identity(%onnx::Conv_981) %onnx::Conv_1005 = Identity(%onnx::Conv_981) %onnx::Conv_1002 = Identity(%onnx::Conv_981) %onnx::Conv_999 = Identity(%onnx::Conv_981) %onnx::Conv_996 = Identity(%onnx::Conv_981) %onnx::Conv_993 = Identity(%onnx::Conv_981) %onnx::Conv_990 = Identity(%onnx::Conv_981) %onnx::Conv_987 = Identity(%onnx::Conv_981) %onnx::Conv_984 = Identity(%onnx::Conv_981) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_977, %onnx::Conv_978) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_980, %onnx::Conv_981) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_983, %onnx::Conv_984) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_986, %onnx::Conv_987) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_989, %onnx::Conv_990) %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/Add_3_output_0 = Add(%/layers.1/Add_2_output_0, %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_3_output_0, %onnx::Conv_992, %onnx::Conv_993) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_4_output_0 = Add(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_3_output_0) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_4_output_0, %onnx::Conv_995, %onnx::Conv_996) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_5_output_0 = Add(%/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_4_output_0) %/layers.1/Add_6_output_0 = Add(%/layers.1/Add_5_output_0, %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_6_output_0, %onnx::Conv_998, %onnx::Conv_999) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_1001, %onnx::Conv_1002) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_1004, %onnx::Conv_1005) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_1007, %onnx::Conv_1008) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_1010, %onnx::Conv_1011) %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/Add_3_output_0 = Add(%/layers.2/Add_2_output_0, %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_3_output_0, %onnx::Conv_1013, %onnx::Conv_1014) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_4_output_0 = Add(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_3_output_0) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_4_output_0, %onnx::Conv_1016, %onnx::Conv_1017) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_5_output_0 = Add(%/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_4_output_0) %/layers.2/Add_6_output_0 = Add(%/layers.2/Add_5_output_0, %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_6_output_0, %onnx::Conv_1019, %onnx::Conv_1020) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_1022, %onnx::Conv_1023) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_1025, %onnx::Conv_1026) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_1028, %onnx::Conv_1029) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_1031, %onnx::Conv_1032) %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/Add_3_output_0 = Add(%/layers.3/Add_2_output_0, %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_3_output_0, %onnx::Conv_1034, %onnx::Conv_1035) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_4_output_0 = Add(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_3_output_0) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_4_output_0, %onnx::Conv_1037, %onnx::Conv_1038) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_5_output_0 = Add(%/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_4_output_0) %/layers.3/Add_6_output_0 = Add(%/layers.3/Add_5_output_0, %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_6_output_0, %onnx::Conv_1040, %onnx::Conv_1041) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Concat_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_1043, %onnx::Conv_1044) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_1046, %onnx::Conv_1047) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_1049, %onnx::Conv_1050) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_1052, %onnx::Conv_1053) %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/Add_3_output_0 = Add(%/layers.5/Add_2_output_0, %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_3_output_0, %onnx::Conv_1055, %onnx::Conv_1056) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_4_output_0 = Add(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_3_output_0) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_4_output_0, %onnx::Conv_1058, %onnx::Conv_1059) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_5_output_0 = Add(%/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_4_output_0) %/layers.5/Add_6_output_0 = Add(%/layers.5/Add_5_output_0, %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_6_output_0, %onnx::Conv_1061, %onnx::Conv_1062) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_1064, %onnx::Conv_1065) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_1067, %onnx::Conv_1068) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_1070, %onnx::Conv_1071) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_1073, %onnx::Conv_1074) %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/Add_3_output_0 = Add(%/layers.6/Add_2_output_0, %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_3_output_0, %onnx::Conv_1076, %onnx::Conv_1077) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_4_output_0 = Add(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_3_output_0) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_4_output_0, %onnx::Conv_1079, %onnx::Conv_1080) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_5_output_0 = Add(%/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_4_output_0) %/layers.6/Add_6_output_0 = Add(%/layers.6/Add_5_output_0, %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_6_output_0, %onnx::Conv_1082, %onnx::Conv_1083) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_1085, %onnx::Conv_1086) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_1088, %onnx::Conv_1089) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_1091, %onnx::Conv_1092) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_1094, %onnx::Conv_1095) %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/Add_3_output_0 = Add(%/layers.7/Add_2_output_0, %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_3_output_0, %onnx::Conv_1097, %onnx::Conv_1098) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_4_output_0 = Add(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_3_output_0) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_4_output_0, %onnx::Conv_1100, %onnx::Conv_1101) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_5_output_0 = Add(%/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_4_output_0) %/layers.7/Add_6_output_0 = Add(%/layers.7/Add_5_output_0, %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_6_output_0, %onnx::Conv_1103, %onnx::Conv_1104) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Concat_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1106, %onnx::Conv_1107) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_1109, %onnx::Conv_1110) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_1112, %onnx::Conv_1113) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1115, %onnx::Conv_1116) %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/Add_3_output_0 = Add(%/layers.9/Add_2_output_0, %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_3_output_0, %onnx::Conv_1118, %onnx::Conv_1119) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_4_output_0 = Add(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_3_output_0) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_4_output_0, %onnx::Conv_1121, %onnx::Conv_1122) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_5_output_0 = Add(%/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_4_output_0) %/layers.9/Add_6_output_0 = Add(%/layers.9/Add_5_output_0, %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_6_output_0, %onnx::Conv_1124, %onnx::Conv_1125) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_1127, %onnx::Conv_1128) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_1130, %onnx::Conv_1131) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_1133, %onnx::Conv_1134) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_1136, %onnx::Conv_1137) %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/Add_3_output_0 = Add(%/layers.10/Add_2_output_0, %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_3_output_0, %onnx::Conv_1139, %onnx::Conv_1140) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_4_output_0 = Add(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_3_output_0) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_4_output_0, %onnx::Conv_1142, %onnx::Conv_1143) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_5_output_0 = Add(%/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_4_output_0) %/layers.10/Add_6_output_0 = Add(%/layers.10/Add_5_output_0, %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_6_output_0, %onnx::Conv_1145, %onnx::Conv_1146) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_1148, %onnx::Conv_1149) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_1151, %onnx::Conv_1152) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_1154, %onnx::Conv_1155) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_1157, %onnx::Conv_1158) %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/Add_3_output_0 = Add(%/layers.11/Add_2_output_0, %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_3_output_0, %onnx::Conv_1160, %onnx::Conv_1161) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_4_output_0 = Add(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_3_output_0) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_4_output_0, %onnx::Conv_1163, %onnx::Conv_1164) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_5_output_0 = Add(%/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_4_output_0) %/layers.11/Add_6_output_0 = Add(%/layers.11/Add_5_output_0, %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_6_output_0, %onnx::Conv_1166, %onnx::Conv_1167) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Concat_output_0) %975 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %975 }
val_accuracy
92.467946
1,881,286,656
6,315,018
{'zcp_epe_nas': 120.44719384411643, 'zcp_fisher': 28.643606185913086, 'zcp_flops': 30100586496.0, 'zcp_grad_norm': 117.41615295410156, 'zcp_grasp': -30.696044921875, 'zcp_jacov': -16.078475475428068, 'zcp_l2_norm': 1143.74462890625, 'zcp_nwot': 227.03597116403756, 'zcp_params': 6315018.0, 'zcp_plain': -0.002118362812325, 'zcp_snip': 653.6553955078125, 'zcp_synflow': 142.24623012633938, 'zcp_zen': 106.43588256835938, 'zcp_val_accuracy': 0.9213742017745971}
NASBench101_357495
NASBench101
357495
d8126f00f6590aebeaa364d4cf858798
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_923[FLOAT, 128x3x3x3] %onnx::Conv_924[FLOAT, 128] %onnx::Conv_926[FLOAT, 128x128x1x1] %onnx::Conv_929[FLOAT, 128x128x1x1] %onnx::Conv_932[FLOAT, 128x128x1x1] %onnx::Conv_935[FLOAT, 128x128x1x1] %onnx::Conv_938[FLOAT, 128x128x1x1] %onnx::Conv_941[FLOAT, 128x128x3x3] %onnx::Conv_944[FLOAT, 128x128x1x1] %onnx::Conv_947[FLOAT, 128x128x1x1] %onnx::Conv_950[FLOAT, 128x128x1x1] %onnx::Conv_953[FLOAT, 128x128x1x1] %onnx::Conv_956[FLOAT, 128x128x1x1] %onnx::Conv_959[FLOAT, 128x128x1x1] %onnx::Conv_962[FLOAT, 128x128x3x3] %onnx::Conv_965[FLOAT, 128x128x1x1] %onnx::Conv_968[FLOAT, 128x128x1x1] %onnx::Conv_971[FLOAT, 128x128x1x1] %onnx::Conv_974[FLOAT, 128x128x1x1] %onnx::Conv_977[FLOAT, 128x128x1x1] %onnx::Conv_980[FLOAT, 128x128x1x1] %onnx::Conv_983[FLOAT, 128x128x3x3] %onnx::Conv_986[FLOAT, 128x128x1x1] %onnx::Conv_989[FLOAT, 256x128x1x1] %onnx::Conv_990[FLOAT, 256] %onnx::Conv_992[FLOAT, 256x128x1x1] %onnx::Conv_995[FLOAT, 256x256x1x1] %onnx::Conv_998[FLOAT, 256x128x1x1] %onnx::Conv_1001[FLOAT, 256x256x1x1] %onnx::Conv_1004[FLOAT, 256x256x3x3] %onnx::Conv_1007[FLOAT, 256x128x1x1] %onnx::Conv_1010[FLOAT, 256x256x1x1] %onnx::Conv_1013[FLOAT, 256x256x1x1] %onnx::Conv_1016[FLOAT, 256x256x1x1] %onnx::Conv_1019[FLOAT, 256x256x1x1] %onnx::Conv_1022[FLOAT, 256x256x1x1] %onnx::Conv_1025[FLOAT, 256x256x3x3] %onnx::Conv_1028[FLOAT, 256x256x1x1] %onnx::Conv_1031[FLOAT, 256x256x1x1] %onnx::Conv_1034[FLOAT, 256x256x1x1] %onnx::Conv_1037[FLOAT, 256x256x1x1] %onnx::Conv_1040[FLOAT, 256x256x1x1] %onnx::Conv_1043[FLOAT, 256x256x1x1] %onnx::Conv_1046[FLOAT, 256x256x3x3] %onnx::Conv_1049[FLOAT, 256x256x1x1] %onnx::Conv_1052[FLOAT, 512x256x1x1] %onnx::Conv_1053[FLOAT, 512] %onnx::Conv_1055[FLOAT, 512x256x1x1] %onnx::Conv_1058[FLOAT, 512x512x1x1] %onnx::Conv_1061[FLOAT, 512x256x1x1] %onnx::Conv_1064[FLOAT, 512x512x1x1] %onnx::Conv_1067[FLOAT, 512x512x3x3] %onnx::Conv_1070[FLOAT, 512x256x1x1] %onnx::Conv_1073[FLOAT, 512x512x1x1] %onnx::Conv_1076[FLOAT, 512x512x1x1] %onnx::Conv_1079[FLOAT, 512x512x1x1] %onnx::Conv_1082[FLOAT, 512x512x1x1] %onnx::Conv_1085[FLOAT, 512x512x1x1] %onnx::Conv_1088[FLOAT, 512x512x3x3] %onnx::Conv_1091[FLOAT, 512x512x1x1] %onnx::Conv_1094[FLOAT, 512x512x1x1] %onnx::Conv_1097[FLOAT, 512x512x1x1] %onnx::Conv_1100[FLOAT, 512x512x1x1] %onnx::Conv_1103[FLOAT, 512x512x1x1] %onnx::Conv_1106[FLOAT, 512x512x1x1] %onnx::Conv_1109[FLOAT, 512x512x3x3] %onnx::Conv_1112[FLOAT, 512x512x1x1] ) { %onnx::Conv_1113 = Identity(%onnx::Conv_1053) %onnx::Conv_1110 = Identity(%onnx::Conv_1053) %onnx::Conv_1107 = Identity(%onnx::Conv_1053) %onnx::Conv_1104 = Identity(%onnx::Conv_1053) %onnx::Conv_1101 = Identity(%onnx::Conv_1053) %onnx::Conv_1098 = Identity(%onnx::Conv_1053) %onnx::Conv_1095 = Identity(%onnx::Conv_1053) %onnx::Conv_1092 = Identity(%onnx::Conv_1053) %onnx::Conv_1089 = Identity(%onnx::Conv_1053) %onnx::Conv_1086 = Identity(%onnx::Conv_1053) %onnx::Conv_1083 = Identity(%onnx::Conv_1053) %onnx::Conv_1080 = Identity(%onnx::Conv_1053) %onnx::Conv_1077 = Identity(%onnx::Conv_1053) %onnx::Conv_1074 = Identity(%onnx::Conv_1053) %onnx::Conv_1071 = Identity(%onnx::Conv_1053) %onnx::Conv_1068 = Identity(%onnx::Conv_1053) %onnx::Conv_1065 = Identity(%onnx::Conv_1053) %onnx::Conv_1062 = Identity(%onnx::Conv_1053) %onnx::Conv_1059 = Identity(%onnx::Conv_1053) %onnx::Conv_1056 = Identity(%onnx::Conv_1053) %onnx::Conv_1050 = Identity(%onnx::Conv_990) %onnx::Conv_1047 = Identity(%onnx::Conv_990) %onnx::Conv_1044 = Identity(%onnx::Conv_990) %onnx::Conv_1041 = Identity(%onnx::Conv_990) %onnx::Conv_1038 = Identity(%onnx::Conv_990) %onnx::Conv_1035 = Identity(%onnx::Conv_990) %onnx::Conv_1032 = Identity(%onnx::Conv_990) %onnx::Conv_1029 = Identity(%onnx::Conv_990) %onnx::Conv_1026 = Identity(%onnx::Conv_990) %onnx::Conv_1023 = Identity(%onnx::Conv_990) %onnx::Conv_1020 = Identity(%onnx::Conv_990) %onnx::Conv_1017 = Identity(%onnx::Conv_990) %onnx::Conv_1014 = Identity(%onnx::Conv_990) %onnx::Conv_1011 = Identity(%onnx::Conv_990) %onnx::Conv_1008 = Identity(%onnx::Conv_990) %onnx::Conv_1005 = Identity(%onnx::Conv_990) %onnx::Conv_1002 = Identity(%onnx::Conv_990) %onnx::Conv_999 = Identity(%onnx::Conv_990) %onnx::Conv_996 = Identity(%onnx::Conv_990) %onnx::Conv_993 = Identity(%onnx::Conv_990) %onnx::Conv_987 = Identity(%onnx::Conv_924) %onnx::Conv_984 = Identity(%onnx::Conv_924) %onnx::Conv_981 = Identity(%onnx::Conv_924) %onnx::Conv_978 = Identity(%onnx::Conv_924) %onnx::Conv_975 = Identity(%onnx::Conv_924) %onnx::Conv_972 = Identity(%onnx::Conv_924) %onnx::Conv_969 = Identity(%onnx::Conv_924) %onnx::Conv_966 = Identity(%onnx::Conv_924) %onnx::Conv_963 = Identity(%onnx::Conv_924) %onnx::Conv_960 = Identity(%onnx::Conv_924) %onnx::Conv_957 = Identity(%onnx::Conv_924) %onnx::Conv_954 = Identity(%onnx::Conv_924) %onnx::Conv_951 = Identity(%onnx::Conv_924) %onnx::Conv_948 = Identity(%onnx::Conv_924) %onnx::Conv_945 = Identity(%onnx::Conv_924) %onnx::Conv_942 = Identity(%onnx::Conv_924) %onnx::Conv_939 = Identity(%onnx::Conv_924) %onnx::Conv_936 = Identity(%onnx::Conv_924) %onnx::Conv_933 = Identity(%onnx::Conv_924) %onnx::Conv_930 = Identity(%onnx::Conv_924) %onnx::Conv_927 = Identity(%onnx::Conv_924) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_923, %onnx::Conv_924) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_926, %onnx::Conv_927) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_929, %onnx::Conv_930) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_932, %onnx::Conv_933) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_935, %onnx::Conv_936) %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.1/maxpool/MaxPool_output_0, %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/Add_3_output_0 = Add(%/layers.1/Add_2_output_0, %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_3_output_0, %onnx::Conv_938, %onnx::Conv_939) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Add_4_output_0 = Add(%/layers.1/vertex_op.1/maxpool/MaxPool_output_0, %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_4_output_0, %onnx::Conv_941, %onnx::Conv_942) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_944, %onnx::Conv_945) %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Add_5_output_0 = Add(%/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_5_output_0, %onnx::Conv_947, %onnx::Conv_948) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_5_output_0, %onnx::Conv_950, %onnx::Conv_951) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_953, %onnx::Conv_954) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_5_output_0, %onnx::Conv_956, %onnx::Conv_957) %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.1/maxpool/MaxPool_output_0, %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/Add_3_output_0 = Add(%/layers.2/Add_2_output_0, %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_3_output_0, %onnx::Conv_959, %onnx::Conv_960) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Add_4_output_0 = Add(%/layers.2/vertex_op.1/maxpool/MaxPool_output_0, %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_4_output_0, %onnx::Conv_962, %onnx::Conv_963) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_5_output_0, %onnx::Conv_965, %onnx::Conv_966) %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Add_5_output_0 = Add(%/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_5_output_0, %onnx::Conv_968, %onnx::Conv_969) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_5_output_0, %onnx::Conv_971, %onnx::Conv_972) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_974, %onnx::Conv_975) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_5_output_0, %onnx::Conv_977, %onnx::Conv_978) %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.1/maxpool/MaxPool_output_0, %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/Add_3_output_0 = Add(%/layers.3/Add_2_output_0, %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_3_output_0, %onnx::Conv_980, %onnx::Conv_981) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Add_4_output_0 = Add(%/layers.3/vertex_op.1/maxpool/MaxPool_output_0, %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_4_output_0, %onnx::Conv_983, %onnx::Conv_984) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_5_output_0, %onnx::Conv_986, %onnx::Conv_987) %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Add_5_output_0 = Add(%/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Add_5_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_989, %onnx::Conv_990) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_992, %onnx::Conv_993) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_995, %onnx::Conv_996) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_998, %onnx::Conv_999) %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.1/maxpool/MaxPool_output_0, %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/Add_3_output_0 = Add(%/layers.5/Add_2_output_0, %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_3_output_0, %onnx::Conv_1001, %onnx::Conv_1002) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Add_4_output_0 = Add(%/layers.5/vertex_op.1/maxpool/MaxPool_output_0, %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_4_output_0, %onnx::Conv_1004, %onnx::Conv_1005) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_1007, %onnx::Conv_1008) %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Add_5_output_0 = Add(%/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_5_output_0, %onnx::Conv_1010, %onnx::Conv_1011) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_5_output_0, %onnx::Conv_1013, %onnx::Conv_1014) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_1016, %onnx::Conv_1017) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_5_output_0, %onnx::Conv_1019, %onnx::Conv_1020) %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.1/maxpool/MaxPool_output_0, %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/Add_3_output_0 = Add(%/layers.6/Add_2_output_0, %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_3_output_0, %onnx::Conv_1022, %onnx::Conv_1023) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Add_4_output_0 = Add(%/layers.6/vertex_op.1/maxpool/MaxPool_output_0, %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_4_output_0, %onnx::Conv_1025, %onnx::Conv_1026) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_5_output_0, %onnx::Conv_1028, %onnx::Conv_1029) %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Add_5_output_0 = Add(%/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_5_output_0, %onnx::Conv_1031, %onnx::Conv_1032) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_5_output_0, %onnx::Conv_1034, %onnx::Conv_1035) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_1037, %onnx::Conv_1038) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_5_output_0, %onnx::Conv_1040, %onnx::Conv_1041) %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.1/maxpool/MaxPool_output_0, %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/Add_3_output_0 = Add(%/layers.7/Add_2_output_0, %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_3_output_0, %onnx::Conv_1043, %onnx::Conv_1044) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Add_4_output_0 = Add(%/layers.7/vertex_op.1/maxpool/MaxPool_output_0, %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_4_output_0, %onnx::Conv_1046, %onnx::Conv_1047) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_5_output_0, %onnx::Conv_1049, %onnx::Conv_1050) %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Add_5_output_0 = Add(%/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Add_5_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1052, %onnx::Conv_1053) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1055, %onnx::Conv_1056) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_1058, %onnx::Conv_1059) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1061, %onnx::Conv_1062) %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.1/maxpool/MaxPool_output_0, %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/Add_3_output_0 = Add(%/layers.9/Add_2_output_0, %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_3_output_0, %onnx::Conv_1064, %onnx::Conv_1065) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Add_4_output_0 = Add(%/layers.9/vertex_op.1/maxpool/MaxPool_output_0, %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_4_output_0, %onnx::Conv_1067, %onnx::Conv_1068) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1070, %onnx::Conv_1071) %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Add_5_output_0 = Add(%/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_5_output_0, %onnx::Conv_1073, %onnx::Conv_1074) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_5_output_0, %onnx::Conv_1076, %onnx::Conv_1077) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_1079, %onnx::Conv_1080) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_5_output_0, %onnx::Conv_1082, %onnx::Conv_1083) %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.1/maxpool/MaxPool_output_0, %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/Add_3_output_0 = Add(%/layers.10/Add_2_output_0, %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_3_output_0, %onnx::Conv_1085, %onnx::Conv_1086) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Add_4_output_0 = Add(%/layers.10/vertex_op.1/maxpool/MaxPool_output_0, %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_4_output_0, %onnx::Conv_1088, %onnx::Conv_1089) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_5_output_0, %onnx::Conv_1091, %onnx::Conv_1092) %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Add_5_output_0 = Add(%/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_5_output_0, %onnx::Conv_1094, %onnx::Conv_1095) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_5_output_0, %onnx::Conv_1097, %onnx::Conv_1098) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_1100, %onnx::Conv_1101) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_5_output_0, %onnx::Conv_1103, %onnx::Conv_1104) %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.1/maxpool/MaxPool_output_0, %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/Add_3_output_0 = Add(%/layers.11/Add_2_output_0, %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_3_output_0, %onnx::Conv_1106, %onnx::Conv_1107) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Add_4_output_0 = Add(%/layers.11/vertex_op.1/maxpool/MaxPool_output_0, %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_4_output_0, %onnx::Conv_1109, %onnx::Conv_1110) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_5_output_0, %onnx::Conv_1112, %onnx::Conv_1113) %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Add_5_output_0 = Add(%/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Add_5_output_0) %921 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %921 }
val_accuracy
94.330931
4,442,302,464
14,873,994
{'zcp_epe_nas': 151.2496934983192, 'zcp_fisher': 2.491711378097534, 'zcp_flops': 71076839424.0, 'zcp_grad_norm': 34.47761535644531, 'zcp_grasp': -1.071208953857421, 'zcp_jacov': -16.05652604343635, 'zcp_l2_norm': 1421.172119140625, 'zcp_nwot': 237.1630534297476, 'zcp_params': 14873994.0, 'zcp_plain': 0.028978684917092, 'zcp_snip': 279.4830322265625, 'zcp_synflow': 120.40496771636606, 'zcp_zen': 125.01810455322266, 'zcp_val_accuracy': 0.92578125}
NASBench101_169341
NASBench101
169341
66890422f20e502d4dfe8626dfbc235f
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_860[FLOAT, 128x3x3x3] %onnx::Conv_861[FLOAT, 128] %onnx::Conv_863[FLOAT, 64x128x1x1] %onnx::Conv_864[FLOAT, 64] %onnx::Conv_866[FLOAT, 64x64x1x1] %onnx::Conv_869[FLOAT, 64x64x3x3] %onnx::Conv_872[FLOAT, 64x64x1x1] %onnx::Conv_875[FLOAT, 64x128x1x1] %onnx::Conv_878[FLOAT, 64x64x3x3] %onnx::Conv_881[FLOAT, 64x128x1x1] %onnx::Conv_884[FLOAT, 64x64x1x1] %onnx::Conv_887[FLOAT, 64x64x3x3] %onnx::Conv_890[FLOAT, 64x64x1x1] %onnx::Conv_893[FLOAT, 64x128x1x1] %onnx::Conv_896[FLOAT, 64x64x3x3] %onnx::Conv_899[FLOAT, 64x128x1x1] %onnx::Conv_902[FLOAT, 64x64x1x1] %onnx::Conv_905[FLOAT, 64x64x3x3] %onnx::Conv_908[FLOAT, 64x64x1x1] %onnx::Conv_911[FLOAT, 64x128x1x1] %onnx::Conv_914[FLOAT, 64x64x3x3] %onnx::Conv_917[FLOAT, 128x128x1x1] %onnx::Conv_920[FLOAT, 128x128x1x1] %onnx::Conv_923[FLOAT, 128x128x3x3] %onnx::Conv_926[FLOAT, 128x128x1x1] %onnx::Conv_929[FLOAT, 128x128x1x1] %onnx::Conv_932[FLOAT, 128x128x3x3] %onnx::Conv_935[FLOAT, 128x256x1x1] %onnx::Conv_938[FLOAT, 128x128x1x1] %onnx::Conv_941[FLOAT, 128x128x3x3] %onnx::Conv_944[FLOAT, 128x128x1x1] %onnx::Conv_947[FLOAT, 128x256x1x1] %onnx::Conv_950[FLOAT, 128x128x3x3] %onnx::Conv_953[FLOAT, 128x256x1x1] %onnx::Conv_956[FLOAT, 128x128x1x1] %onnx::Conv_959[FLOAT, 128x128x3x3] %onnx::Conv_962[FLOAT, 128x128x1x1] %onnx::Conv_965[FLOAT, 128x256x1x1] %onnx::Conv_968[FLOAT, 128x128x3x3] %onnx::Conv_971[FLOAT, 256x256x1x1] %onnx::Conv_972[FLOAT, 256] %onnx::Conv_974[FLOAT, 256x256x1x1] %onnx::Conv_977[FLOAT, 256x256x3x3] %onnx::Conv_980[FLOAT, 256x256x1x1] %onnx::Conv_983[FLOAT, 256x256x1x1] %onnx::Conv_986[FLOAT, 256x256x3x3] %onnx::Conv_989[FLOAT, 256x512x1x1] %onnx::Conv_992[FLOAT, 256x256x1x1] %onnx::Conv_995[FLOAT, 256x256x3x3] %onnx::Conv_998[FLOAT, 256x256x1x1] %onnx::Conv_1001[FLOAT, 256x512x1x1] %onnx::Conv_1004[FLOAT, 256x256x3x3] %onnx::Conv_1007[FLOAT, 256x512x1x1] %onnx::Conv_1010[FLOAT, 256x256x1x1] %onnx::Conv_1013[FLOAT, 256x256x3x3] %onnx::Conv_1016[FLOAT, 256x256x1x1] %onnx::Conv_1019[FLOAT, 256x512x1x1] %onnx::Conv_1022[FLOAT, 256x256x3x3] ) { %onnx::Conv_1023 = Identity(%onnx::Conv_972) %onnx::Conv_1020 = Identity(%onnx::Conv_972) %onnx::Conv_1017 = Identity(%onnx::Conv_972) %onnx::Conv_1014 = Identity(%onnx::Conv_972) %onnx::Conv_1011 = Identity(%onnx::Conv_972) %onnx::Conv_1008 = Identity(%onnx::Conv_972) %onnx::Conv_1005 = Identity(%onnx::Conv_972) %onnx::Conv_1002 = Identity(%onnx::Conv_972) %onnx::Conv_999 = Identity(%onnx::Conv_972) %onnx::Conv_996 = Identity(%onnx::Conv_972) %onnx::Conv_993 = Identity(%onnx::Conv_972) %onnx::Conv_990 = Identity(%onnx::Conv_972) %onnx::Conv_987 = Identity(%onnx::Conv_972) %onnx::Conv_984 = Identity(%onnx::Conv_972) %onnx::Conv_981 = Identity(%onnx::Conv_972) %onnx::Conv_978 = Identity(%onnx::Conv_972) %onnx::Conv_975 = Identity(%onnx::Conv_972) %onnx::Conv_969 = Identity(%onnx::Conv_861) %onnx::Conv_966 = Identity(%onnx::Conv_861) %onnx::Conv_963 = Identity(%onnx::Conv_861) %onnx::Conv_960 = Identity(%onnx::Conv_861) %onnx::Conv_957 = Identity(%onnx::Conv_861) %onnx::Conv_954 = Identity(%onnx::Conv_861) %onnx::Conv_951 = Identity(%onnx::Conv_861) %onnx::Conv_948 = Identity(%onnx::Conv_861) %onnx::Conv_945 = Identity(%onnx::Conv_861) %onnx::Conv_942 = Identity(%onnx::Conv_861) %onnx::Conv_939 = Identity(%onnx::Conv_861) %onnx::Conv_936 = Identity(%onnx::Conv_861) %onnx::Conv_933 = Identity(%onnx::Conv_861) %onnx::Conv_930 = Identity(%onnx::Conv_861) %onnx::Conv_927 = Identity(%onnx::Conv_861) %onnx::Conv_924 = Identity(%onnx::Conv_861) %onnx::Conv_921 = Identity(%onnx::Conv_861) %onnx::Conv_918 = Identity(%onnx::Conv_861) %onnx::Conv_915 = Identity(%onnx::Conv_864) %onnx::Conv_912 = Identity(%onnx::Conv_864) %onnx::Conv_909 = Identity(%onnx::Conv_864) %onnx::Conv_906 = Identity(%onnx::Conv_864) %onnx::Conv_903 = Identity(%onnx::Conv_864) %onnx::Conv_900 = Identity(%onnx::Conv_864) %onnx::Conv_897 = Identity(%onnx::Conv_864) %onnx::Conv_894 = Identity(%onnx::Conv_864) %onnx::Conv_891 = Identity(%onnx::Conv_864) %onnx::Conv_888 = Identity(%onnx::Conv_864) %onnx::Conv_885 = Identity(%onnx::Conv_864) %onnx::Conv_882 = Identity(%onnx::Conv_864) %onnx::Conv_879 = Identity(%onnx::Conv_864) %onnx::Conv_876 = Identity(%onnx::Conv_864) %onnx::Conv_873 = Identity(%onnx::Conv_864) %onnx::Conv_870 = Identity(%onnx::Conv_864) %onnx::Conv_867 = Identity(%onnx::Conv_864) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_860, %onnx::Conv_861) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_863, %onnx::Conv_864) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_866, %onnx::Conv_867) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_869, %onnx::Conv_870) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_2_output_0) %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.3/maxpool/MaxPool_output_0, %onnx::Conv_872, %onnx::Conv_873) %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_875, %onnx::Conv_876) %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_3_output_0 = Add(%/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_3_output_0) %/layers.1/Add_4_output_0 = Add(%/layers.1/Add_3_output_0, %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_4_output_0, %onnx::Conv_878, %onnx::Conv_879) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_881, %onnx::Conv_882) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_884, %onnx::Conv_885) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_887, %onnx::Conv_888) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_2_output_0) %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.3/maxpool/MaxPool_output_0, %onnx::Conv_890, %onnx::Conv_891) %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_893, %onnx::Conv_894) %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_3_output_0 = Add(%/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_3_output_0) %/layers.2/Add_4_output_0 = Add(%/layers.2/Add_3_output_0, %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_4_output_0, %onnx::Conv_896, %onnx::Conv_897) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_899, %onnx::Conv_900) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_902, %onnx::Conv_903) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_905, %onnx::Conv_906) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_2_output_0) %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/vertex_op.3/maxpool/MaxPool_output_0, %onnx::Conv_908, %onnx::Conv_909) %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_911, %onnx::Conv_912) %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_3_output_0 = Add(%/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_3_output_0) %/layers.3/Add_4_output_0 = Add(%/layers.3/Add_3_output_0, %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_4_output_0, %onnx::Conv_914, %onnx::Conv_915) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Concat_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_917, %onnx::Conv_918) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_920, %onnx::Conv_921) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_923, %onnx::Conv_924) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_2_output_0) %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.3/maxpool/MaxPool_output_0, %onnx::Conv_926, %onnx::Conv_927) %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_929, %onnx::Conv_930) %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_3_output_0 = Add(%/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_3_output_0) %/layers.5/Add_4_output_0 = Add(%/layers.5/Add_3_output_0, %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_4_output_0, %onnx::Conv_932, %onnx::Conv_933) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_935, %onnx::Conv_936) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_938, %onnx::Conv_939) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_941, %onnx::Conv_942) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_2_output_0) %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.3/maxpool/MaxPool_output_0, %onnx::Conv_944, %onnx::Conv_945) %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_947, %onnx::Conv_948) %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_3_output_0 = Add(%/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_3_output_0) %/layers.6/Add_4_output_0 = Add(%/layers.6/Add_3_output_0, %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_4_output_0, %onnx::Conv_950, %onnx::Conv_951) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_953, %onnx::Conv_954) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_956, %onnx::Conv_957) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_959, %onnx::Conv_960) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_2_output_0) %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/vertex_op.3/maxpool/MaxPool_output_0, %onnx::Conv_962, %onnx::Conv_963) %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_965, %onnx::Conv_966) %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_3_output_0 = Add(%/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_3_output_0) %/layers.7/Add_4_output_0 = Add(%/layers.7/Add_3_output_0, %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_4_output_0, %onnx::Conv_968, %onnx::Conv_969) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Concat_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_971, %onnx::Conv_972) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_974, %onnx::Conv_975) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_977, %onnx::Conv_978) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_2_output_0) %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.3/maxpool/MaxPool_output_0, %onnx::Conv_980, %onnx::Conv_981) %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_983, %onnx::Conv_984) %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_3_output_0 = Add(%/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_3_output_0) %/layers.9/Add_4_output_0 = Add(%/layers.9/Add_3_output_0, %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_4_output_0, %onnx::Conv_986, %onnx::Conv_987) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_989, %onnx::Conv_990) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_992, %onnx::Conv_993) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_995, %onnx::Conv_996) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_2_output_0) %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.3/maxpool/MaxPool_output_0, %onnx::Conv_998, %onnx::Conv_999) %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_1001, %onnx::Conv_1002) %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_3_output_0 = Add(%/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_3_output_0) %/layers.10/Add_4_output_0 = Add(%/layers.10/Add_3_output_0, %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_4_output_0, %onnx::Conv_1004, %onnx::Conv_1005) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_1007, %onnx::Conv_1008) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_1010, %onnx::Conv_1011) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_1013, %onnx::Conv_1014) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_2_output_0) %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/vertex_op.3/maxpool/MaxPool_output_0, %onnx::Conv_1016, %onnx::Conv_1017) %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_1019, %onnx::Conv_1020) %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_3_output_0 = Add(%/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_3_output_0) %/layers.11/Add_4_output_0 = Add(%/layers.11/Add_3_output_0, %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_4_output_0, %onnx::Conv_1022, %onnx::Conv_1023) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Concat_output_0) %858 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %858 }
val_accuracy
93.389422
1,803,036,672
6,054,282
{'zcp_epe_nas': 115.51731115995766, 'zcp_fisher': 64.8869857788086, 'zcp_flops': 28848586752.0, 'zcp_grad_norm': 178.52931213378906, 'zcp_grasp': -48.482421875, 'zcp_jacov': -16.04404166368386, 'zcp_l2_norm': 995.0858764648438, 'zcp_nwot': 224.57160031385376, 'zcp_params': 6054282.0, 'zcp_plain': -0.030826795846223002, 'zcp_snip': 928.5283813476562, 'zcp_synflow': 140.21346464521633, 'zcp_zen': 95.03922271728516, 'zcp_val_accuracy': 0.711438298225402}
NASBench101_171491
NASBench101
171491
67d9f1bcefc6edea23b4653d3c2bb85d
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_848[FLOAT, 128x3x3x3] %onnx::Conv_849[FLOAT, 128] %onnx::Conv_851[FLOAT, 43x128x1x1] %onnx::Conv_852[FLOAT, 43] %onnx::Conv_854[FLOAT, 43x43x1x1] %onnx::Conv_857[FLOAT, 43x43x3x3] %onnx::Conv_860[FLOAT, 43x43x3x3] %onnx::Conv_863[FLOAT, 42x128x1x1] %onnx::Conv_864[FLOAT, 42] %onnx::Conv_866[FLOAT, 43x128x1x1] %onnx::Conv_869[FLOAT, 43x43x1x1] %onnx::Conv_872[FLOAT, 43x43x3x3] %onnx::Conv_875[FLOAT, 43x43x3x3] %onnx::Conv_878[FLOAT, 42x128x1x1] %onnx::Conv_881[FLOAT, 43x128x1x1] %onnx::Conv_884[FLOAT, 43x43x1x1] %onnx::Conv_887[FLOAT, 43x43x3x3] %onnx::Conv_890[FLOAT, 43x43x3x3] %onnx::Conv_893[FLOAT, 42x128x1x1] %onnx::Conv_896[FLOAT, 86x128x1x1] %onnx::Conv_897[FLOAT, 86] %onnx::Conv_899[FLOAT, 86x86x1x1] %onnx::Conv_902[FLOAT, 86x86x3x3] %onnx::Conv_905[FLOAT, 86x86x3x3] %onnx::Conv_908[FLOAT, 85x128x1x1] %onnx::Conv_909[FLOAT, 85] %onnx::Conv_911[FLOAT, 86x256x1x1] %onnx::Conv_914[FLOAT, 86x86x1x1] %onnx::Conv_917[FLOAT, 86x86x3x3] %onnx::Conv_920[FLOAT, 86x86x3x3] %onnx::Conv_923[FLOAT, 85x256x1x1] %onnx::Conv_926[FLOAT, 86x256x1x1] %onnx::Conv_929[FLOAT, 86x86x1x1] %onnx::Conv_932[FLOAT, 86x86x3x3] %onnx::Conv_935[FLOAT, 86x86x3x3] %onnx::Conv_938[FLOAT, 85x256x1x1] %onnx::Conv_941[FLOAT, 171x256x1x1] %onnx::Conv_942[FLOAT, 171] %onnx::Conv_944[FLOAT, 171x171x1x1] %onnx::Conv_947[FLOAT, 171x171x3x3] %onnx::Conv_950[FLOAT, 171x171x3x3] %onnx::Conv_953[FLOAT, 170x256x1x1] %onnx::Conv_954[FLOAT, 170] %onnx::Conv_956[FLOAT, 171x512x1x1] %onnx::Conv_959[FLOAT, 171x171x1x1] %onnx::Conv_962[FLOAT, 171x171x3x3] %onnx::Conv_965[FLOAT, 171x171x3x3] %onnx::Conv_968[FLOAT, 170x512x1x1] %onnx::Conv_971[FLOAT, 171x512x1x1] %onnx::Conv_974[FLOAT, 171x171x1x1] %onnx::Conv_977[FLOAT, 171x171x3x3] %onnx::Conv_980[FLOAT, 171x171x3x3] %onnx::Conv_983[FLOAT, 170x512x1x1] ) { %onnx::Conv_984 = Identity(%onnx::Conv_954) %onnx::Conv_981 = Identity(%onnx::Conv_942) %onnx::Conv_978 = Identity(%onnx::Conv_942) %onnx::Conv_975 = Identity(%onnx::Conv_942) %onnx::Conv_972 = Identity(%onnx::Conv_942) %onnx::Conv_969 = Identity(%onnx::Conv_954) %onnx::Conv_966 = Identity(%onnx::Conv_942) %onnx::Conv_963 = Identity(%onnx::Conv_942) %onnx::Conv_960 = Identity(%onnx::Conv_942) %onnx::Conv_957 = Identity(%onnx::Conv_942) %onnx::Conv_951 = Identity(%onnx::Conv_942) %onnx::Conv_948 = Identity(%onnx::Conv_942) %onnx::Conv_945 = Identity(%onnx::Conv_942) %onnx::Conv_939 = Identity(%onnx::Conv_909) %onnx::Conv_936 = Identity(%onnx::Conv_897) %onnx::Conv_933 = Identity(%onnx::Conv_897) %onnx::Conv_930 = Identity(%onnx::Conv_897) %onnx::Conv_927 = Identity(%onnx::Conv_897) %onnx::Conv_924 = Identity(%onnx::Conv_909) %onnx::Conv_921 = Identity(%onnx::Conv_897) %onnx::Conv_918 = Identity(%onnx::Conv_897) %onnx::Conv_915 = Identity(%onnx::Conv_897) %onnx::Conv_912 = Identity(%onnx::Conv_897) %onnx::Conv_906 = Identity(%onnx::Conv_897) %onnx::Conv_903 = Identity(%onnx::Conv_897) %onnx::Conv_900 = Identity(%onnx::Conv_897) %onnx::Conv_894 = Identity(%onnx::Conv_864) %onnx::Conv_891 = Identity(%onnx::Conv_852) %onnx::Conv_888 = Identity(%onnx::Conv_852) %onnx::Conv_885 = Identity(%onnx::Conv_852) %onnx::Conv_882 = Identity(%onnx::Conv_852) %onnx::Conv_879 = Identity(%onnx::Conv_864) %onnx::Conv_876 = Identity(%onnx::Conv_852) %onnx::Conv_873 = Identity(%onnx::Conv_852) %onnx::Conv_870 = Identity(%onnx::Conv_852) %onnx::Conv_867 = Identity(%onnx::Conv_852) %onnx::Conv_861 = Identity(%onnx::Conv_852) %onnx::Conv_858 = Identity(%onnx::Conv_852) %onnx::Conv_855 = Identity(%onnx::Conv_852) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_848, %onnx::Conv_849) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_851, %onnx::Conv_852) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_854, %onnx::Conv_855) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_857, %onnx::Conv_858) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_2_output_0, %onnx::Conv_860, %onnx::Conv_861) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_3_output_0 = Add(%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_3_output_0) %/layers.1/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_3_output_0) %/layers.1/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.1/Slice_output_0 = Slice(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_5_output_0, %/layers.1/Constant_6_output_0, %/layers.1/Constant_4_output_0, %/layers.1/Constant_7_output_0) %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_863, %onnx::Conv_864) %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_8_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_4_output_0 = Add(%/layers.1/Slice_output_0, %/layers.1/Constant_8_output_0) %/layers.1/Add_5_output_0 = Add(%/layers.1/Add_4_output_0, %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_5_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.4/maxpool/MaxPool_output_0, %/layers.1/vertex_op.5/maxpool/MaxPool_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_866, %onnx::Conv_867) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_869, %onnx::Conv_870) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_872, %onnx::Conv_873) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_2_output_0, %onnx::Conv_875, %onnx::Conv_876) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_3_output_0 = Add(%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_3_output_0) %/layers.2/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_3_output_0) %/layers.2/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.2/Slice_output_0 = Slice(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_5_output_0, %/layers.2/Constant_6_output_0, %/layers.2/Constant_4_output_0, %/layers.2/Constant_7_output_0) %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_878, %onnx::Conv_879) %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_8_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_4_output_0 = Add(%/layers.2/Slice_output_0, %/layers.2/Constant_8_output_0) %/layers.2/Add_5_output_0 = Add(%/layers.2/Add_4_output_0, %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_5_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.4/maxpool/MaxPool_output_0, %/layers.2/vertex_op.5/maxpool/MaxPool_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_881, %onnx::Conv_882) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_884, %onnx::Conv_885) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_887, %onnx::Conv_888) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_2_output_0, %onnx::Conv_890, %onnx::Conv_891) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_3_output_0 = Add(%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_3_output_0) %/layers.3/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_3_output_0) %/layers.3/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.3/Slice_output_0 = Slice(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_5_output_0, %/layers.3/Constant_6_output_0, %/layers.3/Constant_4_output_0, %/layers.3/Constant_7_output_0) %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_893, %onnx::Conv_894) %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_8_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_4_output_0 = Add(%/layers.3/Slice_output_0, %/layers.3/Constant_8_output_0) %/layers.3/Add_5_output_0 = Add(%/layers.3/Add_4_output_0, %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_5_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.4/maxpool/MaxPool_output_0, %/layers.3/vertex_op.5/maxpool/MaxPool_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Concat_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_896, %onnx::Conv_897) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_899, %onnx::Conv_900) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_902, %onnx::Conv_903) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_2_output_0, %onnx::Conv_905, %onnx::Conv_906) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.5/Slice_output_0 = Slice(%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_4_output_0, %/layers.5/Constant_5_output_0, %/layers.5/Constant_3_output_0, %/layers.5/Constant_6_output_0) %/layers.5/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_3_output_0 = Add(%/layers.5/Slice_output_0, %/layers.5/Constant_7_output_0) %/layers.5/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_3_output_0) %/layers.5/Constant_8_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_9_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_10_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_11_output_0 = Constant[value = <Tensor>]() %/layers.5/Slice_1_output_0 = Slice(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_9_output_0, %/layers.5/Constant_10_output_0, %/layers.5/Constant_8_output_0, %/layers.5/Constant_11_output_0) %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_908, %onnx::Conv_909) %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_12_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_4_output_0 = Add(%/layers.5/Slice_1_output_0, %/layers.5/Constant_12_output_0) %/layers.5/Add_5_output_0 = Add(%/layers.5/Add_4_output_0, %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_5_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.4/maxpool/MaxPool_output_0, %/layers.5/vertex_op.5/maxpool/MaxPool_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_911, %onnx::Conv_912) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_914, %onnx::Conv_915) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_917, %onnx::Conv_918) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_2_output_0, %onnx::Conv_920, %onnx::Conv_921) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.6/Slice_output_0 = Slice(%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_4_output_0, %/layers.6/Constant_5_output_0, %/layers.6/Constant_3_output_0, %/layers.6/Constant_6_output_0) %/layers.6/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_3_output_0 = Add(%/layers.6/Slice_output_0, %/layers.6/Constant_7_output_0) %/layers.6/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_3_output_0) %/layers.6/Constant_8_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_9_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_10_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_11_output_0 = Constant[value = <Tensor>]() %/layers.6/Slice_1_output_0 = Slice(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_9_output_0, %/layers.6/Constant_10_output_0, %/layers.6/Constant_8_output_0, %/layers.6/Constant_11_output_0) %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_923, %onnx::Conv_924) %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_12_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_4_output_0 = Add(%/layers.6/Slice_1_output_0, %/layers.6/Constant_12_output_0) %/layers.6/Add_5_output_0 = Add(%/layers.6/Add_4_output_0, %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_5_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.4/maxpool/MaxPool_output_0, %/layers.6/vertex_op.5/maxpool/MaxPool_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_926, %onnx::Conv_927) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_929, %onnx::Conv_930) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_932, %onnx::Conv_933) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_2_output_0, %onnx::Conv_935, %onnx::Conv_936) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.7/Slice_output_0 = Slice(%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_4_output_0, %/layers.7/Constant_5_output_0, %/layers.7/Constant_3_output_0, %/layers.7/Constant_6_output_0) %/layers.7/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_3_output_0 = Add(%/layers.7/Slice_output_0, %/layers.7/Constant_7_output_0) %/layers.7/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_3_output_0) %/layers.7/Constant_8_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_9_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_10_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_11_output_0 = Constant[value = <Tensor>]() %/layers.7/Slice_1_output_0 = Slice(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_9_output_0, %/layers.7/Constant_10_output_0, %/layers.7/Constant_8_output_0, %/layers.7/Constant_11_output_0) %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_938, %onnx::Conv_939) %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_12_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_4_output_0 = Add(%/layers.7/Slice_1_output_0, %/layers.7/Constant_12_output_0) %/layers.7/Add_5_output_0 = Add(%/layers.7/Add_4_output_0, %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_5_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.4/maxpool/MaxPool_output_0, %/layers.7/vertex_op.5/maxpool/MaxPool_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Concat_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_941, %onnx::Conv_942) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_944, %onnx::Conv_945) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_947, %onnx::Conv_948) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_2_output_0, %onnx::Conv_950, %onnx::Conv_951) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_3_output_0 = Add(%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_3_output_0) %/layers.9/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_3_output_0) %/layers.9/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.9/Slice_output_0 = Slice(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_5_output_0, %/layers.9/Constant_6_output_0, %/layers.9/Constant_4_output_0, %/layers.9/Constant_7_output_0) %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_953, %onnx::Conv_954) %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_8_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_4_output_0 = Add(%/layers.9/Slice_output_0, %/layers.9/Constant_8_output_0) %/layers.9/Add_5_output_0 = Add(%/layers.9/Add_4_output_0, %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_5_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.4/maxpool/MaxPool_output_0, %/layers.9/vertex_op.5/maxpool/MaxPool_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_956, %onnx::Conv_957) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_959, %onnx::Conv_960) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_962, %onnx::Conv_963) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_2_output_0, %onnx::Conv_965, %onnx::Conv_966) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_3_output_0 = Add(%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_3_output_0) %/layers.10/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_3_output_0) %/layers.10/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.10/Slice_output_0 = Slice(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_5_output_0, %/layers.10/Constant_6_output_0, %/layers.10/Constant_4_output_0, %/layers.10/Constant_7_output_0) %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_968, %onnx::Conv_969) %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_8_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_4_output_0 = Add(%/layers.10/Slice_output_0, %/layers.10/Constant_8_output_0) %/layers.10/Add_5_output_0 = Add(%/layers.10/Add_4_output_0, %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_5_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.4/maxpool/MaxPool_output_0, %/layers.10/vertex_op.5/maxpool/MaxPool_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_971, %onnx::Conv_972) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_974, %onnx::Conv_975) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_977, %onnx::Conv_978) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_2_output_0, %onnx::Conv_980, %onnx::Conv_981) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_3_output_0 = Add(%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_3_output_0) %/layers.11/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_3_output_0) %/layers.11/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.11/Slice_output_0 = Slice(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_5_output_0, %/layers.11/Constant_6_output_0, %/layers.11/Constant_4_output_0, %/layers.11/Constant_7_output_0) %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_983, %onnx::Conv_984) %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_8_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_4_output_0 = Add(%/layers.11/Slice_output_0, %/layers.11/Constant_8_output_0) %/layers.11/Add_5_output_0 = Add(%/layers.11/Add_4_output_0, %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_5_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.4/maxpool/MaxPool_output_0, %/layers.11/vertex_op.5/maxpool/MaxPool_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Concat_output_0) %846 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %846 }
val_accuracy
91.095752
841,124,992
2,790,086
{'zcp_epe_nas': 54.61473719734748, 'zcp_fisher': 613.5401611328125, 'zcp_flops': 13457999872.0, 'zcp_grad_norm': 477.30322265625, 'zcp_grasp': -5819.71484375, 'zcp_jacov': -16.061064791008093, 'zcp_l2_norm': 762.246826171875, 'zcp_nwot': 216.0641550735615, 'zcp_params': 2790086.0, 'zcp_plain': 0.07138492166996001, 'zcp_snip': 2059.678955078125, 'zcp_synflow': 116.19215760806468, 'zcp_zen': 80.00347137451172, 'zcp_val_accuracy': 0.8830128312110901}
NASBench101_101782
NASBench101
101782
3d94716c1a2edafdc9a04d1c1f2df07c
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_1076[FLOAT, 128x3x3x3] %onnx::Conv_1077[FLOAT, 128] %onnx::Conv_1079[FLOAT, 64x128x1x1] %onnx::Conv_1080[FLOAT, 64] %onnx::Conv_1082[FLOAT, 64x64x3x3] %onnx::Conv_1085[FLOAT, 64x128x1x1] %onnx::Conv_1088[FLOAT, 64x64x3x3] %onnx::Conv_1091[FLOAT, 64x64x3x3] %onnx::Conv_1094[FLOAT, 64x64x1x1] %onnx::Conv_1097[FLOAT, 64x64x3x3] %onnx::Conv_1100[FLOAT, 128x128x1x1] %onnx::Conv_1103[FLOAT, 64x128x1x1] %onnx::Conv_1106[FLOAT, 64x64x3x3] %onnx::Conv_1109[FLOAT, 64x128x1x1] %onnx::Conv_1112[FLOAT, 64x64x3x3] %onnx::Conv_1115[FLOAT, 64x64x3x3] %onnx::Conv_1118[FLOAT, 64x64x1x1] %onnx::Conv_1121[FLOAT, 64x64x3x3] %onnx::Conv_1124[FLOAT, 128x128x1x1] %onnx::Conv_1127[FLOAT, 64x128x1x1] %onnx::Conv_1130[FLOAT, 64x64x3x3] %onnx::Conv_1133[FLOAT, 64x128x1x1] %onnx::Conv_1136[FLOAT, 64x64x3x3] %onnx::Conv_1139[FLOAT, 64x64x3x3] %onnx::Conv_1142[FLOAT, 64x64x1x1] %onnx::Conv_1145[FLOAT, 64x64x3x3] %onnx::Conv_1148[FLOAT, 128x128x1x1] %onnx::Conv_1151[FLOAT, 128x128x1x1] %onnx::Conv_1154[FLOAT, 128x128x3x3] %onnx::Conv_1157[FLOAT, 128x128x1x1] %onnx::Conv_1160[FLOAT, 128x128x3x3] %onnx::Conv_1163[FLOAT, 128x128x3x3] %onnx::Conv_1166[FLOAT, 128x128x1x1] %onnx::Conv_1169[FLOAT, 128x128x3x3] %onnx::Conv_1172[FLOAT, 256x128x1x1] %onnx::Conv_1173[FLOAT, 256] %onnx::Conv_1175[FLOAT, 128x256x1x1] %onnx::Conv_1178[FLOAT, 128x128x3x3] %onnx::Conv_1181[FLOAT, 128x256x1x1] %onnx::Conv_1184[FLOAT, 128x128x3x3] %onnx::Conv_1187[FLOAT, 128x128x3x3] %onnx::Conv_1190[FLOAT, 128x128x1x1] %onnx::Conv_1193[FLOAT, 128x128x3x3] %onnx::Conv_1196[FLOAT, 256x256x1x1] %onnx::Conv_1199[FLOAT, 128x256x1x1] %onnx::Conv_1202[FLOAT, 128x128x3x3] %onnx::Conv_1205[FLOAT, 128x256x1x1] %onnx::Conv_1208[FLOAT, 128x128x3x3] %onnx::Conv_1211[FLOAT, 128x128x3x3] %onnx::Conv_1214[FLOAT, 128x128x1x1] %onnx::Conv_1217[FLOAT, 128x128x3x3] %onnx::Conv_1220[FLOAT, 256x256x1x1] %onnx::Conv_1223[FLOAT, 256x256x1x1] %onnx::Conv_1226[FLOAT, 256x256x3x3] %onnx::Conv_1229[FLOAT, 256x256x1x1] %onnx::Conv_1232[FLOAT, 256x256x3x3] %onnx::Conv_1235[FLOAT, 256x256x3x3] %onnx::Conv_1238[FLOAT, 256x256x1x1] %onnx::Conv_1241[FLOAT, 256x256x3x3] %onnx::Conv_1244[FLOAT, 512x256x1x1] %onnx::Conv_1245[FLOAT, 512] %onnx::Conv_1247[FLOAT, 256x512x1x1] %onnx::Conv_1250[FLOAT, 256x256x3x3] %onnx::Conv_1253[FLOAT, 256x512x1x1] %onnx::Conv_1256[FLOAT, 256x256x3x3] %onnx::Conv_1259[FLOAT, 256x256x3x3] %onnx::Conv_1262[FLOAT, 256x256x1x1] %onnx::Conv_1265[FLOAT, 256x256x3x3] %onnx::Conv_1268[FLOAT, 512x512x1x1] %onnx::Conv_1271[FLOAT, 256x512x1x1] %onnx::Conv_1274[FLOAT, 256x256x3x3] %onnx::Conv_1277[FLOAT, 256x512x1x1] %onnx::Conv_1280[FLOAT, 256x256x3x3] %onnx::Conv_1283[FLOAT, 256x256x3x3] %onnx::Conv_1286[FLOAT, 256x256x1x1] %onnx::Conv_1289[FLOAT, 256x256x3x3] %onnx::Conv_1292[FLOAT, 512x512x1x1] ) { %onnx::Conv_1293 = Identity(%onnx::Conv_1245) %onnx::Conv_1290 = Identity(%onnx::Conv_1173) %onnx::Conv_1287 = Identity(%onnx::Conv_1173) %onnx::Conv_1284 = Identity(%onnx::Conv_1173) %onnx::Conv_1281 = Identity(%onnx::Conv_1173) %onnx::Conv_1278 = Identity(%onnx::Conv_1173) %onnx::Conv_1275 = Identity(%onnx::Conv_1173) %onnx::Conv_1272 = Identity(%onnx::Conv_1173) %onnx::Conv_1269 = Identity(%onnx::Conv_1245) %onnx::Conv_1266 = Identity(%onnx::Conv_1173) %onnx::Conv_1263 = Identity(%onnx::Conv_1173) %onnx::Conv_1260 = Identity(%onnx::Conv_1173) %onnx::Conv_1257 = Identity(%onnx::Conv_1173) %onnx::Conv_1254 = Identity(%onnx::Conv_1173) %onnx::Conv_1251 = Identity(%onnx::Conv_1173) %onnx::Conv_1248 = Identity(%onnx::Conv_1173) %onnx::Conv_1242 = Identity(%onnx::Conv_1173) %onnx::Conv_1239 = Identity(%onnx::Conv_1173) %onnx::Conv_1236 = Identity(%onnx::Conv_1173) %onnx::Conv_1233 = Identity(%onnx::Conv_1173) %onnx::Conv_1230 = Identity(%onnx::Conv_1173) %onnx::Conv_1227 = Identity(%onnx::Conv_1173) %onnx::Conv_1224 = Identity(%onnx::Conv_1173) %onnx::Conv_1221 = Identity(%onnx::Conv_1173) %onnx::Conv_1218 = Identity(%onnx::Conv_1077) %onnx::Conv_1215 = Identity(%onnx::Conv_1077) %onnx::Conv_1212 = Identity(%onnx::Conv_1077) %onnx::Conv_1209 = Identity(%onnx::Conv_1077) %onnx::Conv_1206 = Identity(%onnx::Conv_1077) %onnx::Conv_1203 = Identity(%onnx::Conv_1077) %onnx::Conv_1200 = Identity(%onnx::Conv_1077) %onnx::Conv_1197 = Identity(%onnx::Conv_1173) %onnx::Conv_1194 = Identity(%onnx::Conv_1077) %onnx::Conv_1191 = Identity(%onnx::Conv_1077) %onnx::Conv_1188 = Identity(%onnx::Conv_1077) %onnx::Conv_1185 = Identity(%onnx::Conv_1077) %onnx::Conv_1182 = Identity(%onnx::Conv_1077) %onnx::Conv_1179 = Identity(%onnx::Conv_1077) %onnx::Conv_1176 = Identity(%onnx::Conv_1077) %onnx::Conv_1170 = Identity(%onnx::Conv_1077) %onnx::Conv_1167 = Identity(%onnx::Conv_1077) %onnx::Conv_1164 = Identity(%onnx::Conv_1077) %onnx::Conv_1161 = Identity(%onnx::Conv_1077) %onnx::Conv_1158 = Identity(%onnx::Conv_1077) %onnx::Conv_1155 = Identity(%onnx::Conv_1077) %onnx::Conv_1152 = Identity(%onnx::Conv_1077) %onnx::Conv_1149 = Identity(%onnx::Conv_1077) %onnx::Conv_1146 = Identity(%onnx::Conv_1080) %onnx::Conv_1143 = Identity(%onnx::Conv_1080) %onnx::Conv_1140 = Identity(%onnx::Conv_1080) %onnx::Conv_1137 = Identity(%onnx::Conv_1080) %onnx::Conv_1134 = Identity(%onnx::Conv_1080) %onnx::Conv_1131 = Identity(%onnx::Conv_1080) %onnx::Conv_1128 = Identity(%onnx::Conv_1080) %onnx::Conv_1125 = Identity(%onnx::Conv_1077) %onnx::Conv_1122 = Identity(%onnx::Conv_1080) %onnx::Conv_1119 = Identity(%onnx::Conv_1080) %onnx::Conv_1116 = Identity(%onnx::Conv_1080) %onnx::Conv_1113 = Identity(%onnx::Conv_1080) %onnx::Conv_1110 = Identity(%onnx::Conv_1080) %onnx::Conv_1107 = Identity(%onnx::Conv_1080) %onnx::Conv_1104 = Identity(%onnx::Conv_1080) %onnx::Conv_1101 = Identity(%onnx::Conv_1077) %onnx::Conv_1098 = Identity(%onnx::Conv_1080) %onnx::Conv_1095 = Identity(%onnx::Conv_1080) %onnx::Conv_1092 = Identity(%onnx::Conv_1080) %onnx::Conv_1089 = Identity(%onnx::Conv_1080) %onnx::Conv_1086 = Identity(%onnx::Conv_1080) %onnx::Conv_1083 = Identity(%onnx::Conv_1080) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_1076, %onnx::Conv_1077) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1079, %onnx::Conv_1080) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_1082, %onnx::Conv_1083) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1085, %onnx::Conv_1086) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_1088, %onnx::Conv_1089) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_2_output_0, %onnx::Conv_1091, %onnx::Conv_1092) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_3_output_0 = Add(%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_3_output_0) %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_3_output_0, %onnx::Conv_1094, %onnx::Conv_1095) %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_4_output_0 = Add(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_4_output_0) %/layers.1/Add_5_output_0 = Add(%/layers.1/Add_4_output_0, %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_5_output_0, %onnx::Conv_1097, %onnx::Conv_1098) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1100, %onnx::Conv_1101) %/layers.1/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Add_6_output_0 = Add(%/layers.1/Concat_output_0, %/layers.1/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_6_output_0, %onnx::Conv_1103, %onnx::Conv_1104) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_1106, %onnx::Conv_1107) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_6_output_0, %onnx::Conv_1109, %onnx::Conv_1110) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_1112, %onnx::Conv_1113) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_2_output_0, %onnx::Conv_1115, %onnx::Conv_1116) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_3_output_0 = Add(%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_3_output_0) %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_3_output_0, %onnx::Conv_1118, %onnx::Conv_1119) %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_4_output_0 = Add(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_4_output_0) %/layers.2/Add_5_output_0 = Add(%/layers.2/Add_4_output_0, %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_5_output_0, %onnx::Conv_1121, %onnx::Conv_1122) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_6_output_0, %onnx::Conv_1124, %onnx::Conv_1125) %/layers.2/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Add_6_output_0 = Add(%/layers.2/Concat_output_0, %/layers.2/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_6_output_0, %onnx::Conv_1127, %onnx::Conv_1128) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_1130, %onnx::Conv_1131) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_6_output_0, %onnx::Conv_1133, %onnx::Conv_1134) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_1136, %onnx::Conv_1137) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_2_output_0, %onnx::Conv_1139, %onnx::Conv_1140) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_3_output_0 = Add(%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_3_output_0) %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_3_output_0, %onnx::Conv_1142, %onnx::Conv_1143) %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_4_output_0 = Add(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_4_output_0) %/layers.3/Add_5_output_0 = Add(%/layers.3/Add_4_output_0, %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_5_output_0, %onnx::Conv_1145, %onnx::Conv_1146) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_6_output_0, %onnx::Conv_1148, %onnx::Conv_1149) %/layers.3/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Add_6_output_0 = Add(%/layers.3/Concat_output_0, %/layers.3/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Add_6_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_1151, %onnx::Conv_1152) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_1154, %onnx::Conv_1155) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_1157, %onnx::Conv_1158) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_1160, %onnx::Conv_1161) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_2_output_0, %onnx::Conv_1163, %onnx::Conv_1164) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_3_output_0 = Add(%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_3_output_0) %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_3_output_0, %onnx::Conv_1166, %onnx::Conv_1167) %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_4_output_0 = Add(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_4_output_0) %/layers.5/Add_5_output_0 = Add(%/layers.5/Add_4_output_0, %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_5_output_0, %onnx::Conv_1169, %onnx::Conv_1170) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_1172, %onnx::Conv_1173) %/layers.5/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Add_6_output_0 = Add(%/layers.5/Concat_output_0, %/layers.5/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_6_output_0, %onnx::Conv_1175, %onnx::Conv_1176) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_1178, %onnx::Conv_1179) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_6_output_0, %onnx::Conv_1181, %onnx::Conv_1182) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_1184, %onnx::Conv_1185) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_2_output_0, %onnx::Conv_1187, %onnx::Conv_1188) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_3_output_0 = Add(%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_3_output_0) %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_3_output_0, %onnx::Conv_1190, %onnx::Conv_1191) %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_4_output_0 = Add(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_4_output_0) %/layers.6/Add_5_output_0 = Add(%/layers.6/Add_4_output_0, %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_5_output_0, %onnx::Conv_1193, %onnx::Conv_1194) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_6_output_0, %onnx::Conv_1196, %onnx::Conv_1197) %/layers.6/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Add_6_output_0 = Add(%/layers.6/Concat_output_0, %/layers.6/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_6_output_0, %onnx::Conv_1199, %onnx::Conv_1200) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_1202, %onnx::Conv_1203) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_6_output_0, %onnx::Conv_1205, %onnx::Conv_1206) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_1208, %onnx::Conv_1209) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_2_output_0, %onnx::Conv_1211, %onnx::Conv_1212) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_3_output_0 = Add(%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_3_output_0) %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_3_output_0, %onnx::Conv_1214, %onnx::Conv_1215) %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_4_output_0 = Add(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_4_output_0) %/layers.7/Add_5_output_0 = Add(%/layers.7/Add_4_output_0, %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_5_output_0, %onnx::Conv_1217, %onnx::Conv_1218) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_6_output_0, %onnx::Conv_1220, %onnx::Conv_1221) %/layers.7/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Add_6_output_0 = Add(%/layers.7/Concat_output_0, %/layers.7/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Add_6_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1223, %onnx::Conv_1224) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_1226, %onnx::Conv_1227) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1229, %onnx::Conv_1230) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_1232, %onnx::Conv_1233) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_2_output_0, %onnx::Conv_1235, %onnx::Conv_1236) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_3_output_0 = Add(%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_3_output_0) %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_3_output_0, %onnx::Conv_1238, %onnx::Conv_1239) %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_4_output_0 = Add(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_4_output_0) %/layers.9/Add_5_output_0 = Add(%/layers.9/Add_4_output_0, %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_5_output_0, %onnx::Conv_1241, %onnx::Conv_1242) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1244, %onnx::Conv_1245) %/layers.9/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Add_6_output_0 = Add(%/layers.9/Concat_output_0, %/layers.9/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_6_output_0, %onnx::Conv_1247, %onnx::Conv_1248) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_1250, %onnx::Conv_1251) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_6_output_0, %onnx::Conv_1253, %onnx::Conv_1254) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_1256, %onnx::Conv_1257) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_2_output_0, %onnx::Conv_1259, %onnx::Conv_1260) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_3_output_0 = Add(%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_3_output_0) %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_3_output_0, %onnx::Conv_1262, %onnx::Conv_1263) %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_4_output_0 = Add(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_4_output_0) %/layers.10/Add_5_output_0 = Add(%/layers.10/Add_4_output_0, %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_5_output_0, %onnx::Conv_1265, %onnx::Conv_1266) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_6_output_0, %onnx::Conv_1268, %onnx::Conv_1269) %/layers.10/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Add_6_output_0 = Add(%/layers.10/Concat_output_0, %/layers.10/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_6_output_0, %onnx::Conv_1271, %onnx::Conv_1272) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_1274, %onnx::Conv_1275) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_6_output_0, %onnx::Conv_1277, %onnx::Conv_1278) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_1280, %onnx::Conv_1281) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_2_output_0, %onnx::Conv_1283, %onnx::Conv_1284) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_3_output_0 = Add(%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_3_output_0) %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_3_output_0, %onnx::Conv_1286, %onnx::Conv_1287) %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_4_output_0 = Add(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_4_output_0) %/layers.11/Add_5_output_0 = Add(%/layers.11/Add_4_output_0, %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_5_output_0, %onnx::Conv_1289, %onnx::Conv_1290) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_6_output_0, %onnx::Conv_1292, %onnx::Conv_1293) %/layers.11/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Add_6_output_0 = Add(%/layers.11/Concat_output_0, %/layers.11/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Add_6_output_0) %1074 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %1074 }
val_accuracy
94.210738
3,363,186,688
11,317,514
{'zcp_epe_nas': 165.75934907516958, 'zcp_fisher': 2.5786795616149902, 'zcp_flops': 53810987008.0, 'zcp_grad_norm': 43.774192810058594, 'zcp_grasp': -1.502044677734375, 'zcp_jacov': -16.044806636490787, 'zcp_l2_norm': 1339.56982421875, 'zcp_nwot': 230.7068889784636, 'zcp_params': 11317514.0, 'zcp_plain': 0.049224555492401005, 'zcp_snip': 296.7850646972656, 'zcp_synflow': 149.18732102471407, 'zcp_zen': 141.52969360351562, 'zcp_val_accuracy': 0.900140225887298}
NASBench101_58087
NASBench101
58087
234f27036bf746002562d10e3b093140
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_977[FLOAT, 128x3x3x3] %onnx::Conv_978[FLOAT, 128] %onnx::Conv_980[FLOAT, 64x128x1x1] %onnx::Conv_981[FLOAT, 64] %onnx::Conv_983[FLOAT, 64x64x1x1] %onnx::Conv_986[FLOAT, 64x64x1x1] %onnx::Conv_989[FLOAT, 64x64x1x1] %onnx::Conv_992[FLOAT, 64x128x1x1] %onnx::Conv_995[FLOAT, 64x64x3x3] %onnx::Conv_998[FLOAT, 64x64x1x1] %onnx::Conv_1001[FLOAT, 64x128x1x1] %onnx::Conv_1004[FLOAT, 64x64x1x1] %onnx::Conv_1007[FLOAT, 64x64x1x1] %onnx::Conv_1010[FLOAT, 64x64x1x1] %onnx::Conv_1013[FLOAT, 64x128x1x1] %onnx::Conv_1016[FLOAT, 64x64x3x3] %onnx::Conv_1019[FLOAT, 64x64x1x1] %onnx::Conv_1022[FLOAT, 64x128x1x1] %onnx::Conv_1025[FLOAT, 64x64x1x1] %onnx::Conv_1028[FLOAT, 64x64x1x1] %onnx::Conv_1031[FLOAT, 64x64x1x1] %onnx::Conv_1034[FLOAT, 64x128x1x1] %onnx::Conv_1037[FLOAT, 64x64x3x3] %onnx::Conv_1040[FLOAT, 64x64x1x1] %onnx::Conv_1043[FLOAT, 128x128x1x1] %onnx::Conv_1046[FLOAT, 128x128x1x1] %onnx::Conv_1049[FLOAT, 128x128x1x1] %onnx::Conv_1052[FLOAT, 128x128x1x1] %onnx::Conv_1055[FLOAT, 128x128x1x1] %onnx::Conv_1058[FLOAT, 128x128x3x3] %onnx::Conv_1061[FLOAT, 128x128x1x1] %onnx::Conv_1064[FLOAT, 128x256x1x1] %onnx::Conv_1067[FLOAT, 128x128x1x1] %onnx::Conv_1070[FLOAT, 128x128x1x1] %onnx::Conv_1073[FLOAT, 128x128x1x1] %onnx::Conv_1076[FLOAT, 128x256x1x1] %onnx::Conv_1079[FLOAT, 128x128x3x3] %onnx::Conv_1082[FLOAT, 128x128x1x1] %onnx::Conv_1085[FLOAT, 128x256x1x1] %onnx::Conv_1088[FLOAT, 128x128x1x1] %onnx::Conv_1091[FLOAT, 128x128x1x1] %onnx::Conv_1094[FLOAT, 128x128x1x1] %onnx::Conv_1097[FLOAT, 128x256x1x1] %onnx::Conv_1100[FLOAT, 128x128x3x3] %onnx::Conv_1103[FLOAT, 128x128x1x1] %onnx::Conv_1106[FLOAT, 256x256x1x1] %onnx::Conv_1107[FLOAT, 256] %onnx::Conv_1109[FLOAT, 256x256x1x1] %onnx::Conv_1112[FLOAT, 256x256x1x1] %onnx::Conv_1115[FLOAT, 256x256x1x1] %onnx::Conv_1118[FLOAT, 256x256x1x1] %onnx::Conv_1121[FLOAT, 256x256x3x3] %onnx::Conv_1124[FLOAT, 256x256x1x1] %onnx::Conv_1127[FLOAT, 256x512x1x1] %onnx::Conv_1130[FLOAT, 256x256x1x1] %onnx::Conv_1133[FLOAT, 256x256x1x1] %onnx::Conv_1136[FLOAT, 256x256x1x1] %onnx::Conv_1139[FLOAT, 256x512x1x1] %onnx::Conv_1142[FLOAT, 256x256x3x3] %onnx::Conv_1145[FLOAT, 256x256x1x1] %onnx::Conv_1148[FLOAT, 256x512x1x1] %onnx::Conv_1151[FLOAT, 256x256x1x1] %onnx::Conv_1154[FLOAT, 256x256x1x1] %onnx::Conv_1157[FLOAT, 256x256x1x1] %onnx::Conv_1160[FLOAT, 256x512x1x1] %onnx::Conv_1163[FLOAT, 256x256x3x3] %onnx::Conv_1166[FLOAT, 256x256x1x1] ) { %onnx::Conv_1167 = Identity(%onnx::Conv_1107) %onnx::Conv_1164 = Identity(%onnx::Conv_1107) %onnx::Conv_1161 = Identity(%onnx::Conv_1107) %onnx::Conv_1158 = Identity(%onnx::Conv_1107) %onnx::Conv_1155 = Identity(%onnx::Conv_1107) %onnx::Conv_1152 = Identity(%onnx::Conv_1107) %onnx::Conv_1149 = Identity(%onnx::Conv_1107) %onnx::Conv_1146 = Identity(%onnx::Conv_1107) %onnx::Conv_1143 = Identity(%onnx::Conv_1107) %onnx::Conv_1140 = Identity(%onnx::Conv_1107) %onnx::Conv_1137 = Identity(%onnx::Conv_1107) %onnx::Conv_1134 = Identity(%onnx::Conv_1107) %onnx::Conv_1131 = Identity(%onnx::Conv_1107) %onnx::Conv_1128 = Identity(%onnx::Conv_1107) %onnx::Conv_1125 = Identity(%onnx::Conv_1107) %onnx::Conv_1122 = Identity(%onnx::Conv_1107) %onnx::Conv_1119 = Identity(%onnx::Conv_1107) %onnx::Conv_1116 = Identity(%onnx::Conv_1107) %onnx::Conv_1113 = Identity(%onnx::Conv_1107) %onnx::Conv_1110 = Identity(%onnx::Conv_1107) %onnx::Conv_1104 = Identity(%onnx::Conv_978) %onnx::Conv_1101 = Identity(%onnx::Conv_978) %onnx::Conv_1098 = Identity(%onnx::Conv_978) %onnx::Conv_1095 = Identity(%onnx::Conv_978) %onnx::Conv_1092 = Identity(%onnx::Conv_978) %onnx::Conv_1089 = Identity(%onnx::Conv_978) %onnx::Conv_1086 = Identity(%onnx::Conv_978) %onnx::Conv_1083 = Identity(%onnx::Conv_978) %onnx::Conv_1080 = Identity(%onnx::Conv_978) %onnx::Conv_1077 = Identity(%onnx::Conv_978) %onnx::Conv_1074 = Identity(%onnx::Conv_978) %onnx::Conv_1071 = Identity(%onnx::Conv_978) %onnx::Conv_1068 = Identity(%onnx::Conv_978) %onnx::Conv_1065 = Identity(%onnx::Conv_978) %onnx::Conv_1062 = Identity(%onnx::Conv_978) %onnx::Conv_1059 = Identity(%onnx::Conv_978) %onnx::Conv_1056 = Identity(%onnx::Conv_978) %onnx::Conv_1053 = Identity(%onnx::Conv_978) %onnx::Conv_1050 = Identity(%onnx::Conv_978) %onnx::Conv_1047 = Identity(%onnx::Conv_978) %onnx::Conv_1044 = Identity(%onnx::Conv_978) %onnx::Conv_1041 = Identity(%onnx::Conv_981) %onnx::Conv_1038 = Identity(%onnx::Conv_981) %onnx::Conv_1035 = Identity(%onnx::Conv_981) %onnx::Conv_1032 = Identity(%onnx::Conv_981) %onnx::Conv_1029 = Identity(%onnx::Conv_981) %onnx::Conv_1026 = Identity(%onnx::Conv_981) %onnx::Conv_1023 = Identity(%onnx::Conv_981) %onnx::Conv_1020 = Identity(%onnx::Conv_981) %onnx::Conv_1017 = Identity(%onnx::Conv_981) %onnx::Conv_1014 = Identity(%onnx::Conv_981) %onnx::Conv_1011 = Identity(%onnx::Conv_981) %onnx::Conv_1008 = Identity(%onnx::Conv_981) %onnx::Conv_1005 = Identity(%onnx::Conv_981) %onnx::Conv_1002 = Identity(%onnx::Conv_981) %onnx::Conv_999 = Identity(%onnx::Conv_981) %onnx::Conv_996 = Identity(%onnx::Conv_981) %onnx::Conv_993 = Identity(%onnx::Conv_981) %onnx::Conv_990 = Identity(%onnx::Conv_981) %onnx::Conv_987 = Identity(%onnx::Conv_981) %onnx::Conv_984 = Identity(%onnx::Conv_981) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_977, %onnx::Conv_978) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_980, %onnx::Conv_981) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_983, %onnx::Conv_984) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_986, %onnx::Conv_987) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/Add_3_output_0 = Add(%/layers.1/Add_2_output_0, %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_3_output_0, %onnx::Conv_989, %onnx::Conv_990) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_992, %onnx::Conv_993) %/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_4_output_0 = Add(%/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_3_output_0) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_4_output_0, %onnx::Conv_995, %onnx::Conv_996) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_5_output_0 = Add(%/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_4_output_0) %/layers.1/Add_6_output_0 = Add(%/layers.1/Add_5_output_0, %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_6_output_0, %onnx::Conv_998, %onnx::Conv_999) %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_1001, %onnx::Conv_1002) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_1004, %onnx::Conv_1005) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_1007, %onnx::Conv_1008) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/Add_3_output_0 = Add(%/layers.2/Add_2_output_0, %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_3_output_0, %onnx::Conv_1010, %onnx::Conv_1011) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_1013, %onnx::Conv_1014) %/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_4_output_0 = Add(%/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_3_output_0) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_4_output_0, %onnx::Conv_1016, %onnx::Conv_1017) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_5_output_0 = Add(%/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_4_output_0) %/layers.2/Add_6_output_0 = Add(%/layers.2/Add_5_output_0, %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_6_output_0, %onnx::Conv_1019, %onnx::Conv_1020) %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_1022, %onnx::Conv_1023) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_1025, %onnx::Conv_1026) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_1028, %onnx::Conv_1029) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/Add_3_output_0 = Add(%/layers.3/Add_2_output_0, %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_3_output_0, %onnx::Conv_1031, %onnx::Conv_1032) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_1034, %onnx::Conv_1035) %/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_4_output_0 = Add(%/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_3_output_0) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_4_output_0, %onnx::Conv_1037, %onnx::Conv_1038) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_5_output_0 = Add(%/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_4_output_0) %/layers.3/Add_6_output_0 = Add(%/layers.3/Add_5_output_0, %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_6_output_0, %onnx::Conv_1040, %onnx::Conv_1041) %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Concat_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_1043, %onnx::Conv_1044) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_1046, %onnx::Conv_1047) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_1049, %onnx::Conv_1050) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/Add_3_output_0 = Add(%/layers.5/Add_2_output_0, %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_3_output_0, %onnx::Conv_1052, %onnx::Conv_1053) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_1055, %onnx::Conv_1056) %/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_4_output_0 = Add(%/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_3_output_0) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_4_output_0, %onnx::Conv_1058, %onnx::Conv_1059) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_5_output_0 = Add(%/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_4_output_0) %/layers.5/Add_6_output_0 = Add(%/layers.5/Add_5_output_0, %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_6_output_0, %onnx::Conv_1061, %onnx::Conv_1062) %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_1064, %onnx::Conv_1065) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_1067, %onnx::Conv_1068) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_1070, %onnx::Conv_1071) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/Add_3_output_0 = Add(%/layers.6/Add_2_output_0, %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_3_output_0, %onnx::Conv_1073, %onnx::Conv_1074) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_1076, %onnx::Conv_1077) %/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_4_output_0 = Add(%/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_3_output_0) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_4_output_0, %onnx::Conv_1079, %onnx::Conv_1080) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_5_output_0 = Add(%/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_4_output_0) %/layers.6/Add_6_output_0 = Add(%/layers.6/Add_5_output_0, %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_6_output_0, %onnx::Conv_1082, %onnx::Conv_1083) %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_1085, %onnx::Conv_1086) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_1088, %onnx::Conv_1089) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_1091, %onnx::Conv_1092) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/Add_3_output_0 = Add(%/layers.7/Add_2_output_0, %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_3_output_0, %onnx::Conv_1094, %onnx::Conv_1095) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_1097, %onnx::Conv_1098) %/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_4_output_0 = Add(%/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_3_output_0) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_4_output_0, %onnx::Conv_1100, %onnx::Conv_1101) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_5_output_0 = Add(%/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_4_output_0) %/layers.7/Add_6_output_0 = Add(%/layers.7/Add_5_output_0, %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_6_output_0, %onnx::Conv_1103, %onnx::Conv_1104) %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Concat_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1106, %onnx::Conv_1107) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_1109, %onnx::Conv_1110) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_1112, %onnx::Conv_1113) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/Add_3_output_0 = Add(%/layers.9/Add_2_output_0, %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_3_output_0, %onnx::Conv_1115, %onnx::Conv_1116) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1118, %onnx::Conv_1119) %/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_4_output_0 = Add(%/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_3_output_0) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_4_output_0, %onnx::Conv_1121, %onnx::Conv_1122) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_5_output_0 = Add(%/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_4_output_0) %/layers.9/Add_6_output_0 = Add(%/layers.9/Add_5_output_0, %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_6_output_0, %onnx::Conv_1124, %onnx::Conv_1125) %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_1127, %onnx::Conv_1128) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_1130, %onnx::Conv_1131) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_1133, %onnx::Conv_1134) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/Add_3_output_0 = Add(%/layers.10/Add_2_output_0, %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_3_output_0, %onnx::Conv_1136, %onnx::Conv_1137) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_1139, %onnx::Conv_1140) %/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_4_output_0 = Add(%/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_3_output_0) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_4_output_0, %onnx::Conv_1142, %onnx::Conv_1143) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_5_output_0 = Add(%/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_4_output_0) %/layers.10/Add_6_output_0 = Add(%/layers.10/Add_5_output_0, %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_6_output_0, %onnx::Conv_1145, %onnx::Conv_1146) %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_1148, %onnx::Conv_1149) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_1151, %onnx::Conv_1152) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_1154, %onnx::Conv_1155) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/Add_3_output_0 = Add(%/layers.11/Add_2_output_0, %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_3_output_0, %onnx::Conv_1157, %onnx::Conv_1158) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_1160, %onnx::Conv_1161) %/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_4_output_0 = Add(%/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_3_output_0) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_4_output_0, %onnx::Conv_1163, %onnx::Conv_1164) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_5_output_0 = Add(%/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_4_output_0) %/layers.11/Add_6_output_0 = Add(%/layers.11/Add_5_output_0, %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_6_output_0, %onnx::Conv_1166, %onnx::Conv_1167) %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Concat_output_0) %975 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %975 }
val_accuracy
92.568111
1,277,306,880
4,250,634
{'zcp_epe_nas': 57.073079916762126, 'zcp_fisher': 48.2539176940918, 'zcp_flops': 20436910080.0, 'zcp_grad_norm': 164.97190856933594, 'zcp_grasp': -47.37060546875, 'zcp_jacov': -16.058208438354637, 'zcp_l2_norm': 1144.600830078125, 'zcp_nwot': 227.2850632265092, 'zcp_params': 4250634.0, 'zcp_plain': 0.002593460027128, 'zcp_snip': 856.6456909179688, 'zcp_synflow': 122.25416779854021, 'zcp_zen': 98.83729553222656, 'zcp_val_accuracy': 0.938100934028625}
NASBench101_374763
NASBench101
374763
e28ddf33886148135c55c28b3857c6d7
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_635[FLOAT, 128x3x3x3] %onnx::Conv_636[FLOAT, 128] %onnx::Conv_638[FLOAT, 64x128x1x1] %onnx::Conv_639[FLOAT, 64] %onnx::Conv_641[FLOAT, 64x128x1x1] %onnx::Conv_644[FLOAT, 64x64x1x1] %onnx::Conv_647[FLOAT, 64x64x1x1] %onnx::Conv_650[FLOAT, 64x128x1x1] %onnx::Conv_653[FLOAT, 64x128x1x1] %onnx::Conv_656[FLOAT, 64x64x1x1] %onnx::Conv_659[FLOAT, 64x64x1x1] %onnx::Conv_662[FLOAT, 64x128x1x1] %onnx::Conv_665[FLOAT, 64x128x1x1] %onnx::Conv_668[FLOAT, 64x64x1x1] %onnx::Conv_671[FLOAT, 64x64x1x1] %onnx::Conv_674[FLOAT, 128x128x1x1] %onnx::Conv_677[FLOAT, 128x128x1x1] %onnx::Conv_680[FLOAT, 128x128x1x1] %onnx::Conv_683[FLOAT, 128x128x1x1] %onnx::Conv_686[FLOAT, 128x256x1x1] %onnx::Conv_689[FLOAT, 128x256x1x1] %onnx::Conv_692[FLOAT, 128x128x1x1] %onnx::Conv_695[FLOAT, 128x128x1x1] %onnx::Conv_698[FLOAT, 128x256x1x1] %onnx::Conv_701[FLOAT, 128x256x1x1] %onnx::Conv_704[FLOAT, 128x128x1x1] %onnx::Conv_707[FLOAT, 128x128x1x1] %onnx::Conv_710[FLOAT, 256x256x1x1] %onnx::Conv_711[FLOAT, 256] %onnx::Conv_713[FLOAT, 256x256x1x1] %onnx::Conv_716[FLOAT, 256x256x1x1] %onnx::Conv_719[FLOAT, 256x256x1x1] %onnx::Conv_722[FLOAT, 256x512x1x1] %onnx::Conv_725[FLOAT, 256x512x1x1] %onnx::Conv_728[FLOAT, 256x256x1x1] %onnx::Conv_731[FLOAT, 256x256x1x1] %onnx::Conv_734[FLOAT, 256x512x1x1] %onnx::Conv_737[FLOAT, 256x512x1x1] %onnx::Conv_740[FLOAT, 256x256x1x1] %onnx::Conv_743[FLOAT, 256x256x1x1] ) { %onnx::Conv_744 = Identity(%onnx::Conv_711) %onnx::Conv_741 = Identity(%onnx::Conv_711) %onnx::Conv_738 = Identity(%onnx::Conv_711) %onnx::Conv_735 = Identity(%onnx::Conv_711) %onnx::Conv_732 = Identity(%onnx::Conv_711) %onnx::Conv_729 = Identity(%onnx::Conv_711) %onnx::Conv_726 = Identity(%onnx::Conv_711) %onnx::Conv_723 = Identity(%onnx::Conv_711) %onnx::Conv_720 = Identity(%onnx::Conv_711) %onnx::Conv_717 = Identity(%onnx::Conv_711) %onnx::Conv_714 = Identity(%onnx::Conv_711) %onnx::Conv_708 = Identity(%onnx::Conv_636) %onnx::Conv_705 = Identity(%onnx::Conv_636) %onnx::Conv_702 = Identity(%onnx::Conv_636) %onnx::Conv_699 = Identity(%onnx::Conv_636) %onnx::Conv_696 = Identity(%onnx::Conv_636) %onnx::Conv_693 = Identity(%onnx::Conv_636) %onnx::Conv_690 = Identity(%onnx::Conv_636) %onnx::Conv_687 = Identity(%onnx::Conv_636) %onnx::Conv_684 = Identity(%onnx::Conv_636) %onnx::Conv_681 = Identity(%onnx::Conv_636) %onnx::Conv_678 = Identity(%onnx::Conv_636) %onnx::Conv_675 = Identity(%onnx::Conv_636) %onnx::Conv_672 = Identity(%onnx::Conv_639) %onnx::Conv_669 = Identity(%onnx::Conv_639) %onnx::Conv_666 = Identity(%onnx::Conv_639) %onnx::Conv_663 = Identity(%onnx::Conv_639) %onnx::Conv_660 = Identity(%onnx::Conv_639) %onnx::Conv_657 = Identity(%onnx::Conv_639) %onnx::Conv_654 = Identity(%onnx::Conv_639) %onnx::Conv_651 = Identity(%onnx::Conv_639) %onnx::Conv_648 = Identity(%onnx::Conv_639) %onnx::Conv_645 = Identity(%onnx::Conv_639) %onnx::Conv_642 = Identity(%onnx::Conv_639) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_635, %onnx::Conv_636) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_638, %onnx::Conv_639) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0) %/layers.1/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/vertex_op.1/maxpool/MaxPool_output_0) %/layers.1/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/vertex_op.2/maxpool/MaxPool_output_0) %/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_641, %onnx::Conv_642) %/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.3/maxpool/MaxPool_output_0, %/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_644, %onnx::Conv_645) %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.1/maxpool/MaxPool_output_0, %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_2_output_0, %onnx::Conv_647, %onnx::Conv_648) %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.2/maxpool/MaxPool_output_0, %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_650, %onnx::Conv_651) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0) %/layers.2/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/vertex_op.1/maxpool/MaxPool_output_0) %/layers.2/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/vertex_op.2/maxpool/MaxPool_output_0) %/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_653, %onnx::Conv_654) %/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.3/maxpool/MaxPool_output_0, %/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_656, %onnx::Conv_657) %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.1/maxpool/MaxPool_output_0, %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_2_output_0, %onnx::Conv_659, %onnx::Conv_660) %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.2/maxpool/MaxPool_output_0, %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_662, %onnx::Conv_663) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0) %/layers.3/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/vertex_op.1/maxpool/MaxPool_output_0) %/layers.3/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/vertex_op.2/maxpool/MaxPool_output_0) %/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_665, %onnx::Conv_666) %/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.3/maxpool/MaxPool_output_0, %/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_668, %onnx::Conv_669) %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.1/maxpool/MaxPool_output_0, %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_2_output_0, %onnx::Conv_671, %onnx::Conv_672) %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.2/maxpool/MaxPool_output_0, %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Concat_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_674, %onnx::Conv_675) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0) %/layers.5/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/vertex_op.1/maxpool/MaxPool_output_0) %/layers.5/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/vertex_op.2/maxpool/MaxPool_output_0) %/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_677, %onnx::Conv_678) %/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.3/maxpool/MaxPool_output_0, %/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_680, %onnx::Conv_681) %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.1/maxpool/MaxPool_output_0, %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_2_output_0, %onnx::Conv_683, %onnx::Conv_684) %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.2/maxpool/MaxPool_output_0, %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_686, %onnx::Conv_687) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0) %/layers.6/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/vertex_op.1/maxpool/MaxPool_output_0) %/layers.6/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/vertex_op.2/maxpool/MaxPool_output_0) %/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_689, %onnx::Conv_690) %/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.3/maxpool/MaxPool_output_0, %/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_692, %onnx::Conv_693) %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.1/maxpool/MaxPool_output_0, %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_2_output_0, %onnx::Conv_695, %onnx::Conv_696) %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.2/maxpool/MaxPool_output_0, %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_698, %onnx::Conv_699) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0) %/layers.7/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/vertex_op.1/maxpool/MaxPool_output_0) %/layers.7/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/vertex_op.2/maxpool/MaxPool_output_0) %/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_701, %onnx::Conv_702) %/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.3/maxpool/MaxPool_output_0, %/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_704, %onnx::Conv_705) %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.1/maxpool/MaxPool_output_0, %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_2_output_0, %onnx::Conv_707, %onnx::Conv_708) %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.2/maxpool/MaxPool_output_0, %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Concat_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_710, %onnx::Conv_711) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0) %/layers.9/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/vertex_op.1/maxpool/MaxPool_output_0) %/layers.9/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/vertex_op.2/maxpool/MaxPool_output_0) %/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_713, %onnx::Conv_714) %/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.3/maxpool/MaxPool_output_0, %/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_716, %onnx::Conv_717) %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.1/maxpool/MaxPool_output_0, %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_2_output_0, %onnx::Conv_719, %onnx::Conv_720) %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.2/maxpool/MaxPool_output_0, %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_722, %onnx::Conv_723) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0) %/layers.10/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/vertex_op.1/maxpool/MaxPool_output_0) %/layers.10/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/vertex_op.2/maxpool/MaxPool_output_0) %/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_725, %onnx::Conv_726) %/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.3/maxpool/MaxPool_output_0, %/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_728, %onnx::Conv_729) %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.1/maxpool/MaxPool_output_0, %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_2_output_0, %onnx::Conv_731, %onnx::Conv_732) %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.2/maxpool/MaxPool_output_0, %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_734, %onnx::Conv_735) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0) %/layers.11/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/vertex_op.1/maxpool/MaxPool_output_0) %/layers.11/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/vertex_op.2/maxpool/MaxPool_output_0) %/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_737, %onnx::Conv_738) %/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.3/maxpool/MaxPool_output_0, %/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_740, %onnx::Conv_741) %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.1/maxpool/MaxPool_output_0, %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_2_output_0, %onnx::Conv_743, %onnx::Conv_744) %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.2/maxpool/MaxPool_output_0, %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Concat_output_0) %633 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %633 }
val_accuracy
89.393032
438,577,152
1,404,042
{'zcp_epe_nas': 142.51508253674353, 'zcp_fisher': 4.9519548416137695, 'zcp_flops': 7017234432.0, 'zcp_grad_norm': 39.803314208984375, 'zcp_grasp': -5.7035675048828125, 'zcp_jacov': -16.0440887645294, 'zcp_l2_norm': 695.3428955078125, 'zcp_nwot': 218.09388115999144, 'zcp_params': 1404042.0, 'zcp_plain': 0.082322180271148, 'zcp_snip': 220.82608032226562, 'zcp_synflow': 80.95127821919172, 'zcp_zen': 61.159427642822266, 'zcp_val_accuracy': 0.8925280570983881}
NASBench101_262828
NASBench101
262828
9f28102ad6d67ff84bc698c77dd08eca
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_779[FLOAT, 128x3x3x3] %onnx::Conv_780[FLOAT, 128] %onnx::Conv_782[FLOAT, 64x128x1x1] %onnx::Conv_783[FLOAT, 64] %onnx::Conv_785[FLOAT, 64x128x1x1] %onnx::Conv_788[FLOAT, 64x64x3x3] %onnx::Conv_791[FLOAT, 64x128x1x1] %onnx::Conv_794[FLOAT, 128x128x1x1] %onnx::Conv_797[FLOAT, 64x128x1x1] %onnx::Conv_800[FLOAT, 64x128x1x1] %onnx::Conv_803[FLOAT, 64x64x3x3] %onnx::Conv_806[FLOAT, 64x128x1x1] %onnx::Conv_809[FLOAT, 128x128x1x1] %onnx::Conv_812[FLOAT, 64x128x1x1] %onnx::Conv_815[FLOAT, 64x128x1x1] %onnx::Conv_818[FLOAT, 64x64x3x3] %onnx::Conv_821[FLOAT, 64x128x1x1] %onnx::Conv_824[FLOAT, 128x128x1x1] %onnx::Conv_827[FLOAT, 128x128x1x1] %onnx::Conv_830[FLOAT, 128x128x1x1] %onnx::Conv_833[FLOAT, 128x128x3x3] %onnx::Conv_836[FLOAT, 128x128x1x1] %onnx::Conv_839[FLOAT, 256x128x1x1] %onnx::Conv_840[FLOAT, 256] %onnx::Conv_842[FLOAT, 128x256x1x1] %onnx::Conv_845[FLOAT, 128x256x1x1] %onnx::Conv_848[FLOAT, 128x128x3x3] %onnx::Conv_851[FLOAT, 128x256x1x1] %onnx::Conv_854[FLOAT, 256x256x1x1] %onnx::Conv_857[FLOAT, 128x256x1x1] %onnx::Conv_860[FLOAT, 128x256x1x1] %onnx::Conv_863[FLOAT, 128x128x3x3] %onnx::Conv_866[FLOAT, 128x256x1x1] %onnx::Conv_869[FLOAT, 256x256x1x1] %onnx::Conv_872[FLOAT, 256x256x1x1] %onnx::Conv_875[FLOAT, 256x256x1x1] %onnx::Conv_878[FLOAT, 256x256x3x3] %onnx::Conv_881[FLOAT, 256x256x1x1] %onnx::Conv_884[FLOAT, 512x256x1x1] %onnx::Conv_885[FLOAT, 512] %onnx::Conv_887[FLOAT, 256x512x1x1] %onnx::Conv_890[FLOAT, 256x512x1x1] %onnx::Conv_893[FLOAT, 256x256x3x3] %onnx::Conv_896[FLOAT, 256x512x1x1] %onnx::Conv_899[FLOAT, 512x512x1x1] %onnx::Conv_902[FLOAT, 256x512x1x1] %onnx::Conv_905[FLOAT, 256x512x1x1] %onnx::Conv_908[FLOAT, 256x256x3x3] %onnx::Conv_911[FLOAT, 256x512x1x1] %onnx::Conv_914[FLOAT, 512x512x1x1] ) { %onnx::Conv_915 = Identity(%onnx::Conv_885) %onnx::Conv_912 = Identity(%onnx::Conv_840) %onnx::Conv_909 = Identity(%onnx::Conv_840) %onnx::Conv_906 = Identity(%onnx::Conv_840) %onnx::Conv_903 = Identity(%onnx::Conv_840) %onnx::Conv_900 = Identity(%onnx::Conv_885) %onnx::Conv_897 = Identity(%onnx::Conv_840) %onnx::Conv_894 = Identity(%onnx::Conv_840) %onnx::Conv_891 = Identity(%onnx::Conv_840) %onnx::Conv_888 = Identity(%onnx::Conv_840) %onnx::Conv_882 = Identity(%onnx::Conv_840) %onnx::Conv_879 = Identity(%onnx::Conv_840) %onnx::Conv_876 = Identity(%onnx::Conv_840) %onnx::Conv_873 = Identity(%onnx::Conv_840) %onnx::Conv_870 = Identity(%onnx::Conv_840) %onnx::Conv_867 = Identity(%onnx::Conv_780) %onnx::Conv_864 = Identity(%onnx::Conv_780) %onnx::Conv_861 = Identity(%onnx::Conv_780) %onnx::Conv_858 = Identity(%onnx::Conv_780) %onnx::Conv_855 = Identity(%onnx::Conv_840) %onnx::Conv_852 = Identity(%onnx::Conv_780) %onnx::Conv_849 = Identity(%onnx::Conv_780) %onnx::Conv_846 = Identity(%onnx::Conv_780) %onnx::Conv_843 = Identity(%onnx::Conv_780) %onnx::Conv_837 = Identity(%onnx::Conv_780) %onnx::Conv_834 = Identity(%onnx::Conv_780) %onnx::Conv_831 = Identity(%onnx::Conv_780) %onnx::Conv_828 = Identity(%onnx::Conv_780) %onnx::Conv_825 = Identity(%onnx::Conv_780) %onnx::Conv_822 = Identity(%onnx::Conv_783) %onnx::Conv_819 = Identity(%onnx::Conv_783) %onnx::Conv_816 = Identity(%onnx::Conv_783) %onnx::Conv_813 = Identity(%onnx::Conv_783) %onnx::Conv_810 = Identity(%onnx::Conv_780) %onnx::Conv_807 = Identity(%onnx::Conv_783) %onnx::Conv_804 = Identity(%onnx::Conv_783) %onnx::Conv_801 = Identity(%onnx::Conv_783) %onnx::Conv_798 = Identity(%onnx::Conv_783) %onnx::Conv_795 = Identity(%onnx::Conv_780) %onnx::Conv_792 = Identity(%onnx::Conv_783) %onnx::Conv_789 = Identity(%onnx::Conv_783) %onnx::Conv_786 = Identity(%onnx::Conv_783) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_779, %onnx::Conv_780) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_782, %onnx::Conv_783) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_785, %onnx::Conv_786) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_788, %onnx::Conv_789) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_791, %onnx::Conv_792) %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/Add_3_output_0 = Add(%/layers.1/Add_2_output_0, %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_3_output_0) %/layers.1/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/vertex_op.3/maxpool/MaxPool_output_0) %/layers.1/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/vertex_op.4/maxpool/MaxPool_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.1/maxpool/MaxPool_output_0, %/layers.1/vertex_op.5/maxpool/MaxPool_output_0) %/layers.1/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_794, %onnx::Conv_795) %/layers.1/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Add_4_output_0 = Add(%/layers.1/Concat_output_0, %/layers.1/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_4_output_0, %onnx::Conv_797, %onnx::Conv_798) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_4_output_0, %onnx::Conv_800, %onnx::Conv_801) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_803, %onnx::Conv_804) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_4_output_0, %onnx::Conv_806, %onnx::Conv_807) %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/Add_3_output_0 = Add(%/layers.2/Add_2_output_0, %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_3_output_0) %/layers.2/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/vertex_op.3/maxpool/MaxPool_output_0) %/layers.2/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/vertex_op.4/maxpool/MaxPool_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.1/maxpool/MaxPool_output_0, %/layers.2/vertex_op.5/maxpool/MaxPool_output_0) %/layers.2/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_4_output_0, %onnx::Conv_809, %onnx::Conv_810) %/layers.2/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Add_4_output_0 = Add(%/layers.2/Concat_output_0, %/layers.2/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_4_output_0, %onnx::Conv_812, %onnx::Conv_813) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_4_output_0, %onnx::Conv_815, %onnx::Conv_816) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_818, %onnx::Conv_819) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_4_output_0, %onnx::Conv_821, %onnx::Conv_822) %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/Add_3_output_0 = Add(%/layers.3/Add_2_output_0, %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_3_output_0) %/layers.3/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/vertex_op.3/maxpool/MaxPool_output_0) %/layers.3/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/vertex_op.4/maxpool/MaxPool_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.1/maxpool/MaxPool_output_0, %/layers.3/vertex_op.5/maxpool/MaxPool_output_0) %/layers.3/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_4_output_0, %onnx::Conv_824, %onnx::Conv_825) %/layers.3/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Add_4_output_0 = Add(%/layers.3/Concat_output_0, %/layers.3/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Add_4_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_827, %onnx::Conv_828) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_830, %onnx::Conv_831) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_833, %onnx::Conv_834) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_836, %onnx::Conv_837) %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/Add_3_output_0 = Add(%/layers.5/Add_2_output_0, %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_3_output_0) %/layers.5/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/vertex_op.3/maxpool/MaxPool_output_0) %/layers.5/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/vertex_op.4/maxpool/MaxPool_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.1/maxpool/MaxPool_output_0, %/layers.5/vertex_op.5/maxpool/MaxPool_output_0) %/layers.5/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_839, %onnx::Conv_840) %/layers.5/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Add_4_output_0 = Add(%/layers.5/Concat_output_0, %/layers.5/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_4_output_0, %onnx::Conv_842, %onnx::Conv_843) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_4_output_0, %onnx::Conv_845, %onnx::Conv_846) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_848, %onnx::Conv_849) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_4_output_0, %onnx::Conv_851, %onnx::Conv_852) %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/Add_3_output_0 = Add(%/layers.6/Add_2_output_0, %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_3_output_0) %/layers.6/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/vertex_op.3/maxpool/MaxPool_output_0) %/layers.6/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/vertex_op.4/maxpool/MaxPool_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.1/maxpool/MaxPool_output_0, %/layers.6/vertex_op.5/maxpool/MaxPool_output_0) %/layers.6/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_4_output_0, %onnx::Conv_854, %onnx::Conv_855) %/layers.6/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Add_4_output_0 = Add(%/layers.6/Concat_output_0, %/layers.6/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_4_output_0, %onnx::Conv_857, %onnx::Conv_858) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_4_output_0, %onnx::Conv_860, %onnx::Conv_861) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_863, %onnx::Conv_864) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_4_output_0, %onnx::Conv_866, %onnx::Conv_867) %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/Add_3_output_0 = Add(%/layers.7/Add_2_output_0, %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_3_output_0) %/layers.7/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/vertex_op.3/maxpool/MaxPool_output_0) %/layers.7/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/vertex_op.4/maxpool/MaxPool_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.1/maxpool/MaxPool_output_0, %/layers.7/vertex_op.5/maxpool/MaxPool_output_0) %/layers.7/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_4_output_0, %onnx::Conv_869, %onnx::Conv_870) %/layers.7/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Add_4_output_0 = Add(%/layers.7/Concat_output_0, %/layers.7/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Add_4_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_872, %onnx::Conv_873) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_875, %onnx::Conv_876) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_878, %onnx::Conv_879) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_881, %onnx::Conv_882) %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/Add_3_output_0 = Add(%/layers.9/Add_2_output_0, %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_3_output_0) %/layers.9/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/vertex_op.3/maxpool/MaxPool_output_0) %/layers.9/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/vertex_op.4/maxpool/MaxPool_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.1/maxpool/MaxPool_output_0, %/layers.9/vertex_op.5/maxpool/MaxPool_output_0) %/layers.9/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_884, %onnx::Conv_885) %/layers.9/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Add_4_output_0 = Add(%/layers.9/Concat_output_0, %/layers.9/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_4_output_0, %onnx::Conv_887, %onnx::Conv_888) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_4_output_0, %onnx::Conv_890, %onnx::Conv_891) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_893, %onnx::Conv_894) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_4_output_0, %onnx::Conv_896, %onnx::Conv_897) %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/Add_3_output_0 = Add(%/layers.10/Add_2_output_0, %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_3_output_0) %/layers.10/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/vertex_op.3/maxpool/MaxPool_output_0) %/layers.10/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/vertex_op.4/maxpool/MaxPool_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.1/maxpool/MaxPool_output_0, %/layers.10/vertex_op.5/maxpool/MaxPool_output_0) %/layers.10/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_4_output_0, %onnx::Conv_899, %onnx::Conv_900) %/layers.10/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Add_4_output_0 = Add(%/layers.10/Concat_output_0, %/layers.10/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_4_output_0, %onnx::Conv_902, %onnx::Conv_903) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_4_output_0, %onnx::Conv_905, %onnx::Conv_906) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_908, %onnx::Conv_909) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_4_output_0, %onnx::Conv_911, %onnx::Conv_912) %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/Add_3_output_0 = Add(%/layers.11/Add_2_output_0, %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_3_output_0) %/layers.11/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/vertex_op.3/maxpool/MaxPool_output_0) %/layers.11/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/vertex_op.4/maxpool/MaxPool_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.1/maxpool/MaxPool_output_0, %/layers.11/vertex_op.5/maxpool/MaxPool_output_0) %/layers.11/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_4_output_0, %onnx::Conv_914, %onnx::Conv_915) %/layers.11/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Add_4_output_0 = Add(%/layers.11/Concat_output_0, %/layers.11/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Add_4_output_0) %777 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %777 }
val_accuracy
89.783657
1,375,217,664
4,518,282
{'zcp_epe_nas': 120.39461547522589, 'zcp_fisher': 13.276816368103027, 'zcp_flops': 22003482624.0, 'zcp_grad_norm': 69.57854461669922, 'zcp_grasp': -5.325286865234375, 'zcp_jacov': -16.051104621488115, 'zcp_l2_norm': 936.3536987304688, 'zcp_nwot': 224.26542068451994, 'zcp_params': 4518282.0, 'zcp_plain': 0.020416872575879003, 'zcp_snip': 470.60235595703125, 'zcp_synflow': 61.70274198231957, 'zcp_zen': 91.821044921875, 'zcp_val_accuracy': 0.9171674847602841}
NASBench101_184805
NASBench101
184805
6fc7c187ccec86a9cfc99e6843fe015a
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_869[FLOAT, 128x3x3x3] %onnx::Conv_870[FLOAT, 128] %onnx::Conv_872[FLOAT, 64x128x1x1] %onnx::Conv_873[FLOAT, 64] %onnx::Conv_875[FLOAT, 64x64x1x1] %onnx::Conv_878[FLOAT, 64x64x3x3] %onnx::Conv_881[FLOAT, 64x64x1x1] %onnx::Conv_884[FLOAT, 64x64x3x3] %onnx::Conv_887[FLOAT, 128x128x1x1] %onnx::Conv_890[FLOAT, 64x128x1x1] %onnx::Conv_893[FLOAT, 64x64x1x1] %onnx::Conv_896[FLOAT, 64x64x3x3] %onnx::Conv_899[FLOAT, 64x64x1x1] %onnx::Conv_902[FLOAT, 64x64x3x3] %onnx::Conv_905[FLOAT, 128x128x1x1] %onnx::Conv_908[FLOAT, 64x128x1x1] %onnx::Conv_911[FLOAT, 64x64x1x1] %onnx::Conv_914[FLOAT, 64x64x3x3] %onnx::Conv_917[FLOAT, 64x64x1x1] %onnx::Conv_920[FLOAT, 64x64x3x3] %onnx::Conv_923[FLOAT, 128x128x1x1] %onnx::Conv_926[FLOAT, 128x128x1x1] %onnx::Conv_929[FLOAT, 128x128x1x1] %onnx::Conv_932[FLOAT, 128x128x3x3] %onnx::Conv_935[FLOAT, 128x128x1x1] %onnx::Conv_938[FLOAT, 128x128x3x3] %onnx::Conv_941[FLOAT, 256x128x1x1] %onnx::Conv_942[FLOAT, 256] %onnx::Conv_944[FLOAT, 128x256x1x1] %onnx::Conv_947[FLOAT, 128x128x1x1] %onnx::Conv_950[FLOAT, 128x128x3x3] %onnx::Conv_953[FLOAT, 128x128x1x1] %onnx::Conv_956[FLOAT, 128x128x3x3] %onnx::Conv_959[FLOAT, 256x256x1x1] %onnx::Conv_962[FLOAT, 128x256x1x1] %onnx::Conv_965[FLOAT, 128x128x1x1] %onnx::Conv_968[FLOAT, 128x128x3x3] %onnx::Conv_971[FLOAT, 128x128x1x1] %onnx::Conv_974[FLOAT, 128x128x3x3] %onnx::Conv_977[FLOAT, 256x256x1x1] %onnx::Conv_980[FLOAT, 256x256x1x1] %onnx::Conv_983[FLOAT, 256x256x1x1] %onnx::Conv_986[FLOAT, 256x256x3x3] %onnx::Conv_989[FLOAT, 256x256x1x1] %onnx::Conv_992[FLOAT, 256x256x3x3] %onnx::Conv_995[FLOAT, 512x256x1x1] %onnx::Conv_996[FLOAT, 512] %onnx::Conv_998[FLOAT, 256x512x1x1] %onnx::Conv_1001[FLOAT, 256x256x1x1] %onnx::Conv_1004[FLOAT, 256x256x3x3] %onnx::Conv_1007[FLOAT, 256x256x1x1] %onnx::Conv_1010[FLOAT, 256x256x3x3] %onnx::Conv_1013[FLOAT, 512x512x1x1] %onnx::Conv_1016[FLOAT, 256x512x1x1] %onnx::Conv_1019[FLOAT, 256x256x1x1] %onnx::Conv_1022[FLOAT, 256x256x3x3] %onnx::Conv_1025[FLOAT, 256x256x1x1] %onnx::Conv_1028[FLOAT, 256x256x3x3] %onnx::Conv_1031[FLOAT, 512x512x1x1] ) { %onnx::Conv_1032 = Identity(%onnx::Conv_996) %onnx::Conv_1029 = Identity(%onnx::Conv_942) %onnx::Conv_1026 = Identity(%onnx::Conv_942) %onnx::Conv_1023 = Identity(%onnx::Conv_942) %onnx::Conv_1020 = Identity(%onnx::Conv_942) %onnx::Conv_1017 = Identity(%onnx::Conv_942) %onnx::Conv_1014 = Identity(%onnx::Conv_996) %onnx::Conv_1011 = Identity(%onnx::Conv_942) %onnx::Conv_1008 = Identity(%onnx::Conv_942) %onnx::Conv_1005 = Identity(%onnx::Conv_942) %onnx::Conv_1002 = Identity(%onnx::Conv_942) %onnx::Conv_999 = Identity(%onnx::Conv_942) %onnx::Conv_993 = Identity(%onnx::Conv_942) %onnx::Conv_990 = Identity(%onnx::Conv_942) %onnx::Conv_987 = Identity(%onnx::Conv_942) %onnx::Conv_984 = Identity(%onnx::Conv_942) %onnx::Conv_981 = Identity(%onnx::Conv_942) %onnx::Conv_978 = Identity(%onnx::Conv_942) %onnx::Conv_975 = Identity(%onnx::Conv_870) %onnx::Conv_972 = Identity(%onnx::Conv_870) %onnx::Conv_969 = Identity(%onnx::Conv_870) %onnx::Conv_966 = Identity(%onnx::Conv_870) %onnx::Conv_963 = Identity(%onnx::Conv_870) %onnx::Conv_960 = Identity(%onnx::Conv_942) %onnx::Conv_957 = Identity(%onnx::Conv_870) %onnx::Conv_954 = Identity(%onnx::Conv_870) %onnx::Conv_951 = Identity(%onnx::Conv_870) %onnx::Conv_948 = Identity(%onnx::Conv_870) %onnx::Conv_945 = Identity(%onnx::Conv_870) %onnx::Conv_939 = Identity(%onnx::Conv_870) %onnx::Conv_936 = Identity(%onnx::Conv_870) %onnx::Conv_933 = Identity(%onnx::Conv_870) %onnx::Conv_930 = Identity(%onnx::Conv_870) %onnx::Conv_927 = Identity(%onnx::Conv_870) %onnx::Conv_924 = Identity(%onnx::Conv_870) %onnx::Conv_921 = Identity(%onnx::Conv_873) %onnx::Conv_918 = Identity(%onnx::Conv_873) %onnx::Conv_915 = Identity(%onnx::Conv_873) %onnx::Conv_912 = Identity(%onnx::Conv_873) %onnx::Conv_909 = Identity(%onnx::Conv_873) %onnx::Conv_906 = Identity(%onnx::Conv_870) %onnx::Conv_903 = Identity(%onnx::Conv_873) %onnx::Conv_900 = Identity(%onnx::Conv_873) %onnx::Conv_897 = Identity(%onnx::Conv_873) %onnx::Conv_894 = Identity(%onnx::Conv_873) %onnx::Conv_891 = Identity(%onnx::Conv_873) %onnx::Conv_888 = Identity(%onnx::Conv_870) %onnx::Conv_885 = Identity(%onnx::Conv_873) %onnx::Conv_882 = Identity(%onnx::Conv_873) %onnx::Conv_879 = Identity(%onnx::Conv_873) %onnx::Conv_876 = Identity(%onnx::Conv_873) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_869, %onnx::Conv_870) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_872, %onnx::Conv_873) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_875, %onnx::Conv_876) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_1_output_0) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_878, %onnx::Conv_879) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_2_output_0, %onnx::Conv_881, %onnx::Conv_882) %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_3_output_0 = Add(%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_3_output_0) %/layers.1/Add_4_output_0 = Add(%/layers.1/Add_3_output_0, %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_4_output_0, %onnx::Conv_884, %onnx::Conv_885) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.2/maxpool/MaxPool_output_0, %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_887, %onnx::Conv_888) %/layers.1/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Add_5_output_0 = Add(%/layers.1/Concat_output_0, %/layers.1/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_5_output_0, %onnx::Conv_890, %onnx::Conv_891) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_893, %onnx::Conv_894) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_1_output_0) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_896, %onnx::Conv_897) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_2_output_0, %onnx::Conv_899, %onnx::Conv_900) %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_3_output_0 = Add(%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_3_output_0) %/layers.2/Add_4_output_0 = Add(%/layers.2/Add_3_output_0, %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_4_output_0, %onnx::Conv_902, %onnx::Conv_903) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.2/maxpool/MaxPool_output_0, %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_5_output_0, %onnx::Conv_905, %onnx::Conv_906) %/layers.2/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Add_5_output_0 = Add(%/layers.2/Concat_output_0, %/layers.2/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_5_output_0, %onnx::Conv_908, %onnx::Conv_909) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_911, %onnx::Conv_912) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_1_output_0) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_914, %onnx::Conv_915) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_2_output_0, %onnx::Conv_917, %onnx::Conv_918) %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_3_output_0 = Add(%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_3_output_0) %/layers.3/Add_4_output_0 = Add(%/layers.3/Add_3_output_0, %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_4_output_0, %onnx::Conv_920, %onnx::Conv_921) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.2/maxpool/MaxPool_output_0, %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_5_output_0, %onnx::Conv_923, %onnx::Conv_924) %/layers.3/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Add_5_output_0 = Add(%/layers.3/Concat_output_0, %/layers.3/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Add_5_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_926, %onnx::Conv_927) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_929, %onnx::Conv_930) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_1_output_0) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_932, %onnx::Conv_933) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_2_output_0, %onnx::Conv_935, %onnx::Conv_936) %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_3_output_0 = Add(%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_3_output_0) %/layers.5/Add_4_output_0 = Add(%/layers.5/Add_3_output_0, %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_4_output_0, %onnx::Conv_938, %onnx::Conv_939) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.2/maxpool/MaxPool_output_0, %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_941, %onnx::Conv_942) %/layers.5/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Add_5_output_0 = Add(%/layers.5/Concat_output_0, %/layers.5/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_5_output_0, %onnx::Conv_944, %onnx::Conv_945) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_947, %onnx::Conv_948) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_1_output_0) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_950, %onnx::Conv_951) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_2_output_0, %onnx::Conv_953, %onnx::Conv_954) %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_3_output_0 = Add(%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_3_output_0) %/layers.6/Add_4_output_0 = Add(%/layers.6/Add_3_output_0, %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_4_output_0, %onnx::Conv_956, %onnx::Conv_957) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.2/maxpool/MaxPool_output_0, %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_5_output_0, %onnx::Conv_959, %onnx::Conv_960) %/layers.6/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Add_5_output_0 = Add(%/layers.6/Concat_output_0, %/layers.6/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_5_output_0, %onnx::Conv_962, %onnx::Conv_963) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_965, %onnx::Conv_966) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_1_output_0) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_968, %onnx::Conv_969) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_2_output_0, %onnx::Conv_971, %onnx::Conv_972) %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_3_output_0 = Add(%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_3_output_0) %/layers.7/Add_4_output_0 = Add(%/layers.7/Add_3_output_0, %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_4_output_0, %onnx::Conv_974, %onnx::Conv_975) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.2/maxpool/MaxPool_output_0, %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_5_output_0, %onnx::Conv_977, %onnx::Conv_978) %/layers.7/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Add_5_output_0 = Add(%/layers.7/Concat_output_0, %/layers.7/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Add_5_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_980, %onnx::Conv_981) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_983, %onnx::Conv_984) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_1_output_0) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_986, %onnx::Conv_987) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_2_output_0, %onnx::Conv_989, %onnx::Conv_990) %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_3_output_0 = Add(%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_3_output_0) %/layers.9/Add_4_output_0 = Add(%/layers.9/Add_3_output_0, %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_4_output_0, %onnx::Conv_992, %onnx::Conv_993) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.2/maxpool/MaxPool_output_0, %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_995, %onnx::Conv_996) %/layers.9/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Add_5_output_0 = Add(%/layers.9/Concat_output_0, %/layers.9/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_5_output_0, %onnx::Conv_998, %onnx::Conv_999) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_1001, %onnx::Conv_1002) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_1_output_0) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_1004, %onnx::Conv_1005) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_2_output_0, %onnx::Conv_1007, %onnx::Conv_1008) %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_3_output_0 = Add(%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_3_output_0) %/layers.10/Add_4_output_0 = Add(%/layers.10/Add_3_output_0, %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_4_output_0, %onnx::Conv_1010, %onnx::Conv_1011) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.2/maxpool/MaxPool_output_0, %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_5_output_0, %onnx::Conv_1013, %onnx::Conv_1014) %/layers.10/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Add_5_output_0 = Add(%/layers.10/Concat_output_0, %/layers.10/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_5_output_0, %onnx::Conv_1016, %onnx::Conv_1017) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_1019, %onnx::Conv_1020) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_1_output_0) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_1022, %onnx::Conv_1023) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_2_output_0, %onnx::Conv_1025, %onnx::Conv_1026) %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_3_output_0 = Add(%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_3_output_0) %/layers.11/Add_4_output_0 = Add(%/layers.11/Add_3_output_0, %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_4_output_0, %onnx::Conv_1028, %onnx::Conv_1029) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.2/maxpool/MaxPool_output_0, %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_5_output_0, %onnx::Conv_1031, %onnx::Conv_1032) %/layers.11/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Add_5_output_0 = Add(%/layers.11/Concat_output_0, %/layers.11/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Add_5_output_0) %867 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %867 }
val_accuracy
92.608172
1,940,006,912
6,491,146
{'zcp_epe_nas': 89.37286451603592, 'zcp_fisher': 26.593568801879883, 'zcp_flops': 31040110592.0, 'zcp_grad_norm': 119.40451049804688, 'zcp_grasp': -6.2562255859375, 'zcp_jacov': -16.062216478929805, 'zcp_l2_norm': 994.4690551757812, 'zcp_nwot': 226.64179768046492, 'zcp_params': 6491146.0, 'zcp_plain': 0.021973254159092, 'zcp_snip': 705.2319946289062, 'zcp_synflow': 140.83449718491497, 'zcp_zen': 103.56614685058594, 'zcp_val_accuracy': 0.8940304517745971}
NASBench101_21779
NASBench101
21779
0d2d36099070a67f0ceabdc888984d8b
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_572[FLOAT, 128x3x3x3] %onnx::Conv_573[FLOAT, 128] %onnx::Conv_575[FLOAT, 128x128x1x1] %onnx::Conv_578[FLOAT, 128x128x1x1] %onnx::Conv_581[FLOAT, 128x128x1x1] %onnx::Conv_584[FLOAT, 128x128x1x1] %onnx::Conv_587[FLOAT, 128x128x1x1] %onnx::Conv_590[FLOAT, 128x128x1x1] %onnx::Conv_593[FLOAT, 128x128x1x1] %onnx::Conv_596[FLOAT, 128x128x1x1] %onnx::Conv_599[FLOAT, 128x128x1x1] %onnx::Conv_602[FLOAT, 256x128x1x1] %onnx::Conv_603[FLOAT, 256] %onnx::Conv_605[FLOAT, 256x256x1x1] %onnx::Conv_608[FLOAT, 256x256x1x1] %onnx::Conv_611[FLOAT, 256x256x1x1] %onnx::Conv_614[FLOAT, 256x256x1x1] %onnx::Conv_617[FLOAT, 256x256x1x1] %onnx::Conv_620[FLOAT, 256x256x1x1] %onnx::Conv_623[FLOAT, 256x256x1x1] %onnx::Conv_626[FLOAT, 256x256x1x1] %onnx::Conv_629[FLOAT, 512x256x1x1] %onnx::Conv_630[FLOAT, 512] %onnx::Conv_632[FLOAT, 512x512x1x1] %onnx::Conv_635[FLOAT, 512x512x1x1] %onnx::Conv_638[FLOAT, 512x512x1x1] %onnx::Conv_641[FLOAT, 512x512x1x1] %onnx::Conv_644[FLOAT, 512x512x1x1] %onnx::Conv_647[FLOAT, 512x512x1x1] %onnx::Conv_650[FLOAT, 512x512x1x1] %onnx::Conv_653[FLOAT, 512x512x1x1] ) { %onnx::Conv_654 = Identity(%onnx::Conv_630) %onnx::Conv_651 = Identity(%onnx::Conv_630) %onnx::Conv_648 = Identity(%onnx::Conv_630) %onnx::Conv_645 = Identity(%onnx::Conv_630) %onnx::Conv_642 = Identity(%onnx::Conv_630) %onnx::Conv_639 = Identity(%onnx::Conv_630) %onnx::Conv_636 = Identity(%onnx::Conv_630) %onnx::Conv_633 = Identity(%onnx::Conv_630) %onnx::Conv_627 = Identity(%onnx::Conv_603) %onnx::Conv_624 = Identity(%onnx::Conv_603) %onnx::Conv_621 = Identity(%onnx::Conv_603) %onnx::Conv_618 = Identity(%onnx::Conv_603) %onnx::Conv_615 = Identity(%onnx::Conv_603) %onnx::Conv_612 = Identity(%onnx::Conv_603) %onnx::Conv_609 = Identity(%onnx::Conv_603) %onnx::Conv_606 = Identity(%onnx::Conv_603) %onnx::Conv_600 = Identity(%onnx::Conv_573) %onnx::Conv_597 = Identity(%onnx::Conv_573) %onnx::Conv_594 = Identity(%onnx::Conv_573) %onnx::Conv_591 = Identity(%onnx::Conv_573) %onnx::Conv_588 = Identity(%onnx::Conv_573) %onnx::Conv_585 = Identity(%onnx::Conv_573) %onnx::Conv_582 = Identity(%onnx::Conv_573) %onnx::Conv_579 = Identity(%onnx::Conv_573) %onnx::Conv_576 = Identity(%onnx::Conv_573) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_572, %onnx::Conv_573) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_575, %onnx::Conv_576) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_578, %onnx::Conv_579) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_581, %onnx::Conv_582) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/Add_2_output_0 = Add(%/layers.1/Add_1_output_0, %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_2_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_3_output_0 = Add(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/Add_4_output_0 = Add(%/layers.1/Add_3_output_0, %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/Add_5_output_0 = Add(%/layers.1/Add_4_output_0, %/layers.1/vertex_op.4/maxpool/MaxPool_output_0) %/layers.1/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_5_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_584, %onnx::Conv_585) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_587, %onnx::Conv_588) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_590, %onnx::Conv_591) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/Add_2_output_0 = Add(%/layers.2/Add_1_output_0, %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_2_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_3_output_0 = Add(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/Add_4_output_0 = Add(%/layers.2/Add_3_output_0, %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/Add_5_output_0 = Add(%/layers.2/Add_4_output_0, %/layers.2/vertex_op.4/maxpool/MaxPool_output_0) %/layers.2/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_5_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_593, %onnx::Conv_594) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_596, %onnx::Conv_597) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_599, %onnx::Conv_600) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/Add_2_output_0 = Add(%/layers.3/Add_1_output_0, %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_2_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_3_output_0 = Add(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/Add_4_output_0 = Add(%/layers.3/Add_3_output_0, %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/Add_5_output_0 = Add(%/layers.3/Add_4_output_0, %/layers.3/vertex_op.4/maxpool/MaxPool_output_0) %/layers.3/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_5_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/vertex_op.5/maxpool/MaxPool_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_602, %onnx::Conv_603) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_605, %onnx::Conv_606) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_608, %onnx::Conv_609) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/Add_2_output_0 = Add(%/layers.5/Add_1_output_0, %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_2_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_3_output_0 = Add(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/Add_4_output_0 = Add(%/layers.5/Add_3_output_0, %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/Add_5_output_0 = Add(%/layers.5/Add_4_output_0, %/layers.5/vertex_op.4/maxpool/MaxPool_output_0) %/layers.5/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_5_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_611, %onnx::Conv_612) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_614, %onnx::Conv_615) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_617, %onnx::Conv_618) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/Add_2_output_0 = Add(%/layers.6/Add_1_output_0, %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_2_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_3_output_0 = Add(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/Add_4_output_0 = Add(%/layers.6/Add_3_output_0, %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/Add_5_output_0 = Add(%/layers.6/Add_4_output_0, %/layers.6/vertex_op.4/maxpool/MaxPool_output_0) %/layers.6/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_5_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_620, %onnx::Conv_621) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_623, %onnx::Conv_624) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_626, %onnx::Conv_627) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/Add_2_output_0 = Add(%/layers.7/Add_1_output_0, %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_2_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_3_output_0 = Add(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/Add_4_output_0 = Add(%/layers.7/Add_3_output_0, %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/Add_5_output_0 = Add(%/layers.7/Add_4_output_0, %/layers.7/vertex_op.4/maxpool/MaxPool_output_0) %/layers.7/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_5_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/vertex_op.5/maxpool/MaxPool_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_629, %onnx::Conv_630) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_632, %onnx::Conv_633) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_635, %onnx::Conv_636) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/Add_2_output_0 = Add(%/layers.9/Add_1_output_0, %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_2_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_3_output_0 = Add(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/Add_4_output_0 = Add(%/layers.9/Add_3_output_0, %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/Add_5_output_0 = Add(%/layers.9/Add_4_output_0, %/layers.9/vertex_op.4/maxpool/MaxPool_output_0) %/layers.9/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_5_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_638, %onnx::Conv_639) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_641, %onnx::Conv_642) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_644, %onnx::Conv_645) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/Add_2_output_0 = Add(%/layers.10/Add_1_output_0, %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_2_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_3_output_0 = Add(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/Add_4_output_0 = Add(%/layers.10/Add_3_output_0, %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/Add_5_output_0 = Add(%/layers.10/Add_4_output_0, %/layers.10/vertex_op.4/maxpool/MaxPool_output_0) %/layers.10/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_5_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_647, %onnx::Conv_648) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_650, %onnx::Conv_651) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_653, %onnx::Conv_654) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/Add_2_output_0 = Add(%/layers.11/Add_1_output_0, %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_2_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_3_output_0 = Add(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/Add_4_output_0 = Add(%/layers.11/Add_3_output_0, %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/Add_5_output_0 = Add(%/layers.11/Add_4_output_0, %/layers.11/vertex_op.4/maxpool/MaxPool_output_0) %/layers.11/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_5_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/vertex_op.5/maxpool/MaxPool_output_0) %570 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %570 }
val_accuracy
84.625399
897,067,008
2,957,706
{'zcp_epe_nas': 149.93928066844163, 'zcp_fisher': 109.29159545898438, 'zcp_flops': 14353072128.0, 'zcp_grad_norm': 192.6636505126953, 'zcp_grasp': -169.0400390625, 'zcp_jacov': -16.04683120448582, 'zcp_l2_norm': 623.2078247070312, 'zcp_nwot': 224.90086211008855, 'zcp_params': 2957706.0, 'zcp_plain': 0.373444437980651, 'zcp_snip': 1361.3433837890625, 'zcp_synflow': 69.7844610615918, 'zcp_zen': 58.18555450439453, 'zcp_val_accuracy': 0.9230769276618951}
NASBench101_355188
NASBench101
355188
d6b5b86aa606684b276987cb560d3304
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_815[FLOAT, 128x3x3x3] %onnx::Conv_816[FLOAT, 128] %onnx::Conv_818[FLOAT, 43x128x1x1] %onnx::Conv_819[FLOAT, 43] %onnx::Conv_821[FLOAT, 43x43x3x3] %onnx::Conv_824[FLOAT, 43x43x3x3] %onnx::Conv_827[FLOAT, 42x42x3x3] %onnx::Conv_828[FLOAT, 42] %onnx::Conv_830[FLOAT, 42x42x1x1] %onnx::Conv_833[FLOAT, 43x128x1x1] %onnx::Conv_836[FLOAT, 43x43x3x3] %onnx::Conv_839[FLOAT, 43x43x3x3] %onnx::Conv_842[FLOAT, 42x42x3x3] %onnx::Conv_845[FLOAT, 42x42x1x1] %onnx::Conv_848[FLOAT, 43x128x1x1] %onnx::Conv_851[FLOAT, 43x43x3x3] %onnx::Conv_854[FLOAT, 43x43x3x3] %onnx::Conv_857[FLOAT, 42x42x3x3] %onnx::Conv_860[FLOAT, 42x42x1x1] %onnx::Conv_863[FLOAT, 86x128x1x1] %onnx::Conv_864[FLOAT, 86] %onnx::Conv_866[FLOAT, 86x86x3x3] %onnx::Conv_869[FLOAT, 85x85x3x3] %onnx::Conv_870[FLOAT, 85] %onnx::Conv_872[FLOAT, 85x85x3x3] %onnx::Conv_875[FLOAT, 85x85x1x1] %onnx::Conv_878[FLOAT, 86x256x1x1] %onnx::Conv_881[FLOAT, 86x86x3x3] %onnx::Conv_884[FLOAT, 85x85x3x3] %onnx::Conv_887[FLOAT, 85x85x3x3] %onnx::Conv_890[FLOAT, 85x85x1x1] %onnx::Conv_893[FLOAT, 86x256x1x1] %onnx::Conv_896[FLOAT, 86x86x3x3] %onnx::Conv_899[FLOAT, 85x85x3x3] %onnx::Conv_902[FLOAT, 85x85x3x3] %onnx::Conv_905[FLOAT, 85x85x1x1] %onnx::Conv_908[FLOAT, 171x256x1x1] %onnx::Conv_909[FLOAT, 171] %onnx::Conv_911[FLOAT, 171x171x3x3] %onnx::Conv_914[FLOAT, 171x171x3x3] %onnx::Conv_917[FLOAT, 170x170x3x3] %onnx::Conv_918[FLOAT, 170] %onnx::Conv_920[FLOAT, 170x170x1x1] %onnx::Conv_923[FLOAT, 171x512x1x1] %onnx::Conv_926[FLOAT, 171x171x3x3] %onnx::Conv_929[FLOAT, 171x171x3x3] %onnx::Conv_932[FLOAT, 170x170x3x3] %onnx::Conv_935[FLOAT, 170x170x1x1] %onnx::Conv_938[FLOAT, 171x512x1x1] %onnx::Conv_941[FLOAT, 171x171x3x3] %onnx::Conv_944[FLOAT, 171x171x3x3] %onnx::Conv_947[FLOAT, 170x170x3x3] %onnx::Conv_950[FLOAT, 170x170x1x1] ) { %onnx::Conv_951 = Identity(%onnx::Conv_918) %onnx::Conv_948 = Identity(%onnx::Conv_918) %onnx::Conv_945 = Identity(%onnx::Conv_909) %onnx::Conv_942 = Identity(%onnx::Conv_909) %onnx::Conv_939 = Identity(%onnx::Conv_909) %onnx::Conv_936 = Identity(%onnx::Conv_918) %onnx::Conv_933 = Identity(%onnx::Conv_918) %onnx::Conv_930 = Identity(%onnx::Conv_909) %onnx::Conv_927 = Identity(%onnx::Conv_909) %onnx::Conv_924 = Identity(%onnx::Conv_909) %onnx::Conv_921 = Identity(%onnx::Conv_918) %onnx::Conv_915 = Identity(%onnx::Conv_909) %onnx::Conv_912 = Identity(%onnx::Conv_909) %onnx::Conv_906 = Identity(%onnx::Conv_870) %onnx::Conv_903 = Identity(%onnx::Conv_870) %onnx::Conv_900 = Identity(%onnx::Conv_870) %onnx::Conv_897 = Identity(%onnx::Conv_864) %onnx::Conv_894 = Identity(%onnx::Conv_864) %onnx::Conv_891 = Identity(%onnx::Conv_870) %onnx::Conv_888 = Identity(%onnx::Conv_870) %onnx::Conv_885 = Identity(%onnx::Conv_870) %onnx::Conv_882 = Identity(%onnx::Conv_864) %onnx::Conv_879 = Identity(%onnx::Conv_864) %onnx::Conv_876 = Identity(%onnx::Conv_870) %onnx::Conv_873 = Identity(%onnx::Conv_870) %onnx::Conv_867 = Identity(%onnx::Conv_864) %onnx::Conv_861 = Identity(%onnx::Conv_828) %onnx::Conv_858 = Identity(%onnx::Conv_828) %onnx::Conv_855 = Identity(%onnx::Conv_819) %onnx::Conv_852 = Identity(%onnx::Conv_819) %onnx::Conv_849 = Identity(%onnx::Conv_819) %onnx::Conv_846 = Identity(%onnx::Conv_828) %onnx::Conv_843 = Identity(%onnx::Conv_828) %onnx::Conv_840 = Identity(%onnx::Conv_819) %onnx::Conv_837 = Identity(%onnx::Conv_819) %onnx::Conv_834 = Identity(%onnx::Conv_819) %onnx::Conv_831 = Identity(%onnx::Conv_828) %onnx::Conv_825 = Identity(%onnx::Conv_819) %onnx::Conv_822 = Identity(%onnx::Conv_819) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_815, %onnx::Conv_816) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_818, %onnx::Conv_819) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_821, %onnx::Conv_822) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_824, %onnx::Conv_825) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.1/Slice_output_0 = Slice(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0, %/layers.1/Constant_3_output_0, %/layers.1/Constant_1_output_0, %/layers.1/Constant_4_output_0) %/layers.1/Constant_5_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/Slice_output_0, %/layers.1/Constant_5_output_0) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_827, %onnx::Conv_828) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_8_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_9_output_0 = Constant[value = <Tensor>]() %/layers.1/Slice_1_output_0 = Slice(%/layers.1/vertex_op.1/maxpool/MaxPool_output_0, %/layers.1/Constant_7_output_0, %/layers.1/Constant_8_output_0, %/layers.1/Constant_6_output_0, %/layers.1/Constant_9_output_0) %/layers.1/Add_2_output_0 = Add(%/layers.1/Slice_1_output_0, %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_2_output_0, %onnx::Conv_830, %onnx::Conv_831) %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_833, %onnx::Conv_834) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_836, %onnx::Conv_837) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_839, %onnx::Conv_840) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.2/Slice_output_0 = Slice(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0, %/layers.2/Constant_3_output_0, %/layers.2/Constant_1_output_0, %/layers.2/Constant_4_output_0) %/layers.2/Constant_5_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/Slice_output_0, %/layers.2/Constant_5_output_0) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_842, %onnx::Conv_843) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_8_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_9_output_0 = Constant[value = <Tensor>]() %/layers.2/Slice_1_output_0 = Slice(%/layers.2/vertex_op.1/maxpool/MaxPool_output_0, %/layers.2/Constant_7_output_0, %/layers.2/Constant_8_output_0, %/layers.2/Constant_6_output_0, %/layers.2/Constant_9_output_0) %/layers.2/Add_2_output_0 = Add(%/layers.2/Slice_1_output_0, %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_2_output_0, %onnx::Conv_845, %onnx::Conv_846) %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_848, %onnx::Conv_849) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_851, %onnx::Conv_852) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_854, %onnx::Conv_855) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.3/Slice_output_0 = Slice(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0, %/layers.3/Constant_3_output_0, %/layers.3/Constant_1_output_0, %/layers.3/Constant_4_output_0) %/layers.3/Constant_5_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/Slice_output_0, %/layers.3/Constant_5_output_0) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_857, %onnx::Conv_858) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_8_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_9_output_0 = Constant[value = <Tensor>]() %/layers.3/Slice_1_output_0 = Slice(%/layers.3/vertex_op.1/maxpool/MaxPool_output_0, %/layers.3/Constant_7_output_0, %/layers.3/Constant_8_output_0, %/layers.3/Constant_6_output_0, %/layers.3/Constant_9_output_0) %/layers.3/Add_2_output_0 = Add(%/layers.3/Slice_1_output_0, %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_2_output_0, %onnx::Conv_860, %onnx::Conv_861) %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Concat_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_863, %onnx::Conv_864) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_866, %onnx::Conv_867) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.5/Slice_output_0 = Slice(%/layers.5/vertex_op.1/maxpool/MaxPool_output_0, %/layers.5/Constant_2_output_0, %/layers.5/Constant_3_output_0, %/layers.5/Constant_1_output_0, %/layers.5/Constant_4_output_0) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Slice_output_0, %onnx::Conv_869, %onnx::Conv_870) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_8_output_0 = Constant[value = <Tensor>]() %/layers.5/Slice_1_output_0 = Slice(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_6_output_0, %/layers.5/Constant_7_output_0, %/layers.5/Constant_5_output_0, %/layers.5/Constant_8_output_0) %/layers.5/Constant_9_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/Slice_1_output_0, %/layers.5/Constant_9_output_0) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_872, %onnx::Conv_873) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Add_2_output_0 = Add(%/layers.5/Slice_output_0, %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_2_output_0, %onnx::Conv_875, %onnx::Conv_876) %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_878, %onnx::Conv_879) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_881, %onnx::Conv_882) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.6/Slice_output_0 = Slice(%/layers.6/vertex_op.1/maxpool/MaxPool_output_0, %/layers.6/Constant_2_output_0, %/layers.6/Constant_3_output_0, %/layers.6/Constant_1_output_0, %/layers.6/Constant_4_output_0) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Slice_output_0, %onnx::Conv_884, %onnx::Conv_885) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_8_output_0 = Constant[value = <Tensor>]() %/layers.6/Slice_1_output_0 = Slice(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_6_output_0, %/layers.6/Constant_7_output_0, %/layers.6/Constant_5_output_0, %/layers.6/Constant_8_output_0) %/layers.6/Constant_9_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/Slice_1_output_0, %/layers.6/Constant_9_output_0) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_887, %onnx::Conv_888) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Add_2_output_0 = Add(%/layers.6/Slice_output_0, %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_2_output_0, %onnx::Conv_890, %onnx::Conv_891) %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_893, %onnx::Conv_894) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_896, %onnx::Conv_897) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.7/Slice_output_0 = Slice(%/layers.7/vertex_op.1/maxpool/MaxPool_output_0, %/layers.7/Constant_2_output_0, %/layers.7/Constant_3_output_0, %/layers.7/Constant_1_output_0, %/layers.7/Constant_4_output_0) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Slice_output_0, %onnx::Conv_899, %onnx::Conv_900) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_8_output_0 = Constant[value = <Tensor>]() %/layers.7/Slice_1_output_0 = Slice(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_6_output_0, %/layers.7/Constant_7_output_0, %/layers.7/Constant_5_output_0, %/layers.7/Constant_8_output_0) %/layers.7/Constant_9_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/Slice_1_output_0, %/layers.7/Constant_9_output_0) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_902, %onnx::Conv_903) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Add_2_output_0 = Add(%/layers.7/Slice_output_0, %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_2_output_0, %onnx::Conv_905, %onnx::Conv_906) %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Concat_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_908, %onnx::Conv_909) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_911, %onnx::Conv_912) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_914, %onnx::Conv_915) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.9/Slice_output_0 = Slice(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0, %/layers.9/Constant_3_output_0, %/layers.9/Constant_1_output_0, %/layers.9/Constant_4_output_0) %/layers.9/Constant_5_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/Slice_output_0, %/layers.9/Constant_5_output_0) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_917, %onnx::Conv_918) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_8_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_9_output_0 = Constant[value = <Tensor>]() %/layers.9/Slice_1_output_0 = Slice(%/layers.9/vertex_op.1/maxpool/MaxPool_output_0, %/layers.9/Constant_7_output_0, %/layers.9/Constant_8_output_0, %/layers.9/Constant_6_output_0, %/layers.9/Constant_9_output_0) %/layers.9/Add_2_output_0 = Add(%/layers.9/Slice_1_output_0, %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_2_output_0, %onnx::Conv_920, %onnx::Conv_921) %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_923, %onnx::Conv_924) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_926, %onnx::Conv_927) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_929, %onnx::Conv_930) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.10/Slice_output_0 = Slice(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0, %/layers.10/Constant_3_output_0, %/layers.10/Constant_1_output_0, %/layers.10/Constant_4_output_0) %/layers.10/Constant_5_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/Slice_output_0, %/layers.10/Constant_5_output_0) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_932, %onnx::Conv_933) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_8_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_9_output_0 = Constant[value = <Tensor>]() %/layers.10/Slice_1_output_0 = Slice(%/layers.10/vertex_op.1/maxpool/MaxPool_output_0, %/layers.10/Constant_7_output_0, %/layers.10/Constant_8_output_0, %/layers.10/Constant_6_output_0, %/layers.10/Constant_9_output_0) %/layers.10/Add_2_output_0 = Add(%/layers.10/Slice_1_output_0, %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_2_output_0, %onnx::Conv_935, %onnx::Conv_936) %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_938, %onnx::Conv_939) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_941, %onnx::Conv_942) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_944, %onnx::Conv_945) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.11/Slice_output_0 = Slice(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0, %/layers.11/Constant_3_output_0, %/layers.11/Constant_1_output_0, %/layers.11/Constant_4_output_0) %/layers.11/Constant_5_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/Slice_output_0, %/layers.11/Constant_5_output_0) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_947, %onnx::Conv_948) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_8_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_9_output_0 = Constant[value = <Tensor>]() %/layers.11/Slice_1_output_0 = Slice(%/layers.11/vertex_op.1/maxpool/MaxPool_output_0, %/layers.11/Constant_7_output_0, %/layers.11/Constant_8_output_0, %/layers.11/Constant_6_output_0, %/layers.11/Constant_9_output_0) %/layers.11/Add_2_output_0 = Add(%/layers.11/Slice_1_output_0, %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_2_output_0, %onnx::Conv_950, %onnx::Conv_951) %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Concat_output_0) %813 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %813 }
val_accuracy
91.195911
1,046,370,048
3,518,529
{'zcp_epe_nas': 80.77352973368845, 'zcp_fisher': 7.835075378417969, 'zcp_flops': 16741920768.0, 'zcp_grad_norm': 54.803680419921875, 'zcp_grasp': 1.724456787109375, 'zcp_jacov': -16.06059521967977, 'zcp_l2_norm': 686.9786376953125, 'zcp_nwot': 215.29204436647802, 'zcp_params': 3518529.0, 'zcp_plain': 0.012419527396559, 'zcp_snip': 296.6269226074219, 'zcp_synflow': 109.4974429575934, 'zcp_zen': 88.73268127441406, 'zcp_val_accuracy': 0.9189703464508051}
NASBench101_99454
NASBench101
99454
3c3a0381927ddf62fc5595f8da90fb74
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_977[FLOAT, 128x3x3x3] %onnx::Conv_978[FLOAT, 128] %onnx::Conv_980[FLOAT, 128x128x1x1] %onnx::Conv_983[FLOAT, 128x128x1x1] %onnx::Conv_986[FLOAT, 128x128x1x1] %onnx::Conv_989[FLOAT, 128x128x1x1] %onnx::Conv_992[FLOAT, 128x128x3x3] %onnx::Conv_995[FLOAT, 128x128x1x1] %onnx::Conv_998[FLOAT, 128x128x1x1] %onnx::Conv_1001[FLOAT, 128x128x1x1] %onnx::Conv_1004[FLOAT, 128x128x1x1] %onnx::Conv_1007[FLOAT, 128x128x1x1] %onnx::Conv_1010[FLOAT, 128x128x1x1] %onnx::Conv_1013[FLOAT, 128x128x3x3] %onnx::Conv_1016[FLOAT, 128x128x1x1] %onnx::Conv_1019[FLOAT, 128x128x1x1] %onnx::Conv_1022[FLOAT, 128x128x1x1] %onnx::Conv_1025[FLOAT, 128x128x1x1] %onnx::Conv_1028[FLOAT, 128x128x1x1] %onnx::Conv_1031[FLOAT, 128x128x1x1] %onnx::Conv_1034[FLOAT, 128x128x3x3] %onnx::Conv_1037[FLOAT, 128x128x1x1] %onnx::Conv_1040[FLOAT, 128x128x1x1] %onnx::Conv_1043[FLOAT, 256x128x1x1] %onnx::Conv_1044[FLOAT, 256] %onnx::Conv_1046[FLOAT, 256x256x1x1] %onnx::Conv_1049[FLOAT, 256x128x1x1] %onnx::Conv_1052[FLOAT, 256x256x1x1] %onnx::Conv_1055[FLOAT, 256x256x3x3] %onnx::Conv_1058[FLOAT, 256x256x1x1] %onnx::Conv_1061[FLOAT, 256x256x1x1] %onnx::Conv_1064[FLOAT, 256x256x1x1] %onnx::Conv_1067[FLOAT, 256x256x1x1] %onnx::Conv_1070[FLOAT, 256x256x1x1] %onnx::Conv_1073[FLOAT, 256x256x1x1] %onnx::Conv_1076[FLOAT, 256x256x3x3] %onnx::Conv_1079[FLOAT, 256x256x1x1] %onnx::Conv_1082[FLOAT, 256x256x1x1] %onnx::Conv_1085[FLOAT, 256x256x1x1] %onnx::Conv_1088[FLOAT, 256x256x1x1] %onnx::Conv_1091[FLOAT, 256x256x1x1] %onnx::Conv_1094[FLOAT, 256x256x1x1] %onnx::Conv_1097[FLOAT, 256x256x3x3] %onnx::Conv_1100[FLOAT, 256x256x1x1] %onnx::Conv_1103[FLOAT, 256x256x1x1] %onnx::Conv_1106[FLOAT, 512x256x1x1] %onnx::Conv_1107[FLOAT, 512] %onnx::Conv_1109[FLOAT, 512x512x1x1] %onnx::Conv_1112[FLOAT, 512x256x1x1] %onnx::Conv_1115[FLOAT, 512x512x1x1] %onnx::Conv_1118[FLOAT, 512x512x3x3] %onnx::Conv_1121[FLOAT, 512x512x1x1] %onnx::Conv_1124[FLOAT, 512x512x1x1] %onnx::Conv_1127[FLOAT, 512x512x1x1] %onnx::Conv_1130[FLOAT, 512x512x1x1] %onnx::Conv_1133[FLOAT, 512x512x1x1] %onnx::Conv_1136[FLOAT, 512x512x1x1] %onnx::Conv_1139[FLOAT, 512x512x3x3] %onnx::Conv_1142[FLOAT, 512x512x1x1] %onnx::Conv_1145[FLOAT, 512x512x1x1] %onnx::Conv_1148[FLOAT, 512x512x1x1] %onnx::Conv_1151[FLOAT, 512x512x1x1] %onnx::Conv_1154[FLOAT, 512x512x1x1] %onnx::Conv_1157[FLOAT, 512x512x1x1] %onnx::Conv_1160[FLOAT, 512x512x3x3] %onnx::Conv_1163[FLOAT, 512x512x1x1] %onnx::Conv_1166[FLOAT, 512x512x1x1] ) { %onnx::Conv_1167 = Identity(%onnx::Conv_1107) %onnx::Conv_1164 = Identity(%onnx::Conv_1107) %onnx::Conv_1161 = Identity(%onnx::Conv_1107) %onnx::Conv_1158 = Identity(%onnx::Conv_1107) %onnx::Conv_1155 = Identity(%onnx::Conv_1107) %onnx::Conv_1152 = Identity(%onnx::Conv_1107) %onnx::Conv_1149 = Identity(%onnx::Conv_1107) %onnx::Conv_1146 = Identity(%onnx::Conv_1107) %onnx::Conv_1143 = Identity(%onnx::Conv_1107) %onnx::Conv_1140 = Identity(%onnx::Conv_1107) %onnx::Conv_1137 = Identity(%onnx::Conv_1107) %onnx::Conv_1134 = Identity(%onnx::Conv_1107) %onnx::Conv_1131 = Identity(%onnx::Conv_1107) %onnx::Conv_1128 = Identity(%onnx::Conv_1107) %onnx::Conv_1125 = Identity(%onnx::Conv_1107) %onnx::Conv_1122 = Identity(%onnx::Conv_1107) %onnx::Conv_1119 = Identity(%onnx::Conv_1107) %onnx::Conv_1116 = Identity(%onnx::Conv_1107) %onnx::Conv_1113 = Identity(%onnx::Conv_1107) %onnx::Conv_1110 = Identity(%onnx::Conv_1107) %onnx::Conv_1104 = Identity(%onnx::Conv_1044) %onnx::Conv_1101 = Identity(%onnx::Conv_1044) %onnx::Conv_1098 = Identity(%onnx::Conv_1044) %onnx::Conv_1095 = Identity(%onnx::Conv_1044) %onnx::Conv_1092 = Identity(%onnx::Conv_1044) %onnx::Conv_1089 = Identity(%onnx::Conv_1044) %onnx::Conv_1086 = Identity(%onnx::Conv_1044) %onnx::Conv_1083 = Identity(%onnx::Conv_1044) %onnx::Conv_1080 = Identity(%onnx::Conv_1044) %onnx::Conv_1077 = Identity(%onnx::Conv_1044) %onnx::Conv_1074 = Identity(%onnx::Conv_1044) %onnx::Conv_1071 = Identity(%onnx::Conv_1044) %onnx::Conv_1068 = Identity(%onnx::Conv_1044) %onnx::Conv_1065 = Identity(%onnx::Conv_1044) %onnx::Conv_1062 = Identity(%onnx::Conv_1044) %onnx::Conv_1059 = Identity(%onnx::Conv_1044) %onnx::Conv_1056 = Identity(%onnx::Conv_1044) %onnx::Conv_1053 = Identity(%onnx::Conv_1044) %onnx::Conv_1050 = Identity(%onnx::Conv_1044) %onnx::Conv_1047 = Identity(%onnx::Conv_1044) %onnx::Conv_1041 = Identity(%onnx::Conv_978) %onnx::Conv_1038 = Identity(%onnx::Conv_978) %onnx::Conv_1035 = Identity(%onnx::Conv_978) %onnx::Conv_1032 = Identity(%onnx::Conv_978) %onnx::Conv_1029 = Identity(%onnx::Conv_978) %onnx::Conv_1026 = Identity(%onnx::Conv_978) %onnx::Conv_1023 = Identity(%onnx::Conv_978) %onnx::Conv_1020 = Identity(%onnx::Conv_978) %onnx::Conv_1017 = Identity(%onnx::Conv_978) %onnx::Conv_1014 = Identity(%onnx::Conv_978) %onnx::Conv_1011 = Identity(%onnx::Conv_978) %onnx::Conv_1008 = Identity(%onnx::Conv_978) %onnx::Conv_1005 = Identity(%onnx::Conv_978) %onnx::Conv_1002 = Identity(%onnx::Conv_978) %onnx::Conv_999 = Identity(%onnx::Conv_978) %onnx::Conv_996 = Identity(%onnx::Conv_978) %onnx::Conv_993 = Identity(%onnx::Conv_978) %onnx::Conv_990 = Identity(%onnx::Conv_978) %onnx::Conv_987 = Identity(%onnx::Conv_978) %onnx::Conv_984 = Identity(%onnx::Conv_978) %onnx::Conv_981 = Identity(%onnx::Conv_978) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_977, %onnx::Conv_978) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_980, %onnx::Conv_981) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_983, %onnx::Conv_984) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_986, %onnx::Conv_987) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/Add_2_output_0 = Add(%/layers.1/Add_1_output_0, %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_2_output_0, %onnx::Conv_989, %onnx::Conv_990) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_3_output_0 = Add(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_3_output_0, %onnx::Conv_992, %onnx::Conv_993) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_4_output_0 = Add(%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_3_output_0) %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_4_output_0, %onnx::Conv_995, %onnx::Conv_996) %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_5_output_0 = Add(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_4_output_0) %/layers.1/Add_6_output_0 = Add(%/layers.1/Add_5_output_0, %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/Add_7_output_0 = Add(%/layers.1/Add_6_output_0, %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_7_output_0, %onnx::Conv_998, %onnx::Conv_999) %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1001, %onnx::Conv_1002) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_1004, %onnx::Conv_1005) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1007, %onnx::Conv_1008) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/Add_2_output_0 = Add(%/layers.2/Add_1_output_0, %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_2_output_0, %onnx::Conv_1010, %onnx::Conv_1011) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_3_output_0 = Add(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_3_output_0, %onnx::Conv_1013, %onnx::Conv_1014) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_4_output_0 = Add(%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_3_output_0) %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_4_output_0, %onnx::Conv_1016, %onnx::Conv_1017) %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_5_output_0 = Add(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_4_output_0) %/layers.2/Add_6_output_0 = Add(%/layers.2/Add_5_output_0, %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/Add_7_output_0 = Add(%/layers.2/Add_6_output_0, %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_7_output_0, %onnx::Conv_1019, %onnx::Conv_1020) %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1022, %onnx::Conv_1023) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_1025, %onnx::Conv_1026) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1028, %onnx::Conv_1029) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/Add_2_output_0 = Add(%/layers.3/Add_1_output_0, %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_2_output_0, %onnx::Conv_1031, %onnx::Conv_1032) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_3_output_0 = Add(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_3_output_0, %onnx::Conv_1034, %onnx::Conv_1035) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_4_output_0 = Add(%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_3_output_0) %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_4_output_0, %onnx::Conv_1037, %onnx::Conv_1038) %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_5_output_0 = Add(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_4_output_0) %/layers.3/Add_6_output_0 = Add(%/layers.3/Add_5_output_0, %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/Add_7_output_0 = Add(%/layers.3/Add_6_output_0, %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_7_output_0, %onnx::Conv_1040, %onnx::Conv_1041) %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_1043, %onnx::Conv_1044) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_1046, %onnx::Conv_1047) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_1049, %onnx::Conv_1050) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/Add_2_output_0 = Add(%/layers.5/Add_1_output_0, %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_2_output_0, %onnx::Conv_1052, %onnx::Conv_1053) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_3_output_0 = Add(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_3_output_0, %onnx::Conv_1055, %onnx::Conv_1056) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_4_output_0 = Add(%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_3_output_0) %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_4_output_0, %onnx::Conv_1058, %onnx::Conv_1059) %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_5_output_0 = Add(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_4_output_0) %/layers.5/Add_6_output_0 = Add(%/layers.5/Add_5_output_0, %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/Add_7_output_0 = Add(%/layers.5/Add_6_output_0, %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_7_output_0, %onnx::Conv_1061, %onnx::Conv_1062) %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1064, %onnx::Conv_1065) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_1067, %onnx::Conv_1068) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1070, %onnx::Conv_1071) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/Add_2_output_0 = Add(%/layers.6/Add_1_output_0, %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_2_output_0, %onnx::Conv_1073, %onnx::Conv_1074) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_3_output_0 = Add(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_3_output_0, %onnx::Conv_1076, %onnx::Conv_1077) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_4_output_0 = Add(%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_3_output_0) %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_4_output_0, %onnx::Conv_1079, %onnx::Conv_1080) %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_5_output_0 = Add(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_4_output_0) %/layers.6/Add_6_output_0 = Add(%/layers.6/Add_5_output_0, %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/Add_7_output_0 = Add(%/layers.6/Add_6_output_0, %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_7_output_0, %onnx::Conv_1082, %onnx::Conv_1083) %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1085, %onnx::Conv_1086) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_1088, %onnx::Conv_1089) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1091, %onnx::Conv_1092) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/Add_2_output_0 = Add(%/layers.7/Add_1_output_0, %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_2_output_0, %onnx::Conv_1094, %onnx::Conv_1095) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_3_output_0 = Add(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_3_output_0, %onnx::Conv_1097, %onnx::Conv_1098) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_4_output_0 = Add(%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_3_output_0) %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_4_output_0, %onnx::Conv_1100, %onnx::Conv_1101) %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_5_output_0 = Add(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_4_output_0) %/layers.7/Add_6_output_0 = Add(%/layers.7/Add_5_output_0, %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/Add_7_output_0 = Add(%/layers.7/Add_6_output_0, %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_7_output_0, %onnx::Conv_1103, %onnx::Conv_1104) %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1106, %onnx::Conv_1107) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_1109, %onnx::Conv_1110) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1112, %onnx::Conv_1113) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/Add_2_output_0 = Add(%/layers.9/Add_1_output_0, %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_2_output_0, %onnx::Conv_1115, %onnx::Conv_1116) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_3_output_0 = Add(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_3_output_0, %onnx::Conv_1118, %onnx::Conv_1119) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_4_output_0 = Add(%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_3_output_0) %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_4_output_0, %onnx::Conv_1121, %onnx::Conv_1122) %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_5_output_0 = Add(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_4_output_0) %/layers.9/Add_6_output_0 = Add(%/layers.9/Add_5_output_0, %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/Add_7_output_0 = Add(%/layers.9/Add_6_output_0, %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_7_output_0, %onnx::Conv_1124, %onnx::Conv_1125) %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1127, %onnx::Conv_1128) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_1130, %onnx::Conv_1131) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1133, %onnx::Conv_1134) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/Add_2_output_0 = Add(%/layers.10/Add_1_output_0, %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_2_output_0, %onnx::Conv_1136, %onnx::Conv_1137) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_3_output_0 = Add(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_3_output_0, %onnx::Conv_1139, %onnx::Conv_1140) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_4_output_0 = Add(%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_3_output_0) %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_4_output_0, %onnx::Conv_1142, %onnx::Conv_1143) %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_5_output_0 = Add(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_4_output_0) %/layers.10/Add_6_output_0 = Add(%/layers.10/Add_5_output_0, %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/Add_7_output_0 = Add(%/layers.10/Add_6_output_0, %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_7_output_0, %onnx::Conv_1145, %onnx::Conv_1146) %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1148, %onnx::Conv_1149) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_1151, %onnx::Conv_1152) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1154, %onnx::Conv_1155) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/Add_2_output_0 = Add(%/layers.11/Add_1_output_0, %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_2_output_0, %onnx::Conv_1157, %onnx::Conv_1158) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_3_output_0 = Add(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_3_output_0, %onnx::Conv_1160, %onnx::Conv_1161) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_4_output_0 = Add(%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_3_output_0) %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_4_output_0, %onnx::Conv_1163, %onnx::Conv_1164) %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_5_output_0 = Add(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_4_output_0) %/layers.11/Add_6_output_0 = Add(%/layers.11/Add_5_output_0, %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/Add_7_output_0 = Add(%/layers.11/Add_6_output_0, %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_7_output_0, %onnx::Conv_1166, %onnx::Conv_1167) %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %975 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %975 }
val_accuracy
88.261217
4,509,411,328
15,201,674
{'zcp_epe_nas': 94.78592584111004, 'zcp_fisher': 623.8289184570312, 'zcp_flops': 72150581248.0, 'zcp_grad_norm': 518.290771484375, 'zcp_grasp': 1323.734375, 'zcp_jacov': -16.04170082889779, 'zcp_l2_norm': 1454.6741943359375, 'zcp_nwot': 237.67199123576233, 'zcp_params': 15201674.0, 'zcp_plain': 0.026626124978065, 'zcp_snip': 3562.501220703125, 'zcp_synflow': 172.9130097501011, 'zcp_zen': 115.35139465332031, 'zcp_val_accuracy': 0.9209735393524171}
NASBench101_300842
NASBench101
300842
b6048c30cee943c6d0ddebcdfe11fd57
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_725[FLOAT, 128x3x3x3] %onnx::Conv_726[FLOAT, 128] %onnx::Conv_728[FLOAT, 64x128x1x1] %onnx::Conv_729[FLOAT, 64] %onnx::Conv_731[FLOAT, 64x64x1x1] %onnx::Conv_734[FLOAT, 64x64x1x1] %onnx::Conv_737[FLOAT, 64x128x1x1] %onnx::Conv_740[FLOAT, 64x64x1x1] %onnx::Conv_743[FLOAT, 64x128x1x1] %onnx::Conv_746[FLOAT, 64x64x1x1] %onnx::Conv_749[FLOAT, 64x64x1x1] %onnx::Conv_752[FLOAT, 64x128x1x1] %onnx::Conv_755[FLOAT, 64x64x1x1] %onnx::Conv_758[FLOAT, 64x128x1x1] %onnx::Conv_761[FLOAT, 64x64x1x1] %onnx::Conv_764[FLOAT, 64x64x1x1] %onnx::Conv_767[FLOAT, 64x128x1x1] %onnx::Conv_770[FLOAT, 64x64x1x1] %onnx::Conv_773[FLOAT, 128x128x1x1] %onnx::Conv_776[FLOAT, 128x128x1x1] %onnx::Conv_779[FLOAT, 128x128x1x1] %onnx::Conv_782[FLOAT, 128x128x1x1] %onnx::Conv_785[FLOAT, 128x128x1x1] %onnx::Conv_788[FLOAT, 128x256x1x1] %onnx::Conv_791[FLOAT, 128x128x1x1] %onnx::Conv_794[FLOAT, 128x128x1x1] %onnx::Conv_797[FLOAT, 128x256x1x1] %onnx::Conv_800[FLOAT, 128x128x1x1] %onnx::Conv_803[FLOAT, 128x256x1x1] %onnx::Conv_806[FLOAT, 128x128x1x1] %onnx::Conv_809[FLOAT, 128x128x1x1] %onnx::Conv_812[FLOAT, 128x256x1x1] %onnx::Conv_815[FLOAT, 128x128x1x1] %onnx::Conv_818[FLOAT, 256x256x1x1] %onnx::Conv_819[FLOAT, 256] %onnx::Conv_821[FLOAT, 256x256x1x1] %onnx::Conv_824[FLOAT, 256x256x1x1] %onnx::Conv_827[FLOAT, 256x256x1x1] %onnx::Conv_830[FLOAT, 256x256x1x1] %onnx::Conv_833[FLOAT, 256x512x1x1] %onnx::Conv_836[FLOAT, 256x256x1x1] %onnx::Conv_839[FLOAT, 256x256x1x1] %onnx::Conv_842[FLOAT, 256x512x1x1] %onnx::Conv_845[FLOAT, 256x256x1x1] %onnx::Conv_848[FLOAT, 256x512x1x1] %onnx::Conv_851[FLOAT, 256x256x1x1] %onnx::Conv_854[FLOAT, 256x256x1x1] %onnx::Conv_857[FLOAT, 256x512x1x1] %onnx::Conv_860[FLOAT, 256x256x1x1] ) { %onnx::Conv_861 = Identity(%onnx::Conv_819) %onnx::Conv_858 = Identity(%onnx::Conv_819) %onnx::Conv_855 = Identity(%onnx::Conv_819) %onnx::Conv_852 = Identity(%onnx::Conv_819) %onnx::Conv_849 = Identity(%onnx::Conv_819) %onnx::Conv_846 = Identity(%onnx::Conv_819) %onnx::Conv_843 = Identity(%onnx::Conv_819) %onnx::Conv_840 = Identity(%onnx::Conv_819) %onnx::Conv_837 = Identity(%onnx::Conv_819) %onnx::Conv_834 = Identity(%onnx::Conv_819) %onnx::Conv_831 = Identity(%onnx::Conv_819) %onnx::Conv_828 = Identity(%onnx::Conv_819) %onnx::Conv_825 = Identity(%onnx::Conv_819) %onnx::Conv_822 = Identity(%onnx::Conv_819) %onnx::Conv_816 = Identity(%onnx::Conv_726) %onnx::Conv_813 = Identity(%onnx::Conv_726) %onnx::Conv_810 = Identity(%onnx::Conv_726) %onnx::Conv_807 = Identity(%onnx::Conv_726) %onnx::Conv_804 = Identity(%onnx::Conv_726) %onnx::Conv_801 = Identity(%onnx::Conv_726) %onnx::Conv_798 = Identity(%onnx::Conv_726) %onnx::Conv_795 = Identity(%onnx::Conv_726) %onnx::Conv_792 = Identity(%onnx::Conv_726) %onnx::Conv_789 = Identity(%onnx::Conv_726) %onnx::Conv_786 = Identity(%onnx::Conv_726) %onnx::Conv_783 = Identity(%onnx::Conv_726) %onnx::Conv_780 = Identity(%onnx::Conv_726) %onnx::Conv_777 = Identity(%onnx::Conv_726) %onnx::Conv_774 = Identity(%onnx::Conv_726) %onnx::Conv_771 = Identity(%onnx::Conv_729) %onnx::Conv_768 = Identity(%onnx::Conv_729) %onnx::Conv_765 = Identity(%onnx::Conv_729) %onnx::Conv_762 = Identity(%onnx::Conv_729) %onnx::Conv_759 = Identity(%onnx::Conv_729) %onnx::Conv_756 = Identity(%onnx::Conv_729) %onnx::Conv_753 = Identity(%onnx::Conv_729) %onnx::Conv_750 = Identity(%onnx::Conv_729) %onnx::Conv_747 = Identity(%onnx::Conv_729) %onnx::Conv_744 = Identity(%onnx::Conv_729) %onnx::Conv_741 = Identity(%onnx::Conv_729) %onnx::Conv_738 = Identity(%onnx::Conv_729) %onnx::Conv_735 = Identity(%onnx::Conv_729) %onnx::Conv_732 = Identity(%onnx::Conv_729) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_725, %onnx::Conv_726) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_728, %onnx::Conv_729) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0) %/layers.1/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/vertex_op.1/maxpool/MaxPool_output_0) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_731, %onnx::Conv_732) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_734, %onnx::Conv_735) %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_737, %onnx::Conv_738) %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.2/maxpool/MaxPool_output_0, %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/Add_2_output_0 = Add(%/layers.1/Add_1_output_0, %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_2_output_0, %onnx::Conv_740, %onnx::Conv_741) %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_743, %onnx::Conv_744) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0) %/layers.2/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/vertex_op.1/maxpool/MaxPool_output_0) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_746, %onnx::Conv_747) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_749, %onnx::Conv_750) %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_752, %onnx::Conv_753) %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.2/maxpool/MaxPool_output_0, %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/Add_2_output_0 = Add(%/layers.2/Add_1_output_0, %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_2_output_0, %onnx::Conv_755, %onnx::Conv_756) %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_758, %onnx::Conv_759) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0) %/layers.3/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/vertex_op.1/maxpool/MaxPool_output_0) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_761, %onnx::Conv_762) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_764, %onnx::Conv_765) %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_767, %onnx::Conv_768) %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.2/maxpool/MaxPool_output_0, %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/Add_2_output_0 = Add(%/layers.3/Add_1_output_0, %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_2_output_0, %onnx::Conv_770, %onnx::Conv_771) %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Concat_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_773, %onnx::Conv_774) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0) %/layers.5/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/vertex_op.1/maxpool/MaxPool_output_0) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_776, %onnx::Conv_777) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_779, %onnx::Conv_780) %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_782, %onnx::Conv_783) %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.2/maxpool/MaxPool_output_0, %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/Add_2_output_0 = Add(%/layers.5/Add_1_output_0, %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_2_output_0, %onnx::Conv_785, %onnx::Conv_786) %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_788, %onnx::Conv_789) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0) %/layers.6/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/vertex_op.1/maxpool/MaxPool_output_0) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_791, %onnx::Conv_792) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_794, %onnx::Conv_795) %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_797, %onnx::Conv_798) %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.2/maxpool/MaxPool_output_0, %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/Add_2_output_0 = Add(%/layers.6/Add_1_output_0, %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_2_output_0, %onnx::Conv_800, %onnx::Conv_801) %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_803, %onnx::Conv_804) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0) %/layers.7/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/vertex_op.1/maxpool/MaxPool_output_0) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_806, %onnx::Conv_807) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_809, %onnx::Conv_810) %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_812, %onnx::Conv_813) %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.2/maxpool/MaxPool_output_0, %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/Add_2_output_0 = Add(%/layers.7/Add_1_output_0, %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_2_output_0, %onnx::Conv_815, %onnx::Conv_816) %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Concat_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_818, %onnx::Conv_819) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0) %/layers.9/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/vertex_op.1/maxpool/MaxPool_output_0) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_821, %onnx::Conv_822) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_824, %onnx::Conv_825) %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_827, %onnx::Conv_828) %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.2/maxpool/MaxPool_output_0, %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/Add_2_output_0 = Add(%/layers.9/Add_1_output_0, %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_2_output_0, %onnx::Conv_830, %onnx::Conv_831) %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_833, %onnx::Conv_834) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0) %/layers.10/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/vertex_op.1/maxpool/MaxPool_output_0) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_836, %onnx::Conv_837) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_839, %onnx::Conv_840) %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_842, %onnx::Conv_843) %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.2/maxpool/MaxPool_output_0, %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/Add_2_output_0 = Add(%/layers.10/Add_1_output_0, %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_2_output_0, %onnx::Conv_845, %onnx::Conv_846) %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_848, %onnx::Conv_849) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0) %/layers.11/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/vertex_op.1/maxpool/MaxPool_output_0) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_851, %onnx::Conv_852) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_854, %onnx::Conv_855) %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_857, %onnx::Conv_858) %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.2/maxpool/MaxPool_output_0, %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/Add_2_output_0 = Add(%/layers.11/Add_1_output_0, %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_2_output_0, %onnx::Conv_860, %onnx::Conv_861) %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Concat_output_0) %723 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %723 }
val_accuracy
89.342946
516,827,136
1,664,778
{'zcp_epe_nas': 82.95405010172253, 'zcp_fisher': 11.567314147949219, 'zcp_flops': 8269234176.0, 'zcp_grad_norm': 60.13239288330078, 'zcp_grasp': 4.536376953125, 'zcp_jacov': -16.046829723061784, 'zcp_l2_norm': 845.691162109375, 'zcp_nwot': 221.99864417842815, 'zcp_params': 1664778.0, 'zcp_plain': -0.015186036005616, 'zcp_snip': 358.4125061035156, 'zcp_synflow': 76.26729942685205, 'zcp_zen': 71.43158721923828, 'zcp_val_accuracy': 0.937299668788909}
NASBench101_281766
NASBench101
281766
aa82f8235286685c941b641c3fc22cd2
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_797[FLOAT, 128x3x3x3] %onnx::Conv_798[FLOAT, 128] %onnx::Conv_800[FLOAT, 64x128x1x1] %onnx::Conv_801[FLOAT, 64] %onnx::Conv_803[FLOAT, 64x64x3x3] %onnx::Conv_806[FLOAT, 64x64x3x3] %onnx::Conv_809[FLOAT, 64x128x1x1] %onnx::Conv_812[FLOAT, 64x64x3x3] %onnx::Conv_815[FLOAT, 64x128x1x1] %onnx::Conv_818[FLOAT, 64x64x3x3] %onnx::Conv_821[FLOAT, 64x64x3x3] %onnx::Conv_824[FLOAT, 64x128x1x1] %onnx::Conv_827[FLOAT, 64x64x3x3] %onnx::Conv_830[FLOAT, 64x128x1x1] %onnx::Conv_833[FLOAT, 64x64x3x3] %onnx::Conv_836[FLOAT, 64x64x3x3] %onnx::Conv_839[FLOAT, 64x128x1x1] %onnx::Conv_842[FLOAT, 64x64x3x3] %onnx::Conv_845[FLOAT, 128x128x1x1] %onnx::Conv_848[FLOAT, 128x128x3x3] %onnx::Conv_851[FLOAT, 128x128x3x3] %onnx::Conv_854[FLOAT, 128x128x1x1] %onnx::Conv_857[FLOAT, 128x128x3x3] %onnx::Conv_860[FLOAT, 128x256x1x1] %onnx::Conv_863[FLOAT, 128x128x3x3] %onnx::Conv_866[FLOAT, 128x128x3x3] %onnx::Conv_869[FLOAT, 128x256x1x1] %onnx::Conv_872[FLOAT, 128x128x3x3] %onnx::Conv_875[FLOAT, 128x256x1x1] %onnx::Conv_878[FLOAT, 128x128x3x3] %onnx::Conv_881[FLOAT, 128x128x3x3] %onnx::Conv_884[FLOAT, 128x256x1x1] %onnx::Conv_887[FLOAT, 128x128x3x3] %onnx::Conv_890[FLOAT, 256x256x1x1] %onnx::Conv_891[FLOAT, 256] %onnx::Conv_893[FLOAT, 256x256x3x3] %onnx::Conv_896[FLOAT, 256x256x3x3] %onnx::Conv_899[FLOAT, 256x256x1x1] %onnx::Conv_902[FLOAT, 256x256x3x3] %onnx::Conv_905[FLOAT, 256x512x1x1] %onnx::Conv_908[FLOAT, 256x256x3x3] %onnx::Conv_911[FLOAT, 256x256x3x3] %onnx::Conv_914[FLOAT, 256x512x1x1] %onnx::Conv_917[FLOAT, 256x256x3x3] %onnx::Conv_920[FLOAT, 256x512x1x1] %onnx::Conv_923[FLOAT, 256x256x3x3] %onnx::Conv_926[FLOAT, 256x256x3x3] %onnx::Conv_929[FLOAT, 256x512x1x1] %onnx::Conv_932[FLOAT, 256x256x3x3] ) { %onnx::Conv_933 = Identity(%onnx::Conv_891) %onnx::Conv_930 = Identity(%onnx::Conv_891) %onnx::Conv_927 = Identity(%onnx::Conv_891) %onnx::Conv_924 = Identity(%onnx::Conv_891) %onnx::Conv_921 = Identity(%onnx::Conv_891) %onnx::Conv_918 = Identity(%onnx::Conv_891) %onnx::Conv_915 = Identity(%onnx::Conv_891) %onnx::Conv_912 = Identity(%onnx::Conv_891) %onnx::Conv_909 = Identity(%onnx::Conv_891) %onnx::Conv_906 = Identity(%onnx::Conv_891) %onnx::Conv_903 = Identity(%onnx::Conv_891) %onnx::Conv_900 = Identity(%onnx::Conv_891) %onnx::Conv_897 = Identity(%onnx::Conv_891) %onnx::Conv_894 = Identity(%onnx::Conv_891) %onnx::Conv_888 = Identity(%onnx::Conv_798) %onnx::Conv_885 = Identity(%onnx::Conv_798) %onnx::Conv_882 = Identity(%onnx::Conv_798) %onnx::Conv_879 = Identity(%onnx::Conv_798) %onnx::Conv_876 = Identity(%onnx::Conv_798) %onnx::Conv_873 = Identity(%onnx::Conv_798) %onnx::Conv_870 = Identity(%onnx::Conv_798) %onnx::Conv_867 = Identity(%onnx::Conv_798) %onnx::Conv_864 = Identity(%onnx::Conv_798) %onnx::Conv_861 = Identity(%onnx::Conv_798) %onnx::Conv_858 = Identity(%onnx::Conv_798) %onnx::Conv_855 = Identity(%onnx::Conv_798) %onnx::Conv_852 = Identity(%onnx::Conv_798) %onnx::Conv_849 = Identity(%onnx::Conv_798) %onnx::Conv_846 = Identity(%onnx::Conv_798) %onnx::Conv_843 = Identity(%onnx::Conv_801) %onnx::Conv_840 = Identity(%onnx::Conv_801) %onnx::Conv_837 = Identity(%onnx::Conv_801) %onnx::Conv_834 = Identity(%onnx::Conv_801) %onnx::Conv_831 = Identity(%onnx::Conv_801) %onnx::Conv_828 = Identity(%onnx::Conv_801) %onnx::Conv_825 = Identity(%onnx::Conv_801) %onnx::Conv_822 = Identity(%onnx::Conv_801) %onnx::Conv_819 = Identity(%onnx::Conv_801) %onnx::Conv_816 = Identity(%onnx::Conv_801) %onnx::Conv_813 = Identity(%onnx::Conv_801) %onnx::Conv_810 = Identity(%onnx::Conv_801) %onnx::Conv_807 = Identity(%onnx::Conv_801) %onnx::Conv_804 = Identity(%onnx::Conv_801) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_797, %onnx::Conv_798) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_800, %onnx::Conv_801) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_803, %onnx::Conv_804) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_806, %onnx::Conv_807) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_809, %onnx::Conv_810) %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/Add_3_output_0 = Add(%/layers.1/Add_2_output_0, %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_3_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_4_output_0 = Add(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_3_output_0) %/layers.1/Add_5_output_0 = Add(%/layers.1/Add_4_output_0, %/layers.1/vertex_op.3/maxpool/MaxPool_output_0) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_5_output_0, %onnx::Conv_812, %onnx::Conv_813) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_6_output_0 = Add(%/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_4_output_0) %/layers.1/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_6_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.5/maxpool/MaxPool_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_815, %onnx::Conv_816) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_818, %onnx::Conv_819) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_821, %onnx::Conv_822) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_824, %onnx::Conv_825) %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/Add_3_output_0 = Add(%/layers.2/Add_2_output_0, %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_3_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_4_output_0 = Add(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_3_output_0) %/layers.2/Add_5_output_0 = Add(%/layers.2/Add_4_output_0, %/layers.2/vertex_op.3/maxpool/MaxPool_output_0) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_5_output_0, %onnx::Conv_827, %onnx::Conv_828) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_6_output_0 = Add(%/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_4_output_0) %/layers.2/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_6_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.5/maxpool/MaxPool_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_830, %onnx::Conv_831) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_833, %onnx::Conv_834) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_836, %onnx::Conv_837) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_839, %onnx::Conv_840) %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/Add_3_output_0 = Add(%/layers.3/Add_2_output_0, %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_3_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_4_output_0 = Add(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_3_output_0) %/layers.3/Add_5_output_0 = Add(%/layers.3/Add_4_output_0, %/layers.3/vertex_op.3/maxpool/MaxPool_output_0) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_5_output_0, %onnx::Conv_842, %onnx::Conv_843) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_6_output_0 = Add(%/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_4_output_0) %/layers.3/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_6_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.5/maxpool/MaxPool_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Concat_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_845, %onnx::Conv_846) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_848, %onnx::Conv_849) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_851, %onnx::Conv_852) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_854, %onnx::Conv_855) %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/Add_3_output_0 = Add(%/layers.5/Add_2_output_0, %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_3_output_0) %/layers.5/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_4_output_0 = Add(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_3_output_0) %/layers.5/Add_5_output_0 = Add(%/layers.5/Add_4_output_0, %/layers.5/vertex_op.3/maxpool/MaxPool_output_0) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_5_output_0, %onnx::Conv_857, %onnx::Conv_858) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_6_output_0 = Add(%/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_4_output_0) %/layers.5/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_6_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.5/maxpool/MaxPool_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_860, %onnx::Conv_861) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_863, %onnx::Conv_864) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_866, %onnx::Conv_867) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_869, %onnx::Conv_870) %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/Add_3_output_0 = Add(%/layers.6/Add_2_output_0, %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_3_output_0) %/layers.6/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_4_output_0 = Add(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_3_output_0) %/layers.6/Add_5_output_0 = Add(%/layers.6/Add_4_output_0, %/layers.6/vertex_op.3/maxpool/MaxPool_output_0) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_5_output_0, %onnx::Conv_872, %onnx::Conv_873) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_6_output_0 = Add(%/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_4_output_0) %/layers.6/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_6_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.5/maxpool/MaxPool_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_875, %onnx::Conv_876) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_878, %onnx::Conv_879) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_881, %onnx::Conv_882) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_884, %onnx::Conv_885) %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/Add_3_output_0 = Add(%/layers.7/Add_2_output_0, %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_3_output_0) %/layers.7/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_4_output_0 = Add(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_3_output_0) %/layers.7/Add_5_output_0 = Add(%/layers.7/Add_4_output_0, %/layers.7/vertex_op.3/maxpool/MaxPool_output_0) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_5_output_0, %onnx::Conv_887, %onnx::Conv_888) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_6_output_0 = Add(%/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_4_output_0) %/layers.7/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_6_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.5/maxpool/MaxPool_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Concat_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_890, %onnx::Conv_891) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_893, %onnx::Conv_894) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_896, %onnx::Conv_897) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_899, %onnx::Conv_900) %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/Add_3_output_0 = Add(%/layers.9/Add_2_output_0, %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_3_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_4_output_0 = Add(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_3_output_0) %/layers.9/Add_5_output_0 = Add(%/layers.9/Add_4_output_0, %/layers.9/vertex_op.3/maxpool/MaxPool_output_0) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_5_output_0, %onnx::Conv_902, %onnx::Conv_903) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_6_output_0 = Add(%/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_4_output_0) %/layers.9/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_6_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.5/maxpool/MaxPool_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_905, %onnx::Conv_906) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_908, %onnx::Conv_909) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_911, %onnx::Conv_912) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_914, %onnx::Conv_915) %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/Add_3_output_0 = Add(%/layers.10/Add_2_output_0, %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_3_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_4_output_0 = Add(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_3_output_0) %/layers.10/Add_5_output_0 = Add(%/layers.10/Add_4_output_0, %/layers.10/vertex_op.3/maxpool/MaxPool_output_0) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_5_output_0, %onnx::Conv_917, %onnx::Conv_918) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_6_output_0 = Add(%/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_4_output_0) %/layers.10/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_6_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.5/maxpool/MaxPool_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_920, %onnx::Conv_921) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_923, %onnx::Conv_924) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_926, %onnx::Conv_927) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_929, %onnx::Conv_930) %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/Add_3_output_0 = Add(%/layers.11/Add_2_output_0, %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_3_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_4_output_0 = Add(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_3_output_0) %/layers.11/Add_5_output_0 = Add(%/layers.11/Add_4_output_0, %/layers.11/vertex_op.3/maxpool/MaxPool_output_0) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_5_output_0, %onnx::Conv_932, %onnx::Conv_933) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_6_output_0 = Add(%/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_4_output_0) %/layers.11/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_6_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.5/maxpool/MaxPool_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Concat_output_0) %795 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %795 }
val_accuracy
91.616589
2,328,766,464
7,857,930
{'zcp_epe_nas': 106.3823488035313, 'zcp_fisher': 57.591915130615234, 'zcp_flops': 37260263424.0, 'zcp_grad_norm': 123.53980255126953, 'zcp_grasp': -0.8004150390625, 'zcp_jacov': -16.05513566761241, 'zcp_l2_norm': 844.1649780273438, 'zcp_nwot': 221.33910115456754, 'zcp_params': 7857930.0, 'zcp_plain': 0.040911678224802, 'zcp_snip': 825.3829956054688, 'zcp_synflow': 103.90078649630865, 'zcp_zen': 99.55524444580078, 'zcp_val_accuracy': 0.9144631624221801}
NASBench101_324156
NASBench101
324156
c4236396b065d13d87c4b02b16a6b53d
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_725[FLOAT, 128x3x3x3] %onnx::Conv_726[FLOAT, 128] %onnx::Conv_728[FLOAT, 128x128x1x1] %onnx::Conv_731[FLOAT, 128x128x1x1] %onnx::Conv_734[FLOAT, 128x128x1x1] %onnx::Conv_737[FLOAT, 128x128x1x1] %onnx::Conv_740[FLOAT, 128x128x3x3] %onnx::Conv_743[FLOAT, 128x128x1x1] %onnx::Conv_746[FLOAT, 128x128x1x1] %onnx::Conv_749[FLOAT, 128x128x1x1] %onnx::Conv_752[FLOAT, 128x128x1x1] %onnx::Conv_755[FLOAT, 128x128x3x3] %onnx::Conv_758[FLOAT, 128x128x1x1] %onnx::Conv_761[FLOAT, 128x128x1x1] %onnx::Conv_764[FLOAT, 128x128x1x1] %onnx::Conv_767[FLOAT, 128x128x1x1] %onnx::Conv_770[FLOAT, 128x128x3x3] %onnx::Conv_773[FLOAT, 256x128x1x1] %onnx::Conv_774[FLOAT, 256] %onnx::Conv_776[FLOAT, 256x128x1x1] %onnx::Conv_779[FLOAT, 256x256x1x1] %onnx::Conv_782[FLOAT, 256x128x1x1] %onnx::Conv_785[FLOAT, 256x256x3x3] %onnx::Conv_788[FLOAT, 256x256x1x1] %onnx::Conv_791[FLOAT, 256x256x1x1] %onnx::Conv_794[FLOAT, 256x256x1x1] %onnx::Conv_797[FLOAT, 256x256x1x1] %onnx::Conv_800[FLOAT, 256x256x3x3] %onnx::Conv_803[FLOAT, 256x256x1x1] %onnx::Conv_806[FLOAT, 256x256x1x1] %onnx::Conv_809[FLOAT, 256x256x1x1] %onnx::Conv_812[FLOAT, 256x256x1x1] %onnx::Conv_815[FLOAT, 256x256x3x3] %onnx::Conv_818[FLOAT, 512x256x1x1] %onnx::Conv_819[FLOAT, 512] %onnx::Conv_821[FLOAT, 512x256x1x1] %onnx::Conv_824[FLOAT, 512x512x1x1] %onnx::Conv_827[FLOAT, 512x256x1x1] %onnx::Conv_830[FLOAT, 512x512x3x3] %onnx::Conv_833[FLOAT, 512x512x1x1] %onnx::Conv_836[FLOAT, 512x512x1x1] %onnx::Conv_839[FLOAT, 512x512x1x1] %onnx::Conv_842[FLOAT, 512x512x1x1] %onnx::Conv_845[FLOAT, 512x512x3x3] %onnx::Conv_848[FLOAT, 512x512x1x1] %onnx::Conv_851[FLOAT, 512x512x1x1] %onnx::Conv_854[FLOAT, 512x512x1x1] %onnx::Conv_857[FLOAT, 512x512x1x1] %onnx::Conv_860[FLOAT, 512x512x3x3] ) { %onnx::Conv_861 = Identity(%onnx::Conv_819) %onnx::Conv_858 = Identity(%onnx::Conv_819) %onnx::Conv_855 = Identity(%onnx::Conv_819) %onnx::Conv_852 = Identity(%onnx::Conv_819) %onnx::Conv_849 = Identity(%onnx::Conv_819) %onnx::Conv_846 = Identity(%onnx::Conv_819) %onnx::Conv_843 = Identity(%onnx::Conv_819) %onnx::Conv_840 = Identity(%onnx::Conv_819) %onnx::Conv_837 = Identity(%onnx::Conv_819) %onnx::Conv_834 = Identity(%onnx::Conv_819) %onnx::Conv_831 = Identity(%onnx::Conv_819) %onnx::Conv_828 = Identity(%onnx::Conv_819) %onnx::Conv_825 = Identity(%onnx::Conv_819) %onnx::Conv_822 = Identity(%onnx::Conv_819) %onnx::Conv_816 = Identity(%onnx::Conv_774) %onnx::Conv_813 = Identity(%onnx::Conv_774) %onnx::Conv_810 = Identity(%onnx::Conv_774) %onnx::Conv_807 = Identity(%onnx::Conv_774) %onnx::Conv_804 = Identity(%onnx::Conv_774) %onnx::Conv_801 = Identity(%onnx::Conv_774) %onnx::Conv_798 = Identity(%onnx::Conv_774) %onnx::Conv_795 = Identity(%onnx::Conv_774) %onnx::Conv_792 = Identity(%onnx::Conv_774) %onnx::Conv_789 = Identity(%onnx::Conv_774) %onnx::Conv_786 = Identity(%onnx::Conv_774) %onnx::Conv_783 = Identity(%onnx::Conv_774) %onnx::Conv_780 = Identity(%onnx::Conv_774) %onnx::Conv_777 = Identity(%onnx::Conv_774) %onnx::Conv_771 = Identity(%onnx::Conv_726) %onnx::Conv_768 = Identity(%onnx::Conv_726) %onnx::Conv_765 = Identity(%onnx::Conv_726) %onnx::Conv_762 = Identity(%onnx::Conv_726) %onnx::Conv_759 = Identity(%onnx::Conv_726) %onnx::Conv_756 = Identity(%onnx::Conv_726) %onnx::Conv_753 = Identity(%onnx::Conv_726) %onnx::Conv_750 = Identity(%onnx::Conv_726) %onnx::Conv_747 = Identity(%onnx::Conv_726) %onnx::Conv_744 = Identity(%onnx::Conv_726) %onnx::Conv_741 = Identity(%onnx::Conv_726) %onnx::Conv_738 = Identity(%onnx::Conv_726) %onnx::Conv_735 = Identity(%onnx::Conv_726) %onnx::Conv_732 = Identity(%onnx::Conv_726) %onnx::Conv_729 = Identity(%onnx::Conv_726) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_725, %onnx::Conv_726) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_728, %onnx::Conv_729) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_731, %onnx::Conv_732) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/maxpool/MaxPool_output_0, %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_1_output_0) %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.1/maxpool/MaxPool_output_0, %/layers.1/vertex_op.2/maxpool/MaxPool_output_0) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_2_output_0, %onnx::Conv_734, %onnx::Conv_735) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_737, %onnx::Conv_738) %/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_3_output_0 = Add(%/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/Add_4_output_0 = Add(%/layers.1/Add_3_output_0, %/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_4_output_0, %onnx::Conv_740, %onnx::Conv_741) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_743, %onnx::Conv_744) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_746, %onnx::Conv_747) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/maxpool/MaxPool_output_0, %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_1_output_0) %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.1/maxpool/MaxPool_output_0, %/layers.2/vertex_op.2/maxpool/MaxPool_output_0) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_2_output_0, %onnx::Conv_749, %onnx::Conv_750) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_752, %onnx::Conv_753) %/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_3_output_0 = Add(%/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/Add_4_output_0 = Add(%/layers.2/Add_3_output_0, %/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_4_output_0, %onnx::Conv_755, %onnx::Conv_756) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_758, %onnx::Conv_759) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_761, %onnx::Conv_762) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/maxpool/MaxPool_output_0, %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_1_output_0) %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.1/maxpool/MaxPool_output_0, %/layers.3/vertex_op.2/maxpool/MaxPool_output_0) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_2_output_0, %onnx::Conv_764, %onnx::Conv_765) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_767, %onnx::Conv_768) %/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_3_output_0 = Add(%/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/Add_4_output_0 = Add(%/layers.3/Add_3_output_0, %/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_4_output_0, %onnx::Conv_770, %onnx::Conv_771) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_773, %onnx::Conv_774) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_776, %onnx::Conv_777) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.1/maxpool/MaxPool_output_0, %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_1_output_0) %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.1/maxpool/MaxPool_output_0, %/layers.5/vertex_op.2/maxpool/MaxPool_output_0) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_2_output_0, %onnx::Conv_779, %onnx::Conv_780) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_782, %onnx::Conv_783) %/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_3_output_0 = Add(%/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/Add_4_output_0 = Add(%/layers.5/Add_3_output_0, %/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_4_output_0, %onnx::Conv_785, %onnx::Conv_786) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_788, %onnx::Conv_789) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_791, %onnx::Conv_792) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.1/maxpool/MaxPool_output_0, %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_1_output_0) %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.1/maxpool/MaxPool_output_0, %/layers.6/vertex_op.2/maxpool/MaxPool_output_0) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_2_output_0, %onnx::Conv_794, %onnx::Conv_795) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_797, %onnx::Conv_798) %/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_3_output_0 = Add(%/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/Add_4_output_0 = Add(%/layers.6/Add_3_output_0, %/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_4_output_0, %onnx::Conv_800, %onnx::Conv_801) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_803, %onnx::Conv_804) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_806, %onnx::Conv_807) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.1/maxpool/MaxPool_output_0, %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_1_output_0) %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.1/maxpool/MaxPool_output_0, %/layers.7/vertex_op.2/maxpool/MaxPool_output_0) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_2_output_0, %onnx::Conv_809, %onnx::Conv_810) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_812, %onnx::Conv_813) %/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_3_output_0 = Add(%/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/Add_4_output_0 = Add(%/layers.7/Add_3_output_0, %/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_4_output_0, %onnx::Conv_815, %onnx::Conv_816) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_818, %onnx::Conv_819) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_821, %onnx::Conv_822) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/maxpool/MaxPool_output_0, %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_1_output_0) %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.1/maxpool/MaxPool_output_0, %/layers.9/vertex_op.2/maxpool/MaxPool_output_0) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_2_output_0, %onnx::Conv_824, %onnx::Conv_825) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_827, %onnx::Conv_828) %/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_3_output_0 = Add(%/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/Add_4_output_0 = Add(%/layers.9/Add_3_output_0, %/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_4_output_0, %onnx::Conv_830, %onnx::Conv_831) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_833, %onnx::Conv_834) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_836, %onnx::Conv_837) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/maxpool/MaxPool_output_0, %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_1_output_0) %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.1/maxpool/MaxPool_output_0, %/layers.10/vertex_op.2/maxpool/MaxPool_output_0) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_2_output_0, %onnx::Conv_839, %onnx::Conv_840) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_842, %onnx::Conv_843) %/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_3_output_0 = Add(%/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/Add_4_output_0 = Add(%/layers.10/Add_3_output_0, %/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_4_output_0, %onnx::Conv_845, %onnx::Conv_846) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_848, %onnx::Conv_849) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_851, %onnx::Conv_852) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/maxpool/MaxPool_output_0, %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_1_output_0) %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.1/maxpool/MaxPool_output_0, %/layers.11/vertex_op.2/maxpool/MaxPool_output_0) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_2_output_0, %onnx::Conv_854, %onnx::Conv_855) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_857, %onnx::Conv_858) %/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_3_output_0 = Add(%/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/Add_4_output_0 = Add(%/layers.11/Add_3_output_0, %/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_4_output_0, %onnx::Conv_860, %onnx::Conv_861) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %723 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %723 }
val_accuracy
93.169069
3,860,867,072
12,962,698
{'zcp_epe_nas': 145.86160069227205, 'zcp_fisher': 11.869165420532227, 'zcp_flops': 61773873152.0, 'zcp_grad_norm': 56.65263366699219, 'zcp_grasp': -0.1920166015625, 'zcp_jacov': -16.046708917724736, 'zcp_l2_norm': 1014.5997314453125, 'zcp_nwot': 232.2757746459778, 'zcp_params': 12962698.0, 'zcp_plain': -0.0025875554420050004, 'zcp_snip': 498.6421813964844, 'zcp_synflow': 103.44910813800976, 'zcp_zen': 91.84980010986328, 'zcp_val_accuracy': 0.914763629436492}
NASBench101_267340
NASBench101
267340
a1e7c138cb2a5ed1bbccd67e5640c632
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_851[FLOAT, 128x3x3x3] %onnx::Conv_852[FLOAT, 128] %onnx::Conv_854[FLOAT, 64x128x1x1] %onnx::Conv_855[FLOAT, 64] %onnx::Conv_857[FLOAT, 64x64x3x3] %onnx::Conv_860[FLOAT, 64x64x3x3] %onnx::Conv_863[FLOAT, 64x64x3x3] %onnx::Conv_866[FLOAT, 64x64x3x3] %onnx::Conv_869[FLOAT, 128x128x1x1] %onnx::Conv_872[FLOAT, 64x128x1x1] %onnx::Conv_875[FLOAT, 64x64x3x3] %onnx::Conv_878[FLOAT, 64x64x3x3] %onnx::Conv_881[FLOAT, 64x64x3x3] %onnx::Conv_884[FLOAT, 64x64x3x3] %onnx::Conv_887[FLOAT, 128x128x1x1] %onnx::Conv_890[FLOAT, 64x128x1x1] %onnx::Conv_893[FLOAT, 64x64x3x3] %onnx::Conv_896[FLOAT, 64x64x3x3] %onnx::Conv_899[FLOAT, 64x64x3x3] %onnx::Conv_902[FLOAT, 64x64x3x3] %onnx::Conv_905[FLOAT, 128x128x1x1] %onnx::Conv_908[FLOAT, 128x128x1x1] %onnx::Conv_911[FLOAT, 128x128x3x3] %onnx::Conv_914[FLOAT, 128x128x3x3] %onnx::Conv_917[FLOAT, 128x128x3x3] %onnx::Conv_920[FLOAT, 128x128x3x3] %onnx::Conv_923[FLOAT, 256x128x1x1] %onnx::Conv_924[FLOAT, 256] %onnx::Conv_926[FLOAT, 128x256x1x1] %onnx::Conv_929[FLOAT, 128x128x3x3] %onnx::Conv_932[FLOAT, 128x128x3x3] %onnx::Conv_935[FLOAT, 128x128x3x3] %onnx::Conv_938[FLOAT, 128x128x3x3] %onnx::Conv_941[FLOAT, 256x256x1x1] %onnx::Conv_944[FLOAT, 128x256x1x1] %onnx::Conv_947[FLOAT, 128x128x3x3] %onnx::Conv_950[FLOAT, 128x128x3x3] %onnx::Conv_953[FLOAT, 128x128x3x3] %onnx::Conv_956[FLOAT, 128x128x3x3] %onnx::Conv_959[FLOAT, 256x256x1x1] %onnx::Conv_962[FLOAT, 256x256x1x1] %onnx::Conv_965[FLOAT, 256x256x3x3] %onnx::Conv_968[FLOAT, 256x256x3x3] %onnx::Conv_971[FLOAT, 256x256x3x3] %onnx::Conv_974[FLOAT, 256x256x3x3] %onnx::Conv_977[FLOAT, 512x256x1x1] %onnx::Conv_978[FLOAT, 512] %onnx::Conv_980[FLOAT, 256x512x1x1] %onnx::Conv_983[FLOAT, 256x256x3x3] %onnx::Conv_986[FLOAT, 256x256x3x3] %onnx::Conv_989[FLOAT, 256x256x3x3] %onnx::Conv_992[FLOAT, 256x256x3x3] %onnx::Conv_995[FLOAT, 512x512x1x1] %onnx::Conv_998[FLOAT, 256x512x1x1] %onnx::Conv_1001[FLOAT, 256x256x3x3] %onnx::Conv_1004[FLOAT, 256x256x3x3] %onnx::Conv_1007[FLOAT, 256x256x3x3] %onnx::Conv_1010[FLOAT, 256x256x3x3] %onnx::Conv_1013[FLOAT, 512x512x1x1] ) { %onnx::Conv_1014 = Identity(%onnx::Conv_978) %onnx::Conv_1011 = Identity(%onnx::Conv_924) %onnx::Conv_1008 = Identity(%onnx::Conv_924) %onnx::Conv_1005 = Identity(%onnx::Conv_924) %onnx::Conv_1002 = Identity(%onnx::Conv_924) %onnx::Conv_999 = Identity(%onnx::Conv_924) %onnx::Conv_996 = Identity(%onnx::Conv_978) %onnx::Conv_993 = Identity(%onnx::Conv_924) %onnx::Conv_990 = Identity(%onnx::Conv_924) %onnx::Conv_987 = Identity(%onnx::Conv_924) %onnx::Conv_984 = Identity(%onnx::Conv_924) %onnx::Conv_981 = Identity(%onnx::Conv_924) %onnx::Conv_975 = Identity(%onnx::Conv_924) %onnx::Conv_972 = Identity(%onnx::Conv_924) %onnx::Conv_969 = Identity(%onnx::Conv_924) %onnx::Conv_966 = Identity(%onnx::Conv_924) %onnx::Conv_963 = Identity(%onnx::Conv_924) %onnx::Conv_960 = Identity(%onnx::Conv_924) %onnx::Conv_957 = Identity(%onnx::Conv_852) %onnx::Conv_954 = Identity(%onnx::Conv_852) %onnx::Conv_951 = Identity(%onnx::Conv_852) %onnx::Conv_948 = Identity(%onnx::Conv_852) %onnx::Conv_945 = Identity(%onnx::Conv_852) %onnx::Conv_942 = Identity(%onnx::Conv_924) %onnx::Conv_939 = Identity(%onnx::Conv_852) %onnx::Conv_936 = Identity(%onnx::Conv_852) %onnx::Conv_933 = Identity(%onnx::Conv_852) %onnx::Conv_930 = Identity(%onnx::Conv_852) %onnx::Conv_927 = Identity(%onnx::Conv_852) %onnx::Conv_921 = Identity(%onnx::Conv_852) %onnx::Conv_918 = Identity(%onnx::Conv_852) %onnx::Conv_915 = Identity(%onnx::Conv_852) %onnx::Conv_912 = Identity(%onnx::Conv_852) %onnx::Conv_909 = Identity(%onnx::Conv_852) %onnx::Conv_906 = Identity(%onnx::Conv_852) %onnx::Conv_903 = Identity(%onnx::Conv_855) %onnx::Conv_900 = Identity(%onnx::Conv_855) %onnx::Conv_897 = Identity(%onnx::Conv_855) %onnx::Conv_894 = Identity(%onnx::Conv_855) %onnx::Conv_891 = Identity(%onnx::Conv_855) %onnx::Conv_888 = Identity(%onnx::Conv_852) %onnx::Conv_885 = Identity(%onnx::Conv_855) %onnx::Conv_882 = Identity(%onnx::Conv_855) %onnx::Conv_879 = Identity(%onnx::Conv_855) %onnx::Conv_876 = Identity(%onnx::Conv_855) %onnx::Conv_873 = Identity(%onnx::Conv_855) %onnx::Conv_870 = Identity(%onnx::Conv_852) %onnx::Conv_867 = Identity(%onnx::Conv_855) %onnx::Conv_864 = Identity(%onnx::Conv_855) %onnx::Conv_861 = Identity(%onnx::Conv_855) %onnx::Conv_858 = Identity(%onnx::Conv_855) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_851, %onnx::Conv_852) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_854, %onnx::Conv_855) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_857, %onnx::Conv_858) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/maxpool/MaxPool_output_0, %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_860, %onnx::Conv_861) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_2_output_0, %onnx::Conv_863, %onnx::Conv_864) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_3_output_0 = Add(%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_3_output_0, %onnx::Conv_866, %onnx::Conv_867) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_869, %onnx::Conv_870) %/layers.1/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Add_4_output_0 = Add(%/layers.1/Concat_output_0, %/layers.1/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_4_output_0, %onnx::Conv_872, %onnx::Conv_873) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_875, %onnx::Conv_876) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/maxpool/MaxPool_output_0, %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_878, %onnx::Conv_879) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_2_output_0, %onnx::Conv_881, %onnx::Conv_882) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_3_output_0 = Add(%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_3_output_0, %onnx::Conv_884, %onnx::Conv_885) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_4_output_0, %onnx::Conv_887, %onnx::Conv_888) %/layers.2/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Add_4_output_0 = Add(%/layers.2/Concat_output_0, %/layers.2/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_4_output_0, %onnx::Conv_890, %onnx::Conv_891) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_893, %onnx::Conv_894) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/maxpool/MaxPool_output_0, %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_896, %onnx::Conv_897) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_2_output_0, %onnx::Conv_899, %onnx::Conv_900) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_3_output_0 = Add(%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_3_output_0, %onnx::Conv_902, %onnx::Conv_903) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_4_output_0, %onnx::Conv_905, %onnx::Conv_906) %/layers.3/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Add_4_output_0 = Add(%/layers.3/Concat_output_0, %/layers.3/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Add_4_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_908, %onnx::Conv_909) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_911, %onnx::Conv_912) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.1/maxpool/MaxPool_output_0, %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_914, %onnx::Conv_915) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_2_output_0, %onnx::Conv_917, %onnx::Conv_918) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_3_output_0 = Add(%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_3_output_0, %onnx::Conv_920, %onnx::Conv_921) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_923, %onnx::Conv_924) %/layers.5/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Add_4_output_0 = Add(%/layers.5/Concat_output_0, %/layers.5/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_4_output_0, %onnx::Conv_926, %onnx::Conv_927) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_929, %onnx::Conv_930) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.1/maxpool/MaxPool_output_0, %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_932, %onnx::Conv_933) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_2_output_0, %onnx::Conv_935, %onnx::Conv_936) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_3_output_0 = Add(%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_3_output_0, %onnx::Conv_938, %onnx::Conv_939) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_4_output_0, %onnx::Conv_941, %onnx::Conv_942) %/layers.6/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Add_4_output_0 = Add(%/layers.6/Concat_output_0, %/layers.6/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_4_output_0, %onnx::Conv_944, %onnx::Conv_945) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_947, %onnx::Conv_948) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.1/maxpool/MaxPool_output_0, %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_950, %onnx::Conv_951) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_2_output_0, %onnx::Conv_953, %onnx::Conv_954) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_3_output_0 = Add(%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_3_output_0, %onnx::Conv_956, %onnx::Conv_957) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_4_output_0, %onnx::Conv_959, %onnx::Conv_960) %/layers.7/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Add_4_output_0 = Add(%/layers.7/Concat_output_0, %/layers.7/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Add_4_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_962, %onnx::Conv_963) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_965, %onnx::Conv_966) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/maxpool/MaxPool_output_0, %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_968, %onnx::Conv_969) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_2_output_0, %onnx::Conv_971, %onnx::Conv_972) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_3_output_0 = Add(%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_3_output_0, %onnx::Conv_974, %onnx::Conv_975) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_977, %onnx::Conv_978) %/layers.9/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Add_4_output_0 = Add(%/layers.9/Concat_output_0, %/layers.9/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_4_output_0, %onnx::Conv_980, %onnx::Conv_981) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_983, %onnx::Conv_984) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/maxpool/MaxPool_output_0, %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_986, %onnx::Conv_987) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_2_output_0, %onnx::Conv_989, %onnx::Conv_990) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_3_output_0 = Add(%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_3_output_0, %onnx::Conv_992, %onnx::Conv_993) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_4_output_0, %onnx::Conv_995, %onnx::Conv_996) %/layers.10/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Add_4_output_0 = Add(%/layers.10/Concat_output_0, %/layers.10/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_4_output_0, %onnx::Conv_998, %onnx::Conv_999) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_1001, %onnx::Conv_1002) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/maxpool/MaxPool_output_0, %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_1004, %onnx::Conv_1005) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_2_output_0, %onnx::Conv_1007, %onnx::Conv_1008) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_3_output_0 = Add(%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_3_output_0, %onnx::Conv_1010, %onnx::Conv_1011) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_4_output_0, %onnx::Conv_1013, %onnx::Conv_1014) %/layers.11/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Add_4_output_0 = Add(%/layers.11/Concat_output_0, %/layers.11/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Add_4_output_0) %849 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %849 }
val_accuracy
93.329328
3,147,966,464
10,619,914
{'zcp_epe_nas': 90.42186624337572, 'zcp_fisher': 15.655638694763184, 'zcp_flops': 50367463424.0, 'zcp_grad_norm': 83.61610412597656, 'zcp_grasp': 0.05255126953125, 'zcp_jacov': -16.054760227190172, 'zcp_l2_norm': 994.1862182617188, 'zcp_nwot': 226.4763089097468, 'zcp_params': 10619914.0, 'zcp_plain': 0.050473041832447, 'zcp_snip': 550.4244384765625, 'zcp_synflow': 133.11241411839788, 'zcp_zen': 121.19005584716797, 'zcp_val_accuracy': 0.9105569124221801}
NASBench101_221472
NASBench101
221472
863afe6bfec6caf567dc45c5509359b3
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_761[FLOAT, 128x3x3x3] %onnx::Conv_762[FLOAT, 128] %onnx::Conv_764[FLOAT, 64x128x1x1] %onnx::Conv_765[FLOAT, 64] %onnx::Conv_767[FLOAT, 64x64x1x1] %onnx::Conv_770[FLOAT, 64x128x1x1] %onnx::Conv_773[FLOAT, 64x64x3x3] %onnx::Conv_776[FLOAT, 64x64x1x1] %onnx::Conv_779[FLOAT, 64x128x1x1] %onnx::Conv_782[FLOAT, 64x64x1x1] %onnx::Conv_785[FLOAT, 64x128x1x1] %onnx::Conv_788[FLOAT, 64x64x3x3] %onnx::Conv_791[FLOAT, 64x64x1x1] %onnx::Conv_794[FLOAT, 64x128x1x1] %onnx::Conv_797[FLOAT, 64x64x1x1] %onnx::Conv_800[FLOAT, 64x128x1x1] %onnx::Conv_803[FLOAT, 64x64x3x3] %onnx::Conv_806[FLOAT, 64x64x1x1] %onnx::Conv_809[FLOAT, 128x128x1x1] %onnx::Conv_812[FLOAT, 128x128x1x1] %onnx::Conv_815[FLOAT, 128x128x1x1] %onnx::Conv_818[FLOAT, 128x128x3x3] %onnx::Conv_821[FLOAT, 128x128x1x1] %onnx::Conv_824[FLOAT, 128x256x1x1] %onnx::Conv_827[FLOAT, 128x128x1x1] %onnx::Conv_830[FLOAT, 128x256x1x1] %onnx::Conv_833[FLOAT, 128x128x3x3] %onnx::Conv_836[FLOAT, 128x128x1x1] %onnx::Conv_839[FLOAT, 128x256x1x1] %onnx::Conv_842[FLOAT, 128x128x1x1] %onnx::Conv_845[FLOAT, 128x256x1x1] %onnx::Conv_848[FLOAT, 128x128x3x3] %onnx::Conv_851[FLOAT, 128x128x1x1] %onnx::Conv_854[FLOAT, 256x256x1x1] %onnx::Conv_855[FLOAT, 256] %onnx::Conv_857[FLOAT, 256x256x1x1] %onnx::Conv_860[FLOAT, 256x256x1x1] %onnx::Conv_863[FLOAT, 256x256x3x3] %onnx::Conv_866[FLOAT, 256x256x1x1] %onnx::Conv_869[FLOAT, 256x512x1x1] %onnx::Conv_872[FLOAT, 256x256x1x1] %onnx::Conv_875[FLOAT, 256x512x1x1] %onnx::Conv_878[FLOAT, 256x256x3x3] %onnx::Conv_881[FLOAT, 256x256x1x1] %onnx::Conv_884[FLOAT, 256x512x1x1] %onnx::Conv_887[FLOAT, 256x256x1x1] %onnx::Conv_890[FLOAT, 256x512x1x1] %onnx::Conv_893[FLOAT, 256x256x3x3] %onnx::Conv_896[FLOAT, 256x256x1x1] ) { %onnx::Conv_897 = Identity(%onnx::Conv_855) %onnx::Conv_894 = Identity(%onnx::Conv_855) %onnx::Conv_891 = Identity(%onnx::Conv_855) %onnx::Conv_888 = Identity(%onnx::Conv_855) %onnx::Conv_885 = Identity(%onnx::Conv_855) %onnx::Conv_882 = Identity(%onnx::Conv_855) %onnx::Conv_879 = Identity(%onnx::Conv_855) %onnx::Conv_876 = Identity(%onnx::Conv_855) %onnx::Conv_873 = Identity(%onnx::Conv_855) %onnx::Conv_870 = Identity(%onnx::Conv_855) %onnx::Conv_867 = Identity(%onnx::Conv_855) %onnx::Conv_864 = Identity(%onnx::Conv_855) %onnx::Conv_861 = Identity(%onnx::Conv_855) %onnx::Conv_858 = Identity(%onnx::Conv_855) %onnx::Conv_852 = Identity(%onnx::Conv_762) %onnx::Conv_849 = Identity(%onnx::Conv_762) %onnx::Conv_846 = Identity(%onnx::Conv_762) %onnx::Conv_843 = Identity(%onnx::Conv_762) %onnx::Conv_840 = Identity(%onnx::Conv_762) %onnx::Conv_837 = Identity(%onnx::Conv_762) %onnx::Conv_834 = Identity(%onnx::Conv_762) %onnx::Conv_831 = Identity(%onnx::Conv_762) %onnx::Conv_828 = Identity(%onnx::Conv_762) %onnx::Conv_825 = Identity(%onnx::Conv_762) %onnx::Conv_822 = Identity(%onnx::Conv_762) %onnx::Conv_819 = Identity(%onnx::Conv_762) %onnx::Conv_816 = Identity(%onnx::Conv_762) %onnx::Conv_813 = Identity(%onnx::Conv_762) %onnx::Conv_810 = Identity(%onnx::Conv_762) %onnx::Conv_807 = Identity(%onnx::Conv_765) %onnx::Conv_804 = Identity(%onnx::Conv_765) %onnx::Conv_801 = Identity(%onnx::Conv_765) %onnx::Conv_798 = Identity(%onnx::Conv_765) %onnx::Conv_795 = Identity(%onnx::Conv_765) %onnx::Conv_792 = Identity(%onnx::Conv_765) %onnx::Conv_789 = Identity(%onnx::Conv_765) %onnx::Conv_786 = Identity(%onnx::Conv_765) %onnx::Conv_783 = Identity(%onnx::Conv_765) %onnx::Conv_780 = Identity(%onnx::Conv_765) %onnx::Conv_777 = Identity(%onnx::Conv_765) %onnx::Conv_774 = Identity(%onnx::Conv_765) %onnx::Conv_771 = Identity(%onnx::Conv_765) %onnx::Conv_768 = Identity(%onnx::Conv_765) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_761, %onnx::Conv_762) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_764, %onnx::Conv_765) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_767, %onnx::Conv_768) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_770, %onnx::Conv_771) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/Add_2_output_0 = Add(%/layers.1/Add_1_output_0, %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_2_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_3_output_0 = Add(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/Add_4_output_0 = Add(%/layers.1/Add_3_output_0, %/layers.1/vertex_op.2/maxpool/MaxPool_output_0) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_4_output_0, %onnx::Conv_773, %onnx::Conv_774) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_5_output_0 = Add(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_3_output_0) %/layers.1/Add_6_output_0 = Add(%/layers.1/Add_5_output_0, %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_6_output_0, %onnx::Conv_776, %onnx::Conv_777) %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_779, %onnx::Conv_780) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_782, %onnx::Conv_783) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_785, %onnx::Conv_786) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/Add_2_output_0 = Add(%/layers.2/Add_1_output_0, %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_2_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_3_output_0 = Add(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/Add_4_output_0 = Add(%/layers.2/Add_3_output_0, %/layers.2/vertex_op.2/maxpool/MaxPool_output_0) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_4_output_0, %onnx::Conv_788, %onnx::Conv_789) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_5_output_0 = Add(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_3_output_0) %/layers.2/Add_6_output_0 = Add(%/layers.2/Add_5_output_0, %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_6_output_0, %onnx::Conv_791, %onnx::Conv_792) %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_794, %onnx::Conv_795) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_797, %onnx::Conv_798) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_800, %onnx::Conv_801) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/Add_2_output_0 = Add(%/layers.3/Add_1_output_0, %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_2_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_3_output_0 = Add(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/Add_4_output_0 = Add(%/layers.3/Add_3_output_0, %/layers.3/vertex_op.2/maxpool/MaxPool_output_0) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_4_output_0, %onnx::Conv_803, %onnx::Conv_804) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_5_output_0 = Add(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_3_output_0) %/layers.3/Add_6_output_0 = Add(%/layers.3/Add_5_output_0, %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_6_output_0, %onnx::Conv_806, %onnx::Conv_807) %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Concat_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_809, %onnx::Conv_810) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_812, %onnx::Conv_813) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_815, %onnx::Conv_816) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/Add_2_output_0 = Add(%/layers.5/Add_1_output_0, %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_2_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_3_output_0 = Add(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/Add_4_output_0 = Add(%/layers.5/Add_3_output_0, %/layers.5/vertex_op.2/maxpool/MaxPool_output_0) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_4_output_0, %onnx::Conv_818, %onnx::Conv_819) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_5_output_0 = Add(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_3_output_0) %/layers.5/Add_6_output_0 = Add(%/layers.5/Add_5_output_0, %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_6_output_0, %onnx::Conv_821, %onnx::Conv_822) %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_824, %onnx::Conv_825) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_827, %onnx::Conv_828) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_830, %onnx::Conv_831) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/Add_2_output_0 = Add(%/layers.6/Add_1_output_0, %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_2_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_3_output_0 = Add(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/Add_4_output_0 = Add(%/layers.6/Add_3_output_0, %/layers.6/vertex_op.2/maxpool/MaxPool_output_0) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_4_output_0, %onnx::Conv_833, %onnx::Conv_834) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_5_output_0 = Add(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_3_output_0) %/layers.6/Add_6_output_0 = Add(%/layers.6/Add_5_output_0, %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_6_output_0, %onnx::Conv_836, %onnx::Conv_837) %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_839, %onnx::Conv_840) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_842, %onnx::Conv_843) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_845, %onnx::Conv_846) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/Add_2_output_0 = Add(%/layers.7/Add_1_output_0, %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_2_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_3_output_0 = Add(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/Add_4_output_0 = Add(%/layers.7/Add_3_output_0, %/layers.7/vertex_op.2/maxpool/MaxPool_output_0) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_4_output_0, %onnx::Conv_848, %onnx::Conv_849) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_5_output_0 = Add(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_3_output_0) %/layers.7/Add_6_output_0 = Add(%/layers.7/Add_5_output_0, %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_6_output_0, %onnx::Conv_851, %onnx::Conv_852) %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Concat_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_854, %onnx::Conv_855) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_857, %onnx::Conv_858) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_860, %onnx::Conv_861) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/Add_2_output_0 = Add(%/layers.9/Add_1_output_0, %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_2_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_3_output_0 = Add(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/Add_4_output_0 = Add(%/layers.9/Add_3_output_0, %/layers.9/vertex_op.2/maxpool/MaxPool_output_0) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_4_output_0, %onnx::Conv_863, %onnx::Conv_864) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_5_output_0 = Add(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_3_output_0) %/layers.9/Add_6_output_0 = Add(%/layers.9/Add_5_output_0, %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_6_output_0, %onnx::Conv_866, %onnx::Conv_867) %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_869, %onnx::Conv_870) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_872, %onnx::Conv_873) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_875, %onnx::Conv_876) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/Add_2_output_0 = Add(%/layers.10/Add_1_output_0, %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_2_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_3_output_0 = Add(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/Add_4_output_0 = Add(%/layers.10/Add_3_output_0, %/layers.10/vertex_op.2/maxpool/MaxPool_output_0) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_4_output_0, %onnx::Conv_878, %onnx::Conv_879) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_5_output_0 = Add(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_3_output_0) %/layers.10/Add_6_output_0 = Add(%/layers.10/Add_5_output_0, %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_6_output_0, %onnx::Conv_881, %onnx::Conv_882) %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_884, %onnx::Conv_885) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_887, %onnx::Conv_888) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_890, %onnx::Conv_891) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/Add_2_output_0 = Add(%/layers.11/Add_1_output_0, %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_2_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_3_output_0 = Add(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/Add_4_output_0 = Add(%/layers.11/Add_3_output_0, %/layers.11/vertex_op.2/maxpool/MaxPool_output_0) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_4_output_0, %onnx::Conv_893, %onnx::Conv_894) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_5_output_0 = Add(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_3_output_0) %/layers.11/Add_6_output_0 = Add(%/layers.11/Add_5_output_0, %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_6_output_0, %onnx::Conv_896, %onnx::Conv_897) %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Concat_output_0) %759 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %759 }
val_accuracy
93.159056
1,120,806,912
3,729,162
{'zcp_epe_nas': 100.76169109985743, 'zcp_fisher': 1.5791888236999512, 'zcp_flops': 17932910592.0, 'zcp_grad_norm': 26.737951278686523, 'zcp_grasp': 1.158416748046875, 'zcp_jacov': -16.05752968301954, 'zcp_l2_norm': 844.0223999023438, 'zcp_nwot': 221.5008631284926, 'zcp_params': 3729162.0, 'zcp_plain': 0.039940178394317, 'zcp_snip': 151.64572143554688, 'zcp_synflow': 113.87421313102442, 'zcp_zen': 82.89859008789062, 'zcp_val_accuracy': 0.903044879436492}
NASBench101_264574
NASBench101
264574
a0369c6e0e6fea74ddb2024f63b8bc1e
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_869[FLOAT, 128x3x3x3] %onnx::Conv_870[FLOAT, 128] %onnx::Conv_872[FLOAT, 128x128x1x1] %onnx::Conv_875[FLOAT, 128x128x1x1] %onnx::Conv_878[FLOAT, 128x128x1x1] %onnx::Conv_881[FLOAT, 128x128x1x1] %onnx::Conv_884[FLOAT, 128x128x3x3] %onnx::Conv_887[FLOAT, 128x128x1x1] %onnx::Conv_890[FLOAT, 128x128x1x1] %onnx::Conv_893[FLOAT, 128x128x1x1] %onnx::Conv_896[FLOAT, 128x128x1x1] %onnx::Conv_899[FLOAT, 128x128x1x1] %onnx::Conv_902[FLOAT, 128x128x3x3] %onnx::Conv_905[FLOAT, 128x128x1x1] %onnx::Conv_908[FLOAT, 128x128x1x1] %onnx::Conv_911[FLOAT, 128x128x1x1] %onnx::Conv_914[FLOAT, 128x128x1x1] %onnx::Conv_917[FLOAT, 128x128x1x1] %onnx::Conv_920[FLOAT, 128x128x3x3] %onnx::Conv_923[FLOAT, 128x128x1x1] %onnx::Conv_926[FLOAT, 256x128x1x1] %onnx::Conv_927[FLOAT, 256] %onnx::Conv_929[FLOAT, 256x256x1x1] %onnx::Conv_932[FLOAT, 256x256x1x1] %onnx::Conv_935[FLOAT, 256x256x1x1] %onnx::Conv_938[FLOAT, 256x256x3x3] %onnx::Conv_941[FLOAT, 256x256x1x1] %onnx::Conv_944[FLOAT, 256x256x1x1] %onnx::Conv_947[FLOAT, 256x256x1x1] %onnx::Conv_950[FLOAT, 256x256x1x1] %onnx::Conv_953[FLOAT, 256x256x1x1] %onnx::Conv_956[FLOAT, 256x256x3x3] %onnx::Conv_959[FLOAT, 256x256x1x1] %onnx::Conv_962[FLOAT, 256x256x1x1] %onnx::Conv_965[FLOAT, 256x256x1x1] %onnx::Conv_968[FLOAT, 256x256x1x1] %onnx::Conv_971[FLOAT, 256x256x1x1] %onnx::Conv_974[FLOAT, 256x256x3x3] %onnx::Conv_977[FLOAT, 256x256x1x1] %onnx::Conv_980[FLOAT, 512x256x1x1] %onnx::Conv_981[FLOAT, 512] %onnx::Conv_983[FLOAT, 512x512x1x1] %onnx::Conv_986[FLOAT, 512x512x1x1] %onnx::Conv_989[FLOAT, 512x512x1x1] %onnx::Conv_992[FLOAT, 512x512x3x3] %onnx::Conv_995[FLOAT, 512x512x1x1] %onnx::Conv_998[FLOAT, 512x512x1x1] %onnx::Conv_1001[FLOAT, 512x512x1x1] %onnx::Conv_1004[FLOAT, 512x512x1x1] %onnx::Conv_1007[FLOAT, 512x512x1x1] %onnx::Conv_1010[FLOAT, 512x512x3x3] %onnx::Conv_1013[FLOAT, 512x512x1x1] %onnx::Conv_1016[FLOAT, 512x512x1x1] %onnx::Conv_1019[FLOAT, 512x512x1x1] %onnx::Conv_1022[FLOAT, 512x512x1x1] %onnx::Conv_1025[FLOAT, 512x512x1x1] %onnx::Conv_1028[FLOAT, 512x512x3x3] %onnx::Conv_1031[FLOAT, 512x512x1x1] ) { %onnx::Conv_1032 = Identity(%onnx::Conv_981) %onnx::Conv_1029 = Identity(%onnx::Conv_981) %onnx::Conv_1026 = Identity(%onnx::Conv_981) %onnx::Conv_1023 = Identity(%onnx::Conv_981) %onnx::Conv_1020 = Identity(%onnx::Conv_981) %onnx::Conv_1017 = Identity(%onnx::Conv_981) %onnx::Conv_1014 = Identity(%onnx::Conv_981) %onnx::Conv_1011 = Identity(%onnx::Conv_981) %onnx::Conv_1008 = Identity(%onnx::Conv_981) %onnx::Conv_1005 = Identity(%onnx::Conv_981) %onnx::Conv_1002 = Identity(%onnx::Conv_981) %onnx::Conv_999 = Identity(%onnx::Conv_981) %onnx::Conv_996 = Identity(%onnx::Conv_981) %onnx::Conv_993 = Identity(%onnx::Conv_981) %onnx::Conv_990 = Identity(%onnx::Conv_981) %onnx::Conv_987 = Identity(%onnx::Conv_981) %onnx::Conv_984 = Identity(%onnx::Conv_981) %onnx::Conv_978 = Identity(%onnx::Conv_927) %onnx::Conv_975 = Identity(%onnx::Conv_927) %onnx::Conv_972 = Identity(%onnx::Conv_927) %onnx::Conv_969 = Identity(%onnx::Conv_927) %onnx::Conv_966 = Identity(%onnx::Conv_927) %onnx::Conv_963 = Identity(%onnx::Conv_927) %onnx::Conv_960 = Identity(%onnx::Conv_927) %onnx::Conv_957 = Identity(%onnx::Conv_927) %onnx::Conv_954 = Identity(%onnx::Conv_927) %onnx::Conv_951 = Identity(%onnx::Conv_927) %onnx::Conv_948 = Identity(%onnx::Conv_927) %onnx::Conv_945 = Identity(%onnx::Conv_927) %onnx::Conv_942 = Identity(%onnx::Conv_927) %onnx::Conv_939 = Identity(%onnx::Conv_927) %onnx::Conv_936 = Identity(%onnx::Conv_927) %onnx::Conv_933 = Identity(%onnx::Conv_927) %onnx::Conv_930 = Identity(%onnx::Conv_927) %onnx::Conv_924 = Identity(%onnx::Conv_870) %onnx::Conv_921 = Identity(%onnx::Conv_870) %onnx::Conv_918 = Identity(%onnx::Conv_870) %onnx::Conv_915 = Identity(%onnx::Conv_870) %onnx::Conv_912 = Identity(%onnx::Conv_870) %onnx::Conv_909 = Identity(%onnx::Conv_870) %onnx::Conv_906 = Identity(%onnx::Conv_870) %onnx::Conv_903 = Identity(%onnx::Conv_870) %onnx::Conv_900 = Identity(%onnx::Conv_870) %onnx::Conv_897 = Identity(%onnx::Conv_870) %onnx::Conv_894 = Identity(%onnx::Conv_870) %onnx::Conv_891 = Identity(%onnx::Conv_870) %onnx::Conv_888 = Identity(%onnx::Conv_870) %onnx::Conv_885 = Identity(%onnx::Conv_870) %onnx::Conv_882 = Identity(%onnx::Conv_870) %onnx::Conv_879 = Identity(%onnx::Conv_870) %onnx::Conv_876 = Identity(%onnx::Conv_870) %onnx::Conv_873 = Identity(%onnx::Conv_870) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_869, %onnx::Conv_870) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_872, %onnx::Conv_873) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_875, %onnx::Conv_876) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_878, %onnx::Conv_879) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_2_output_0, %onnx::Conv_881, %onnx::Conv_882) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_3_output_0 = Add(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_3_output_0) %/layers.1/Add_4_output_0 = Add(%/layers.1/Add_3_output_0, %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_4_output_0, %onnx::Conv_884, %onnx::Conv_885) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_5_output_0 = Add(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_4_output_0) %/layers.1/Add_6_output_0 = Add(%/layers.1/Add_5_output_0, %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_6_output_0, %onnx::Conv_887, %onnx::Conv_888) %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_890, %onnx::Conv_891) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_893, %onnx::Conv_894) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_896, %onnx::Conv_897) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_2_output_0, %onnx::Conv_899, %onnx::Conv_900) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_3_output_0 = Add(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_3_output_0) %/layers.2/Add_4_output_0 = Add(%/layers.2/Add_3_output_0, %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_4_output_0, %onnx::Conv_902, %onnx::Conv_903) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_5_output_0 = Add(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_4_output_0) %/layers.2/Add_6_output_0 = Add(%/layers.2/Add_5_output_0, %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_6_output_0, %onnx::Conv_905, %onnx::Conv_906) %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_908, %onnx::Conv_909) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_911, %onnx::Conv_912) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_914, %onnx::Conv_915) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_2_output_0, %onnx::Conv_917, %onnx::Conv_918) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_3_output_0 = Add(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_3_output_0) %/layers.3/Add_4_output_0 = Add(%/layers.3/Add_3_output_0, %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_4_output_0, %onnx::Conv_920, %onnx::Conv_921) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_5_output_0 = Add(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_4_output_0) %/layers.3/Add_6_output_0 = Add(%/layers.3/Add_5_output_0, %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_6_output_0, %onnx::Conv_923, %onnx::Conv_924) %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_926, %onnx::Conv_927) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_929, %onnx::Conv_930) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_932, %onnx::Conv_933) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_2_output_0, %onnx::Conv_935, %onnx::Conv_936) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_3_output_0 = Add(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_3_output_0) %/layers.5/Add_4_output_0 = Add(%/layers.5/Add_3_output_0, %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_4_output_0, %onnx::Conv_938, %onnx::Conv_939) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_5_output_0 = Add(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_4_output_0) %/layers.5/Add_6_output_0 = Add(%/layers.5/Add_5_output_0, %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_6_output_0, %onnx::Conv_941, %onnx::Conv_942) %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_944, %onnx::Conv_945) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_947, %onnx::Conv_948) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_950, %onnx::Conv_951) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_2_output_0, %onnx::Conv_953, %onnx::Conv_954) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_3_output_0 = Add(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_3_output_0) %/layers.6/Add_4_output_0 = Add(%/layers.6/Add_3_output_0, %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_4_output_0, %onnx::Conv_956, %onnx::Conv_957) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_5_output_0 = Add(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_4_output_0) %/layers.6/Add_6_output_0 = Add(%/layers.6/Add_5_output_0, %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_6_output_0, %onnx::Conv_959, %onnx::Conv_960) %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_962, %onnx::Conv_963) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_965, %onnx::Conv_966) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_968, %onnx::Conv_969) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_2_output_0, %onnx::Conv_971, %onnx::Conv_972) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_3_output_0 = Add(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_3_output_0) %/layers.7/Add_4_output_0 = Add(%/layers.7/Add_3_output_0, %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_4_output_0, %onnx::Conv_974, %onnx::Conv_975) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_5_output_0 = Add(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_4_output_0) %/layers.7/Add_6_output_0 = Add(%/layers.7/Add_5_output_0, %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_6_output_0, %onnx::Conv_977, %onnx::Conv_978) %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_980, %onnx::Conv_981) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_983, %onnx::Conv_984) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_986, %onnx::Conv_987) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_2_output_0, %onnx::Conv_989, %onnx::Conv_990) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_3_output_0 = Add(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_3_output_0) %/layers.9/Add_4_output_0 = Add(%/layers.9/Add_3_output_0, %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_4_output_0, %onnx::Conv_992, %onnx::Conv_993) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_5_output_0 = Add(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_4_output_0) %/layers.9/Add_6_output_0 = Add(%/layers.9/Add_5_output_0, %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_6_output_0, %onnx::Conv_995, %onnx::Conv_996) %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_998, %onnx::Conv_999) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_1001, %onnx::Conv_1002) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_1004, %onnx::Conv_1005) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_2_output_0, %onnx::Conv_1007, %onnx::Conv_1008) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_3_output_0 = Add(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_3_output_0) %/layers.10/Add_4_output_0 = Add(%/layers.10/Add_3_output_0, %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_4_output_0, %onnx::Conv_1010, %onnx::Conv_1011) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_5_output_0 = Add(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_4_output_0) %/layers.10/Add_6_output_0 = Add(%/layers.10/Add_5_output_0, %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_6_output_0, %onnx::Conv_1013, %onnx::Conv_1014) %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1016, %onnx::Conv_1017) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_1019, %onnx::Conv_1020) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_1022, %onnx::Conv_1023) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_2_output_0, %onnx::Conv_1025, %onnx::Conv_1026) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_3_output_0 = Add(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_3_output_0) %/layers.11/Add_4_output_0 = Add(%/layers.11/Add_3_output_0, %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_4_output_0, %onnx::Conv_1028, %onnx::Conv_1029) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_5_output_0 = Add(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_4_output_0) %/layers.11/Add_6_output_0 = Add(%/layers.11/Add_5_output_0, %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_6_output_0, %onnx::Conv_1031, %onnx::Conv_1032) %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %867 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %867 }
val_accuracy
91.165864
4,235,470,848
14,327,946
{'zcp_epe_nas': 104.10532613808202, 'zcp_fisher': 324.9367370605469, 'zcp_flops': 67767533568.0, 'zcp_grad_norm': 340.1108703613281, 'zcp_grasp': 441.9140625, 'zcp_jacov': -16.049969160117406, 'zcp_l2_norm': 1258.73828125, 'zcp_nwot': 235.47239578075136, 'zcp_params': 14327946.0, 'zcp_plain': -0.00015506613999600002, 'zcp_snip': 2401.215576171875, 'zcp_synflow': 146.34461676990858, 'zcp_zen': 100.89476776123047, 'zcp_val_accuracy': 0.8788061141967771}
NASBench101_118598
NASBench101
118598
479eb8a897dbb7d5a606353cdaa7fd19
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_986[FLOAT, 128x3x3x3] %onnx::Conv_987[FLOAT, 128] %onnx::Conv_989[FLOAT, 64x128x1x1] %onnx::Conv_990[FLOAT, 64] %onnx::Conv_992[FLOAT, 64x64x3x3] %onnx::Conv_995[FLOAT, 64x64x3x3] %onnx::Conv_998[FLOAT, 64x128x1x1] %onnx::Conv_1001[FLOAT, 64x64x3x3] %onnx::Conv_1004[FLOAT, 64x128x1x1] %onnx::Conv_1007[FLOAT, 64x64x1x1] %onnx::Conv_1010[FLOAT, 64x128x1x1] %onnx::Conv_1013[FLOAT, 64x64x3x3] %onnx::Conv_1016[FLOAT, 64x64x3x3] %onnx::Conv_1019[FLOAT, 64x128x1x1] %onnx::Conv_1022[FLOAT, 64x64x3x3] %onnx::Conv_1025[FLOAT, 64x128x1x1] %onnx::Conv_1028[FLOAT, 64x64x1x1] %onnx::Conv_1031[FLOAT, 64x128x1x1] %onnx::Conv_1034[FLOAT, 64x64x3x3] %onnx::Conv_1037[FLOAT, 64x64x3x3] %onnx::Conv_1040[FLOAT, 64x128x1x1] %onnx::Conv_1043[FLOAT, 64x64x3x3] %onnx::Conv_1046[FLOAT, 64x128x1x1] %onnx::Conv_1049[FLOAT, 64x64x1x1] %onnx::Conv_1052[FLOAT, 128x128x1x1] %onnx::Conv_1055[FLOAT, 128x128x3x3] %onnx::Conv_1058[FLOAT, 128x128x3x3] %onnx::Conv_1061[FLOAT, 128x128x1x1] %onnx::Conv_1064[FLOAT, 128x128x3x3] %onnx::Conv_1067[FLOAT, 128x128x1x1] %onnx::Conv_1070[FLOAT, 128x128x1x1] %onnx::Conv_1073[FLOAT, 128x256x1x1] %onnx::Conv_1076[FLOAT, 128x128x3x3] %onnx::Conv_1079[FLOAT, 128x128x3x3] %onnx::Conv_1082[FLOAT, 128x256x1x1] %onnx::Conv_1085[FLOAT, 128x128x3x3] %onnx::Conv_1088[FLOAT, 128x256x1x1] %onnx::Conv_1091[FLOAT, 128x128x1x1] %onnx::Conv_1094[FLOAT, 128x256x1x1] %onnx::Conv_1097[FLOAT, 128x128x3x3] %onnx::Conv_1100[FLOAT, 128x128x3x3] %onnx::Conv_1103[FLOAT, 128x256x1x1] %onnx::Conv_1106[FLOAT, 128x128x3x3] %onnx::Conv_1109[FLOAT, 128x256x1x1] %onnx::Conv_1112[FLOAT, 128x128x1x1] %onnx::Conv_1115[FLOAT, 256x256x1x1] %onnx::Conv_1116[FLOAT, 256] %onnx::Conv_1118[FLOAT, 256x256x3x3] %onnx::Conv_1121[FLOAT, 256x256x3x3] %onnx::Conv_1124[FLOAT, 256x256x1x1] %onnx::Conv_1127[FLOAT, 256x256x3x3] %onnx::Conv_1130[FLOAT, 256x256x1x1] %onnx::Conv_1133[FLOAT, 256x256x1x1] %onnx::Conv_1136[FLOAT, 256x512x1x1] %onnx::Conv_1139[FLOAT, 256x256x3x3] %onnx::Conv_1142[FLOAT, 256x256x3x3] %onnx::Conv_1145[FLOAT, 256x512x1x1] %onnx::Conv_1148[FLOAT, 256x256x3x3] %onnx::Conv_1151[FLOAT, 256x512x1x1] %onnx::Conv_1154[FLOAT, 256x256x1x1] %onnx::Conv_1157[FLOAT, 256x512x1x1] %onnx::Conv_1160[FLOAT, 256x256x3x3] %onnx::Conv_1163[FLOAT, 256x256x3x3] %onnx::Conv_1166[FLOAT, 256x512x1x1] %onnx::Conv_1169[FLOAT, 256x256x3x3] %onnx::Conv_1172[FLOAT, 256x512x1x1] %onnx::Conv_1175[FLOAT, 256x256x1x1] ) { %onnx::Conv_1176 = Identity(%onnx::Conv_1116) %onnx::Conv_1173 = Identity(%onnx::Conv_1116) %onnx::Conv_1170 = Identity(%onnx::Conv_1116) %onnx::Conv_1167 = Identity(%onnx::Conv_1116) %onnx::Conv_1164 = Identity(%onnx::Conv_1116) %onnx::Conv_1161 = Identity(%onnx::Conv_1116) %onnx::Conv_1158 = Identity(%onnx::Conv_1116) %onnx::Conv_1155 = Identity(%onnx::Conv_1116) %onnx::Conv_1152 = Identity(%onnx::Conv_1116) %onnx::Conv_1149 = Identity(%onnx::Conv_1116) %onnx::Conv_1146 = Identity(%onnx::Conv_1116) %onnx::Conv_1143 = Identity(%onnx::Conv_1116) %onnx::Conv_1140 = Identity(%onnx::Conv_1116) %onnx::Conv_1137 = Identity(%onnx::Conv_1116) %onnx::Conv_1134 = Identity(%onnx::Conv_1116) %onnx::Conv_1131 = Identity(%onnx::Conv_1116) %onnx::Conv_1128 = Identity(%onnx::Conv_1116) %onnx::Conv_1125 = Identity(%onnx::Conv_1116) %onnx::Conv_1122 = Identity(%onnx::Conv_1116) %onnx::Conv_1119 = Identity(%onnx::Conv_1116) %onnx::Conv_1113 = Identity(%onnx::Conv_987) %onnx::Conv_1110 = Identity(%onnx::Conv_987) %onnx::Conv_1107 = Identity(%onnx::Conv_987) %onnx::Conv_1104 = Identity(%onnx::Conv_987) %onnx::Conv_1101 = Identity(%onnx::Conv_987) %onnx::Conv_1098 = Identity(%onnx::Conv_987) %onnx::Conv_1095 = Identity(%onnx::Conv_987) %onnx::Conv_1092 = Identity(%onnx::Conv_987) %onnx::Conv_1089 = Identity(%onnx::Conv_987) %onnx::Conv_1086 = Identity(%onnx::Conv_987) %onnx::Conv_1083 = Identity(%onnx::Conv_987) %onnx::Conv_1080 = Identity(%onnx::Conv_987) %onnx::Conv_1077 = Identity(%onnx::Conv_987) %onnx::Conv_1074 = Identity(%onnx::Conv_987) %onnx::Conv_1071 = Identity(%onnx::Conv_987) %onnx::Conv_1068 = Identity(%onnx::Conv_987) %onnx::Conv_1065 = Identity(%onnx::Conv_987) %onnx::Conv_1062 = Identity(%onnx::Conv_987) %onnx::Conv_1059 = Identity(%onnx::Conv_987) %onnx::Conv_1056 = Identity(%onnx::Conv_987) %onnx::Conv_1053 = Identity(%onnx::Conv_987) %onnx::Conv_1050 = Identity(%onnx::Conv_990) %onnx::Conv_1047 = Identity(%onnx::Conv_990) %onnx::Conv_1044 = Identity(%onnx::Conv_990) %onnx::Conv_1041 = Identity(%onnx::Conv_990) %onnx::Conv_1038 = Identity(%onnx::Conv_990) %onnx::Conv_1035 = Identity(%onnx::Conv_990) %onnx::Conv_1032 = Identity(%onnx::Conv_990) %onnx::Conv_1029 = Identity(%onnx::Conv_990) %onnx::Conv_1026 = Identity(%onnx::Conv_990) %onnx::Conv_1023 = Identity(%onnx::Conv_990) %onnx::Conv_1020 = Identity(%onnx::Conv_990) %onnx::Conv_1017 = Identity(%onnx::Conv_990) %onnx::Conv_1014 = Identity(%onnx::Conv_990) %onnx::Conv_1011 = Identity(%onnx::Conv_990) %onnx::Conv_1008 = Identity(%onnx::Conv_990) %onnx::Conv_1005 = Identity(%onnx::Conv_990) %onnx::Conv_1002 = Identity(%onnx::Conv_990) %onnx::Conv_999 = Identity(%onnx::Conv_990) %onnx::Conv_996 = Identity(%onnx::Conv_990) %onnx::Conv_993 = Identity(%onnx::Conv_990) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_986, %onnx::Conv_987) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_989, %onnx::Conv_990) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_992, %onnx::Conv_993) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_995, %onnx::Conv_996) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_998, %onnx::Conv_999) %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/Add_3_output_0 = Add(%/layers.1/Add_2_output_0, %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_3_output_0, %onnx::Conv_1001, %onnx::Conv_1002) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1004, %onnx::Conv_1005) %/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_4_output_0 = Add(%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_3_output_0) %/layers.1/Add_5_output_0 = Add(%/layers.1/Add_4_output_0, %/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_5_output_0, %onnx::Conv_1007, %onnx::Conv_1008) %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_6_output_0 = Add(%/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_4_output_0) %/layers.1/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_6_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.5/maxpool/MaxPool_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_1010, %onnx::Conv_1011) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_1013, %onnx::Conv_1014) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_1016, %onnx::Conv_1017) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_1019, %onnx::Conv_1020) %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/Add_3_output_0 = Add(%/layers.2/Add_2_output_0, %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_3_output_0, %onnx::Conv_1022, %onnx::Conv_1023) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_1025, %onnx::Conv_1026) %/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_4_output_0 = Add(%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_3_output_0) %/layers.2/Add_5_output_0 = Add(%/layers.2/Add_4_output_0, %/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_5_output_0, %onnx::Conv_1028, %onnx::Conv_1029) %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_6_output_0 = Add(%/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_4_output_0) %/layers.2/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_6_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.5/maxpool/MaxPool_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_1031, %onnx::Conv_1032) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_1034, %onnx::Conv_1035) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_1037, %onnx::Conv_1038) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_1040, %onnx::Conv_1041) %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/Add_3_output_0 = Add(%/layers.3/Add_2_output_0, %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_3_output_0, %onnx::Conv_1043, %onnx::Conv_1044) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_1046, %onnx::Conv_1047) %/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_4_output_0 = Add(%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_3_output_0) %/layers.3/Add_5_output_0 = Add(%/layers.3/Add_4_output_0, %/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_5_output_0, %onnx::Conv_1049, %onnx::Conv_1050) %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_6_output_0 = Add(%/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_4_output_0) %/layers.3/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_6_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.5/maxpool/MaxPool_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Concat_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_1052, %onnx::Conv_1053) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_1055, %onnx::Conv_1056) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_1058, %onnx::Conv_1059) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_1061, %onnx::Conv_1062) %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/Add_3_output_0 = Add(%/layers.5/Add_2_output_0, %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_3_output_0, %onnx::Conv_1064, %onnx::Conv_1065) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_1067, %onnx::Conv_1068) %/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_4_output_0 = Add(%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_3_output_0) %/layers.5/Add_5_output_0 = Add(%/layers.5/Add_4_output_0, %/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_5_output_0, %onnx::Conv_1070, %onnx::Conv_1071) %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_6_output_0 = Add(%/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_4_output_0) %/layers.5/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_6_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.5/maxpool/MaxPool_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_1073, %onnx::Conv_1074) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_1076, %onnx::Conv_1077) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_1079, %onnx::Conv_1080) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_1082, %onnx::Conv_1083) %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/Add_3_output_0 = Add(%/layers.6/Add_2_output_0, %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_3_output_0, %onnx::Conv_1085, %onnx::Conv_1086) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_1088, %onnx::Conv_1089) %/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_4_output_0 = Add(%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_3_output_0) %/layers.6/Add_5_output_0 = Add(%/layers.6/Add_4_output_0, %/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_5_output_0, %onnx::Conv_1091, %onnx::Conv_1092) %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_6_output_0 = Add(%/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_4_output_0) %/layers.6/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_6_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.5/maxpool/MaxPool_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_1094, %onnx::Conv_1095) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_1097, %onnx::Conv_1098) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_1100, %onnx::Conv_1101) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_1103, %onnx::Conv_1104) %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/Add_3_output_0 = Add(%/layers.7/Add_2_output_0, %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_3_output_0, %onnx::Conv_1106, %onnx::Conv_1107) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_1109, %onnx::Conv_1110) %/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_4_output_0 = Add(%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_3_output_0) %/layers.7/Add_5_output_0 = Add(%/layers.7/Add_4_output_0, %/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_5_output_0, %onnx::Conv_1112, %onnx::Conv_1113) %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_6_output_0 = Add(%/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_4_output_0) %/layers.7/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_6_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.5/maxpool/MaxPool_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Concat_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1115, %onnx::Conv_1116) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_1118, %onnx::Conv_1119) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_1121, %onnx::Conv_1122) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1124, %onnx::Conv_1125) %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/Add_3_output_0 = Add(%/layers.9/Add_2_output_0, %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_3_output_0, %onnx::Conv_1127, %onnx::Conv_1128) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1130, %onnx::Conv_1131) %/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_4_output_0 = Add(%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_3_output_0) %/layers.9/Add_5_output_0 = Add(%/layers.9/Add_4_output_0, %/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_5_output_0, %onnx::Conv_1133, %onnx::Conv_1134) %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_6_output_0 = Add(%/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_4_output_0) %/layers.9/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_6_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.5/maxpool/MaxPool_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_1136, %onnx::Conv_1137) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_1139, %onnx::Conv_1140) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_1142, %onnx::Conv_1143) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_1145, %onnx::Conv_1146) %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/Add_3_output_0 = Add(%/layers.10/Add_2_output_0, %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_3_output_0, %onnx::Conv_1148, %onnx::Conv_1149) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_1151, %onnx::Conv_1152) %/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_4_output_0 = Add(%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_3_output_0) %/layers.10/Add_5_output_0 = Add(%/layers.10/Add_4_output_0, %/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_5_output_0, %onnx::Conv_1154, %onnx::Conv_1155) %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_6_output_0 = Add(%/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_4_output_0) %/layers.10/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_6_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.5/maxpool/MaxPool_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_1157, %onnx::Conv_1158) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_1160, %onnx::Conv_1161) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_1163, %onnx::Conv_1164) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_1166, %onnx::Conv_1167) %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/Add_3_output_0 = Add(%/layers.11/Add_2_output_0, %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_3_output_0, %onnx::Conv_1169, %onnx::Conv_1170) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_1172, %onnx::Conv_1173) %/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_4_output_0 = Add(%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_3_output_0) %/layers.11/Add_5_output_0 = Add(%/layers.11/Add_4_output_0, %/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_5_output_0, %onnx::Conv_1175, %onnx::Conv_1176) %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_6_output_0 = Add(%/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_4_output_0) %/layers.11/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_6_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.5/maxpool/MaxPool_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Concat_output_0) %984 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %984 }
val_accuracy
92.718351
2,543,986,688
8,555,530
{'zcp_epe_nas': 135.1693484328749, 'zcp_fisher': 87.9659423828125, 'zcp_flops': 40703787008.0, 'zcp_grad_norm': 193.90484619140625, 'zcp_grasp': -21.797119140625, 'zcp_jacov': -16.051648449928017, 'zcp_l2_norm': 1189.923828125, 'zcp_nwot': 226.88613355133936, 'zcp_params': 8555530.0, 'zcp_plain': 0.044062506407499, 'zcp_snip': 1251.5902099609375, 'zcp_synflow': 150.19126469859026, 'zcp_zen': 120.74247741699219, 'zcp_val_accuracy': 0.8730969429016111}
NASBench101_86340
NASBench101
86340
34502b2e7dcadc8e86596039f20a9887
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_860[FLOAT, 128x3x3x3] %onnx::Conv_861[FLOAT, 128] %onnx::Conv_863[FLOAT, 64x128x1x1] %onnx::Conv_864[FLOAT, 64] %onnx::Conv_866[FLOAT, 64x64x3x3] %onnx::Conv_869[FLOAT, 64x128x1x1] %onnx::Conv_872[FLOAT, 64x64x3x3] %onnx::Conv_875[FLOAT, 64x128x1x1] %onnx::Conv_878[FLOAT, 64x64x3x3] %onnx::Conv_881[FLOAT, 64x128x1x1] %onnx::Conv_884[FLOAT, 64x64x3x3] %onnx::Conv_887[FLOAT, 64x128x1x1] %onnx::Conv_890[FLOAT, 64x64x3x3] %onnx::Conv_893[FLOAT, 64x128x1x1] %onnx::Conv_896[FLOAT, 64x64x3x3] %onnx::Conv_899[FLOAT, 64x128x1x1] %onnx::Conv_902[FLOAT, 64x64x3x3] %onnx::Conv_905[FLOAT, 64x128x1x1] %onnx::Conv_908[FLOAT, 64x64x3x3] %onnx::Conv_911[FLOAT, 64x128x1x1] %onnx::Conv_914[FLOAT, 64x64x3x3] %onnx::Conv_917[FLOAT, 128x128x1x1] %onnx::Conv_920[FLOAT, 128x128x3x3] %onnx::Conv_923[FLOAT, 128x128x1x1] %onnx::Conv_926[FLOAT, 128x128x3x3] %onnx::Conv_929[FLOAT, 128x128x1x1] %onnx::Conv_932[FLOAT, 128x128x3x3] %onnx::Conv_935[FLOAT, 128x256x1x1] %onnx::Conv_938[FLOAT, 128x128x3x3] %onnx::Conv_941[FLOAT, 128x256x1x1] %onnx::Conv_944[FLOAT, 128x128x3x3] %onnx::Conv_947[FLOAT, 128x256x1x1] %onnx::Conv_950[FLOAT, 128x128x3x3] %onnx::Conv_953[FLOAT, 128x256x1x1] %onnx::Conv_956[FLOAT, 128x128x3x3] %onnx::Conv_959[FLOAT, 128x256x1x1] %onnx::Conv_962[FLOAT, 128x128x3x3] %onnx::Conv_965[FLOAT, 128x256x1x1] %onnx::Conv_968[FLOAT, 128x128x3x3] %onnx::Conv_971[FLOAT, 256x256x1x1] %onnx::Conv_972[FLOAT, 256] %onnx::Conv_974[FLOAT, 256x256x3x3] %onnx::Conv_977[FLOAT, 256x256x1x1] %onnx::Conv_980[FLOAT, 256x256x3x3] %onnx::Conv_983[FLOAT, 256x256x1x1] %onnx::Conv_986[FLOAT, 256x256x3x3] %onnx::Conv_989[FLOAT, 256x512x1x1] %onnx::Conv_992[FLOAT, 256x256x3x3] %onnx::Conv_995[FLOAT, 256x512x1x1] %onnx::Conv_998[FLOAT, 256x256x3x3] %onnx::Conv_1001[FLOAT, 256x512x1x1] %onnx::Conv_1004[FLOAT, 256x256x3x3] %onnx::Conv_1007[FLOAT, 256x512x1x1] %onnx::Conv_1010[FLOAT, 256x256x3x3] %onnx::Conv_1013[FLOAT, 256x512x1x1] %onnx::Conv_1016[FLOAT, 256x256x3x3] %onnx::Conv_1019[FLOAT, 256x512x1x1] %onnx::Conv_1022[FLOAT, 256x256x3x3] ) { %onnx::Conv_1023 = Identity(%onnx::Conv_972) %onnx::Conv_1020 = Identity(%onnx::Conv_972) %onnx::Conv_1017 = Identity(%onnx::Conv_972) %onnx::Conv_1014 = Identity(%onnx::Conv_972) %onnx::Conv_1011 = Identity(%onnx::Conv_972) %onnx::Conv_1008 = Identity(%onnx::Conv_972) %onnx::Conv_1005 = Identity(%onnx::Conv_972) %onnx::Conv_1002 = Identity(%onnx::Conv_972) %onnx::Conv_999 = Identity(%onnx::Conv_972) %onnx::Conv_996 = Identity(%onnx::Conv_972) %onnx::Conv_993 = Identity(%onnx::Conv_972) %onnx::Conv_990 = Identity(%onnx::Conv_972) %onnx::Conv_987 = Identity(%onnx::Conv_972) %onnx::Conv_984 = Identity(%onnx::Conv_972) %onnx::Conv_981 = Identity(%onnx::Conv_972) %onnx::Conv_978 = Identity(%onnx::Conv_972) %onnx::Conv_975 = Identity(%onnx::Conv_972) %onnx::Conv_969 = Identity(%onnx::Conv_861) %onnx::Conv_966 = Identity(%onnx::Conv_861) %onnx::Conv_963 = Identity(%onnx::Conv_861) %onnx::Conv_960 = Identity(%onnx::Conv_861) %onnx::Conv_957 = Identity(%onnx::Conv_861) %onnx::Conv_954 = Identity(%onnx::Conv_861) %onnx::Conv_951 = Identity(%onnx::Conv_861) %onnx::Conv_948 = Identity(%onnx::Conv_861) %onnx::Conv_945 = Identity(%onnx::Conv_861) %onnx::Conv_942 = Identity(%onnx::Conv_861) %onnx::Conv_939 = Identity(%onnx::Conv_861) %onnx::Conv_936 = Identity(%onnx::Conv_861) %onnx::Conv_933 = Identity(%onnx::Conv_861) %onnx::Conv_930 = Identity(%onnx::Conv_861) %onnx::Conv_927 = Identity(%onnx::Conv_861) %onnx::Conv_924 = Identity(%onnx::Conv_861) %onnx::Conv_921 = Identity(%onnx::Conv_861) %onnx::Conv_918 = Identity(%onnx::Conv_861) %onnx::Conv_915 = Identity(%onnx::Conv_864) %onnx::Conv_912 = Identity(%onnx::Conv_864) %onnx::Conv_909 = Identity(%onnx::Conv_864) %onnx::Conv_906 = Identity(%onnx::Conv_864) %onnx::Conv_903 = Identity(%onnx::Conv_864) %onnx::Conv_900 = Identity(%onnx::Conv_864) %onnx::Conv_897 = Identity(%onnx::Conv_864) %onnx::Conv_894 = Identity(%onnx::Conv_864) %onnx::Conv_891 = Identity(%onnx::Conv_864) %onnx::Conv_888 = Identity(%onnx::Conv_864) %onnx::Conv_885 = Identity(%onnx::Conv_864) %onnx::Conv_882 = Identity(%onnx::Conv_864) %onnx::Conv_879 = Identity(%onnx::Conv_864) %onnx::Conv_876 = Identity(%onnx::Conv_864) %onnx::Conv_873 = Identity(%onnx::Conv_864) %onnx::Conv_870 = Identity(%onnx::Conv_864) %onnx::Conv_867 = Identity(%onnx::Conv_864) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_860, %onnx::Conv_861) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_863, %onnx::Conv_864) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_866, %onnx::Conv_867) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_869, %onnx::Conv_870) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_1_output_0) %/layers.1/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/vertex_op.2/maxpool/MaxPool_output_0) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/vertex_op.3/maxpool/MaxPool_output_0, %onnx::Conv_872, %onnx::Conv_873) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_875, %onnx::Conv_876) %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/Add_3_output_0 = Add(%/layers.1/Add_2_output_0, %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/Add_4_output_0 = Add(%/layers.1/Add_3_output_0, %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_4_output_0, %onnx::Conv_878, %onnx::Conv_879) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_881, %onnx::Conv_882) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_884, %onnx::Conv_885) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_887, %onnx::Conv_888) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_1_output_0) %/layers.2/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/vertex_op.2/maxpool/MaxPool_output_0) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/vertex_op.3/maxpool/MaxPool_output_0, %onnx::Conv_890, %onnx::Conv_891) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_893, %onnx::Conv_894) %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/Add_3_output_0 = Add(%/layers.2/Add_2_output_0, %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/Add_4_output_0 = Add(%/layers.2/Add_3_output_0, %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_4_output_0, %onnx::Conv_896, %onnx::Conv_897) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_899, %onnx::Conv_900) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_902, %onnx::Conv_903) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_905, %onnx::Conv_906) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_1_output_0) %/layers.3/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/vertex_op.2/maxpool/MaxPool_output_0) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/vertex_op.3/maxpool/MaxPool_output_0, %onnx::Conv_908, %onnx::Conv_909) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_911, %onnx::Conv_912) %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/Add_3_output_0 = Add(%/layers.3/Add_2_output_0, %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/Add_4_output_0 = Add(%/layers.3/Add_3_output_0, %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_4_output_0, %onnx::Conv_914, %onnx::Conv_915) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Concat_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_917, %onnx::Conv_918) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_920, %onnx::Conv_921) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_923, %onnx::Conv_924) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_1_output_0) %/layers.5/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/vertex_op.2/maxpool/MaxPool_output_0) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/vertex_op.3/maxpool/MaxPool_output_0, %onnx::Conv_926, %onnx::Conv_927) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_929, %onnx::Conv_930) %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/Add_3_output_0 = Add(%/layers.5/Add_2_output_0, %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/Add_4_output_0 = Add(%/layers.5/Add_3_output_0, %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_4_output_0, %onnx::Conv_932, %onnx::Conv_933) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_935, %onnx::Conv_936) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_938, %onnx::Conv_939) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_941, %onnx::Conv_942) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_1_output_0) %/layers.6/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/vertex_op.2/maxpool/MaxPool_output_0) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/vertex_op.3/maxpool/MaxPool_output_0, %onnx::Conv_944, %onnx::Conv_945) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_947, %onnx::Conv_948) %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/Add_3_output_0 = Add(%/layers.6/Add_2_output_0, %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/Add_4_output_0 = Add(%/layers.6/Add_3_output_0, %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_4_output_0, %onnx::Conv_950, %onnx::Conv_951) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_953, %onnx::Conv_954) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_956, %onnx::Conv_957) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_959, %onnx::Conv_960) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_1_output_0) %/layers.7/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/vertex_op.2/maxpool/MaxPool_output_0) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/vertex_op.3/maxpool/MaxPool_output_0, %onnx::Conv_962, %onnx::Conv_963) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_965, %onnx::Conv_966) %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/Add_3_output_0 = Add(%/layers.7/Add_2_output_0, %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/Add_4_output_0 = Add(%/layers.7/Add_3_output_0, %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_4_output_0, %onnx::Conv_968, %onnx::Conv_969) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Concat_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_971, %onnx::Conv_972) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_974, %onnx::Conv_975) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_977, %onnx::Conv_978) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_1_output_0) %/layers.9/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/vertex_op.2/maxpool/MaxPool_output_0) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/vertex_op.3/maxpool/MaxPool_output_0, %onnx::Conv_980, %onnx::Conv_981) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_983, %onnx::Conv_984) %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/Add_3_output_0 = Add(%/layers.9/Add_2_output_0, %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/Add_4_output_0 = Add(%/layers.9/Add_3_output_0, %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_4_output_0, %onnx::Conv_986, %onnx::Conv_987) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_989, %onnx::Conv_990) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_992, %onnx::Conv_993) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_995, %onnx::Conv_996) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_1_output_0) %/layers.10/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/vertex_op.2/maxpool/MaxPool_output_0) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/vertex_op.3/maxpool/MaxPool_output_0, %onnx::Conv_998, %onnx::Conv_999) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_1001, %onnx::Conv_1002) %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/Add_3_output_0 = Add(%/layers.10/Add_2_output_0, %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/Add_4_output_0 = Add(%/layers.10/Add_3_output_0, %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_4_output_0, %onnx::Conv_1004, %onnx::Conv_1005) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_1007, %onnx::Conv_1008) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_1010, %onnx::Conv_1011) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_1013, %onnx::Conv_1014) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_1_output_0) %/layers.11/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/vertex_op.2/maxpool/MaxPool_output_0) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/vertex_op.3/maxpool/MaxPool_output_0, %onnx::Conv_1016, %onnx::Conv_1017) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_1019, %onnx::Conv_1020) %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/Add_3_output_0 = Add(%/layers.11/Add_2_output_0, %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/Add_4_output_0 = Add(%/layers.11/Add_3_output_0, %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_4_output_0, %onnx::Conv_1022, %onnx::Conv_1023) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Concat_output_0) %858 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %858 }
val_accuracy
93.980366
2,465,736,704
8,294,794
{'zcp_epe_nas': 99.68787365241191, 'zcp_fisher': 3.973864316940307, 'zcp_flops': 39451787264.0, 'zcp_grad_norm': 37.95066452026367, 'zcp_grasp': -0.037940979003906, 'zcp_jacov': -16.0611314761869, 'zcp_l2_norm': 1040.74169921875, 'zcp_nwot': 223.85482629672728, 'zcp_params': 8294794.0, 'zcp_plain': -0.000293730176053, 'zcp_snip': 264.2927551269531, 'zcp_synflow': 100.16434690730918, 'zcp_zen': 109.24088287353516, 'zcp_val_accuracy': 0.8292267918586731}
NASBench101_366483
NASBench101
366483
dd8e6b30ee44b33290910ff56fed7732
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_815[FLOAT, 128x3x3x3] %onnx::Conv_816[FLOAT, 128] %onnx::Conv_818[FLOAT, 128x128x1x1] %onnx::Conv_821[FLOAT, 128x128x1x1] %onnx::Conv_824[FLOAT, 128x128x1x1] %onnx::Conv_827[FLOAT, 128x128x3x3] %onnx::Conv_830[FLOAT, 128x128x1x1] %onnx::Conv_833[FLOAT, 128x128x1x1] %onnx::Conv_836[FLOAT, 128x128x1x1] %onnx::Conv_839[FLOAT, 128x128x1x1] %onnx::Conv_842[FLOAT, 128x128x1x1] %onnx::Conv_845[FLOAT, 128x128x3x3] %onnx::Conv_848[FLOAT, 128x128x1x1] %onnx::Conv_851[FLOAT, 128x128x1x1] %onnx::Conv_854[FLOAT, 128x128x1x1] %onnx::Conv_857[FLOAT, 128x128x1x1] %onnx::Conv_860[FLOAT, 128x128x1x1] %onnx::Conv_863[FLOAT, 128x128x3x3] %onnx::Conv_866[FLOAT, 128x128x1x1] %onnx::Conv_869[FLOAT, 128x128x1x1] %onnx::Conv_872[FLOAT, 256x128x1x1] %onnx::Conv_873[FLOAT, 256] %onnx::Conv_875[FLOAT, 256x256x1x1] %onnx::Conv_878[FLOAT, 256x128x1x1] %onnx::Conv_881[FLOAT, 256x256x3x3] %onnx::Conv_884[FLOAT, 256x128x1x1] %onnx::Conv_887[FLOAT, 256x256x1x1] %onnx::Conv_890[FLOAT, 256x256x1x1] %onnx::Conv_893[FLOAT, 256x256x1x1] %onnx::Conv_896[FLOAT, 256x256x1x1] %onnx::Conv_899[FLOAT, 256x256x3x3] %onnx::Conv_902[FLOAT, 256x256x1x1] %onnx::Conv_905[FLOAT, 256x256x1x1] %onnx::Conv_908[FLOAT, 256x256x1x1] %onnx::Conv_911[FLOAT, 256x256x1x1] %onnx::Conv_914[FLOAT, 256x256x1x1] %onnx::Conv_917[FLOAT, 256x256x3x3] %onnx::Conv_920[FLOAT, 256x256x1x1] %onnx::Conv_923[FLOAT, 256x256x1x1] %onnx::Conv_926[FLOAT, 512x256x1x1] %onnx::Conv_927[FLOAT, 512] %onnx::Conv_929[FLOAT, 512x512x1x1] %onnx::Conv_932[FLOAT, 512x256x1x1] %onnx::Conv_935[FLOAT, 512x512x3x3] %onnx::Conv_938[FLOAT, 512x256x1x1] %onnx::Conv_941[FLOAT, 512x512x1x1] %onnx::Conv_944[FLOAT, 512x512x1x1] %onnx::Conv_947[FLOAT, 512x512x1x1] %onnx::Conv_950[FLOAT, 512x512x1x1] %onnx::Conv_953[FLOAT, 512x512x3x3] %onnx::Conv_956[FLOAT, 512x512x1x1] %onnx::Conv_959[FLOAT, 512x512x1x1] %onnx::Conv_962[FLOAT, 512x512x1x1] %onnx::Conv_965[FLOAT, 512x512x1x1] %onnx::Conv_968[FLOAT, 512x512x1x1] %onnx::Conv_971[FLOAT, 512x512x3x3] %onnx::Conv_974[FLOAT, 512x512x1x1] %onnx::Conv_977[FLOAT, 512x512x1x1] ) { %onnx::Conv_978 = Identity(%onnx::Conv_927) %onnx::Conv_975 = Identity(%onnx::Conv_927) %onnx::Conv_972 = Identity(%onnx::Conv_927) %onnx::Conv_969 = Identity(%onnx::Conv_927) %onnx::Conv_966 = Identity(%onnx::Conv_927) %onnx::Conv_963 = Identity(%onnx::Conv_927) %onnx::Conv_960 = Identity(%onnx::Conv_927) %onnx::Conv_957 = Identity(%onnx::Conv_927) %onnx::Conv_954 = Identity(%onnx::Conv_927) %onnx::Conv_951 = Identity(%onnx::Conv_927) %onnx::Conv_948 = Identity(%onnx::Conv_927) %onnx::Conv_945 = Identity(%onnx::Conv_927) %onnx::Conv_942 = Identity(%onnx::Conv_927) %onnx::Conv_939 = Identity(%onnx::Conv_927) %onnx::Conv_936 = Identity(%onnx::Conv_927) %onnx::Conv_933 = Identity(%onnx::Conv_927) %onnx::Conv_930 = Identity(%onnx::Conv_927) %onnx::Conv_924 = Identity(%onnx::Conv_873) %onnx::Conv_921 = Identity(%onnx::Conv_873) %onnx::Conv_918 = Identity(%onnx::Conv_873) %onnx::Conv_915 = Identity(%onnx::Conv_873) %onnx::Conv_912 = Identity(%onnx::Conv_873) %onnx::Conv_909 = Identity(%onnx::Conv_873) %onnx::Conv_906 = Identity(%onnx::Conv_873) %onnx::Conv_903 = Identity(%onnx::Conv_873) %onnx::Conv_900 = Identity(%onnx::Conv_873) %onnx::Conv_897 = Identity(%onnx::Conv_873) %onnx::Conv_894 = Identity(%onnx::Conv_873) %onnx::Conv_891 = Identity(%onnx::Conv_873) %onnx::Conv_888 = Identity(%onnx::Conv_873) %onnx::Conv_885 = Identity(%onnx::Conv_873) %onnx::Conv_882 = Identity(%onnx::Conv_873) %onnx::Conv_879 = Identity(%onnx::Conv_873) %onnx::Conv_876 = Identity(%onnx::Conv_873) %onnx::Conv_870 = Identity(%onnx::Conv_816) %onnx::Conv_867 = Identity(%onnx::Conv_816) %onnx::Conv_864 = Identity(%onnx::Conv_816) %onnx::Conv_861 = Identity(%onnx::Conv_816) %onnx::Conv_858 = Identity(%onnx::Conv_816) %onnx::Conv_855 = Identity(%onnx::Conv_816) %onnx::Conv_852 = Identity(%onnx::Conv_816) %onnx::Conv_849 = Identity(%onnx::Conv_816) %onnx::Conv_846 = Identity(%onnx::Conv_816) %onnx::Conv_843 = Identity(%onnx::Conv_816) %onnx::Conv_840 = Identity(%onnx::Conv_816) %onnx::Conv_837 = Identity(%onnx::Conv_816) %onnx::Conv_834 = Identity(%onnx::Conv_816) %onnx::Conv_831 = Identity(%onnx::Conv_816) %onnx::Conv_828 = Identity(%onnx::Conv_816) %onnx::Conv_825 = Identity(%onnx::Conv_816) %onnx::Conv_822 = Identity(%onnx::Conv_816) %onnx::Conv_819 = Identity(%onnx::Conv_816) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_815, %onnx::Conv_816) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_818, %onnx::Conv_819) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_821, %onnx::Conv_822) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_824, %onnx::Conv_825) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/Add_2_output_0 = Add(%/layers.1/Add_1_output_0, %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_2_output_0) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_827, %onnx::Conv_828) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_830, %onnx::Conv_831) %/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Add_3_output_0 = Add(%/layers.1/vertex_op.2/maxpool/MaxPool_output_0, %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/Add_4_output_0 = Add(%/layers.1/Add_3_output_0, %/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_4_output_0, %onnx::Conv_833, %onnx::Conv_834) %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_836, %onnx::Conv_837) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_839, %onnx::Conv_840) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_842, %onnx::Conv_843) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/Add_2_output_0 = Add(%/layers.2/Add_1_output_0, %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_2_output_0) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_845, %onnx::Conv_846) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_848, %onnx::Conv_849) %/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Add_3_output_0 = Add(%/layers.2/vertex_op.2/maxpool/MaxPool_output_0, %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/Add_4_output_0 = Add(%/layers.2/Add_3_output_0, %/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_4_output_0, %onnx::Conv_851, %onnx::Conv_852) %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_854, %onnx::Conv_855) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_857, %onnx::Conv_858) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_860, %onnx::Conv_861) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/Add_2_output_0 = Add(%/layers.3/Add_1_output_0, %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_2_output_0) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_863, %onnx::Conv_864) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_866, %onnx::Conv_867) %/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Add_3_output_0 = Add(%/layers.3/vertex_op.2/maxpool/MaxPool_output_0, %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/Add_4_output_0 = Add(%/layers.3/Add_3_output_0, %/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_4_output_0, %onnx::Conv_869, %onnx::Conv_870) %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_872, %onnx::Conv_873) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_875, %onnx::Conv_876) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_878, %onnx::Conv_879) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/Add_2_output_0 = Add(%/layers.5/Add_1_output_0, %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_2_output_0) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_881, %onnx::Conv_882) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_884, %onnx::Conv_885) %/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Add_3_output_0 = Add(%/layers.5/vertex_op.2/maxpool/MaxPool_output_0, %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/Add_4_output_0 = Add(%/layers.5/Add_3_output_0, %/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_4_output_0, %onnx::Conv_887, %onnx::Conv_888) %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_890, %onnx::Conv_891) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_893, %onnx::Conv_894) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_896, %onnx::Conv_897) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/Add_2_output_0 = Add(%/layers.6/Add_1_output_0, %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_2_output_0) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_899, %onnx::Conv_900) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_902, %onnx::Conv_903) %/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Add_3_output_0 = Add(%/layers.6/vertex_op.2/maxpool/MaxPool_output_0, %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/Add_4_output_0 = Add(%/layers.6/Add_3_output_0, %/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_4_output_0, %onnx::Conv_905, %onnx::Conv_906) %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_908, %onnx::Conv_909) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_911, %onnx::Conv_912) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_914, %onnx::Conv_915) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/Add_2_output_0 = Add(%/layers.7/Add_1_output_0, %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_2_output_0) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_917, %onnx::Conv_918) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_920, %onnx::Conv_921) %/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Add_3_output_0 = Add(%/layers.7/vertex_op.2/maxpool/MaxPool_output_0, %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/Add_4_output_0 = Add(%/layers.7/Add_3_output_0, %/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_4_output_0, %onnx::Conv_923, %onnx::Conv_924) %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_926, %onnx::Conv_927) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_929, %onnx::Conv_930) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_932, %onnx::Conv_933) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/Add_2_output_0 = Add(%/layers.9/Add_1_output_0, %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_2_output_0) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_935, %onnx::Conv_936) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_938, %onnx::Conv_939) %/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Add_3_output_0 = Add(%/layers.9/vertex_op.2/maxpool/MaxPool_output_0, %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/Add_4_output_0 = Add(%/layers.9/Add_3_output_0, %/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_4_output_0, %onnx::Conv_941, %onnx::Conv_942) %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_944, %onnx::Conv_945) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_947, %onnx::Conv_948) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_950, %onnx::Conv_951) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/Add_2_output_0 = Add(%/layers.10/Add_1_output_0, %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_2_output_0) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_953, %onnx::Conv_954) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_956, %onnx::Conv_957) %/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Add_3_output_0 = Add(%/layers.10/vertex_op.2/maxpool/MaxPool_output_0, %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/Add_4_output_0 = Add(%/layers.10/Add_3_output_0, %/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_4_output_0, %onnx::Conv_959, %onnx::Conv_960) %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_962, %onnx::Conv_963) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_965, %onnx::Conv_966) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_968, %onnx::Conv_969) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/Add_2_output_0 = Add(%/layers.11/Add_1_output_0, %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_2_output_0) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_971, %onnx::Conv_972) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_974, %onnx::Conv_975) %/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Add_3_output_0 = Add(%/layers.11/vertex_op.2/maxpool/MaxPool_output_0, %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/Add_4_output_0 = Add(%/layers.11/Add_3_output_0, %/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_4_output_0, %onnx::Conv_977, %onnx::Conv_978) %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %813 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %813 }
val_accuracy
92.307693
4,168,361,984
14,000,266
{'zcp_epe_nas': 68.73384769729101, 'zcp_fisher': 24.43914222717285, 'zcp_flops': 66693791744.0, 'zcp_grad_norm': 97.6607894897461, 'zcp_grasp': 4.4295654296875, 'zcp_jacov': -16.054902135324756, 'zcp_l2_norm': 1226.356689453125, 'zcp_nwot': 234.77187751156333, 'zcp_params': 14000266.0, 'zcp_plain': -0.002031329786404, 'zcp_snip': 753.22607421875, 'zcp_synflow': 120.38584614381743, 'zcp_zen': 106.62234497070312, 'zcp_val_accuracy': 0.904947936534881}
NASBench101_347815
NASBench101
347815
d2462330b058e881f980cd6c7bc4dc07
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_986[FLOAT, 128x3x3x3] %onnx::Conv_987[FLOAT, 128] %onnx::Conv_989[FLOAT, 128x128x1x1] %onnx::Conv_992[FLOAT, 128x128x1x1] %onnx::Conv_995[FLOAT, 128x128x1x1] %onnx::Conv_998[FLOAT, 128x128x1x1] %onnx::Conv_1001[FLOAT, 128x128x1x1] %onnx::Conv_1004[FLOAT, 128x128x1x1] %onnx::Conv_1007[FLOAT, 128x128x3x3] %onnx::Conv_1010[FLOAT, 128x128x1x1] %onnx::Conv_1013[FLOAT, 128x128x1x1] %onnx::Conv_1016[FLOAT, 128x128x1x1] %onnx::Conv_1019[FLOAT, 128x128x1x1] %onnx::Conv_1022[FLOAT, 128x128x1x1] %onnx::Conv_1025[FLOAT, 128x128x1x1] %onnx::Conv_1028[FLOAT, 128x128x3x3] %onnx::Conv_1031[FLOAT, 128x128x1x1] %onnx::Conv_1034[FLOAT, 128x128x1x1] %onnx::Conv_1037[FLOAT, 128x128x1x1] %onnx::Conv_1040[FLOAT, 128x128x1x1] %onnx::Conv_1043[FLOAT, 128x128x1x1] %onnx::Conv_1046[FLOAT, 128x128x1x1] %onnx::Conv_1049[FLOAT, 128x128x3x3] %onnx::Conv_1052[FLOAT, 256x128x1x1] %onnx::Conv_1053[FLOAT, 256] %onnx::Conv_1055[FLOAT, 256x256x1x1] %onnx::Conv_1058[FLOAT, 256x256x1x1] %onnx::Conv_1061[FLOAT, 256x128x1x1] %onnx::Conv_1064[FLOAT, 256x128x1x1] %onnx::Conv_1067[FLOAT, 256x256x1x1] %onnx::Conv_1070[FLOAT, 256x256x3x3] %onnx::Conv_1073[FLOAT, 256x256x1x1] %onnx::Conv_1076[FLOAT, 256x256x1x1] %onnx::Conv_1079[FLOAT, 256x256x1x1] %onnx::Conv_1082[FLOAT, 256x256x1x1] %onnx::Conv_1085[FLOAT, 256x256x1x1] %onnx::Conv_1088[FLOAT, 256x256x1x1] %onnx::Conv_1091[FLOAT, 256x256x3x3] %onnx::Conv_1094[FLOAT, 256x256x1x1] %onnx::Conv_1097[FLOAT, 256x256x1x1] %onnx::Conv_1100[FLOAT, 256x256x1x1] %onnx::Conv_1103[FLOAT, 256x256x1x1] %onnx::Conv_1106[FLOAT, 256x256x1x1] %onnx::Conv_1109[FLOAT, 256x256x1x1] %onnx::Conv_1112[FLOAT, 256x256x3x3] %onnx::Conv_1115[FLOAT, 512x256x1x1] %onnx::Conv_1116[FLOAT, 512] %onnx::Conv_1118[FLOAT, 512x512x1x1] %onnx::Conv_1121[FLOAT, 512x512x1x1] %onnx::Conv_1124[FLOAT, 512x256x1x1] %onnx::Conv_1127[FLOAT, 512x256x1x1] %onnx::Conv_1130[FLOAT, 512x512x1x1] %onnx::Conv_1133[FLOAT, 512x512x3x3] %onnx::Conv_1136[FLOAT, 512x512x1x1] %onnx::Conv_1139[FLOAT, 512x512x1x1] %onnx::Conv_1142[FLOAT, 512x512x1x1] %onnx::Conv_1145[FLOAT, 512x512x1x1] %onnx::Conv_1148[FLOAT, 512x512x1x1] %onnx::Conv_1151[FLOAT, 512x512x1x1] %onnx::Conv_1154[FLOAT, 512x512x3x3] %onnx::Conv_1157[FLOAT, 512x512x1x1] %onnx::Conv_1160[FLOAT, 512x512x1x1] %onnx::Conv_1163[FLOAT, 512x512x1x1] %onnx::Conv_1166[FLOAT, 512x512x1x1] %onnx::Conv_1169[FLOAT, 512x512x1x1] %onnx::Conv_1172[FLOAT, 512x512x1x1] %onnx::Conv_1175[FLOAT, 512x512x3x3] ) { %onnx::Conv_1176 = Identity(%onnx::Conv_1116) %onnx::Conv_1173 = Identity(%onnx::Conv_1116) %onnx::Conv_1170 = Identity(%onnx::Conv_1116) %onnx::Conv_1167 = Identity(%onnx::Conv_1116) %onnx::Conv_1164 = Identity(%onnx::Conv_1116) %onnx::Conv_1161 = Identity(%onnx::Conv_1116) %onnx::Conv_1158 = Identity(%onnx::Conv_1116) %onnx::Conv_1155 = Identity(%onnx::Conv_1116) %onnx::Conv_1152 = Identity(%onnx::Conv_1116) %onnx::Conv_1149 = Identity(%onnx::Conv_1116) %onnx::Conv_1146 = Identity(%onnx::Conv_1116) %onnx::Conv_1143 = Identity(%onnx::Conv_1116) %onnx::Conv_1140 = Identity(%onnx::Conv_1116) %onnx::Conv_1137 = Identity(%onnx::Conv_1116) %onnx::Conv_1134 = Identity(%onnx::Conv_1116) %onnx::Conv_1131 = Identity(%onnx::Conv_1116) %onnx::Conv_1128 = Identity(%onnx::Conv_1116) %onnx::Conv_1125 = Identity(%onnx::Conv_1116) %onnx::Conv_1122 = Identity(%onnx::Conv_1116) %onnx::Conv_1119 = Identity(%onnx::Conv_1116) %onnx::Conv_1113 = Identity(%onnx::Conv_1053) %onnx::Conv_1110 = Identity(%onnx::Conv_1053) %onnx::Conv_1107 = Identity(%onnx::Conv_1053) %onnx::Conv_1104 = Identity(%onnx::Conv_1053) %onnx::Conv_1101 = Identity(%onnx::Conv_1053) %onnx::Conv_1098 = Identity(%onnx::Conv_1053) %onnx::Conv_1095 = Identity(%onnx::Conv_1053) %onnx::Conv_1092 = Identity(%onnx::Conv_1053) %onnx::Conv_1089 = Identity(%onnx::Conv_1053) %onnx::Conv_1086 = Identity(%onnx::Conv_1053) %onnx::Conv_1083 = Identity(%onnx::Conv_1053) %onnx::Conv_1080 = Identity(%onnx::Conv_1053) %onnx::Conv_1077 = Identity(%onnx::Conv_1053) %onnx::Conv_1074 = Identity(%onnx::Conv_1053) %onnx::Conv_1071 = Identity(%onnx::Conv_1053) %onnx::Conv_1068 = Identity(%onnx::Conv_1053) %onnx::Conv_1065 = Identity(%onnx::Conv_1053) %onnx::Conv_1062 = Identity(%onnx::Conv_1053) %onnx::Conv_1059 = Identity(%onnx::Conv_1053) %onnx::Conv_1056 = Identity(%onnx::Conv_1053) %onnx::Conv_1050 = Identity(%onnx::Conv_987) %onnx::Conv_1047 = Identity(%onnx::Conv_987) %onnx::Conv_1044 = Identity(%onnx::Conv_987) %onnx::Conv_1041 = Identity(%onnx::Conv_987) %onnx::Conv_1038 = Identity(%onnx::Conv_987) %onnx::Conv_1035 = Identity(%onnx::Conv_987) %onnx::Conv_1032 = Identity(%onnx::Conv_987) %onnx::Conv_1029 = Identity(%onnx::Conv_987) %onnx::Conv_1026 = Identity(%onnx::Conv_987) %onnx::Conv_1023 = Identity(%onnx::Conv_987) %onnx::Conv_1020 = Identity(%onnx::Conv_987) %onnx::Conv_1017 = Identity(%onnx::Conv_987) %onnx::Conv_1014 = Identity(%onnx::Conv_987) %onnx::Conv_1011 = Identity(%onnx::Conv_987) %onnx::Conv_1008 = Identity(%onnx::Conv_987) %onnx::Conv_1005 = Identity(%onnx::Conv_987) %onnx::Conv_1002 = Identity(%onnx::Conv_987) %onnx::Conv_999 = Identity(%onnx::Conv_987) %onnx::Conv_996 = Identity(%onnx::Conv_987) %onnx::Conv_993 = Identity(%onnx::Conv_987) %onnx::Conv_990 = Identity(%onnx::Conv_987) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_986, %onnx::Conv_987) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_989, %onnx::Conv_990) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_992, %onnx::Conv_993) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_995, %onnx::Conv_996) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_998, %onnx::Conv_999) %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_2_output_0) %/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1001, %onnx::Conv_1002) %/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_3_output_0 = Add(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_3_output_0) %/layers.1/Add_4_output_0 = Add(%/layers.1/Add_3_output_0, %/layers.1/vertex_op.3/maxpool/MaxPool_output_0) %/layers.1/Add_5_output_0 = Add(%/layers.1/Add_4_output_0, %/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_5_output_0, %onnx::Conv_1004, %onnx::Conv_1005) %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_6_output_0 = Add(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_4_output_0) %/layers.1/Add_7_output_0 = Add(%/layers.1/Add_6_output_0, %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_7_output_0, %onnx::Conv_1007, %onnx::Conv_1008) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1010, %onnx::Conv_1011) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_1013, %onnx::Conv_1014) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_1016, %onnx::Conv_1017) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1019, %onnx::Conv_1020) %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_2_output_0) %/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1022, %onnx::Conv_1023) %/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_3_output_0 = Add(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_3_output_0) %/layers.2/Add_4_output_0 = Add(%/layers.2/Add_3_output_0, %/layers.2/vertex_op.3/maxpool/MaxPool_output_0) %/layers.2/Add_5_output_0 = Add(%/layers.2/Add_4_output_0, %/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_5_output_0, %onnx::Conv_1025, %onnx::Conv_1026) %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_6_output_0 = Add(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_4_output_0) %/layers.2/Add_7_output_0 = Add(%/layers.2/Add_6_output_0, %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_7_output_0, %onnx::Conv_1028, %onnx::Conv_1029) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1031, %onnx::Conv_1032) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_1034, %onnx::Conv_1035) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_1037, %onnx::Conv_1038) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1040, %onnx::Conv_1041) %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_2_output_0) %/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1043, %onnx::Conv_1044) %/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_3_output_0 = Add(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_3_output_0) %/layers.3/Add_4_output_0 = Add(%/layers.3/Add_3_output_0, %/layers.3/vertex_op.3/maxpool/MaxPool_output_0) %/layers.3/Add_5_output_0 = Add(%/layers.3/Add_4_output_0, %/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_5_output_0, %onnx::Conv_1046, %onnx::Conv_1047) %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_6_output_0 = Add(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_4_output_0) %/layers.3/Add_7_output_0 = Add(%/layers.3/Add_6_output_0, %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_7_output_0, %onnx::Conv_1049, %onnx::Conv_1050) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_1052, %onnx::Conv_1053) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_1055, %onnx::Conv_1056) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_1058, %onnx::Conv_1059) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_1061, %onnx::Conv_1062) %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_2_output_0) %/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_1064, %onnx::Conv_1065) %/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_3_output_0 = Add(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_3_output_0) %/layers.5/Add_4_output_0 = Add(%/layers.5/Add_3_output_0, %/layers.5/vertex_op.3/maxpool/MaxPool_output_0) %/layers.5/Add_5_output_0 = Add(%/layers.5/Add_4_output_0, %/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_5_output_0, %onnx::Conv_1067, %onnx::Conv_1068) %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_6_output_0 = Add(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_4_output_0) %/layers.5/Add_7_output_0 = Add(%/layers.5/Add_6_output_0, %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_7_output_0, %onnx::Conv_1070, %onnx::Conv_1071) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1073, %onnx::Conv_1074) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_1076, %onnx::Conv_1077) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_1079, %onnx::Conv_1080) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1082, %onnx::Conv_1083) %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_2_output_0) %/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1085, %onnx::Conv_1086) %/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_3_output_0 = Add(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_3_output_0) %/layers.6/Add_4_output_0 = Add(%/layers.6/Add_3_output_0, %/layers.6/vertex_op.3/maxpool/MaxPool_output_0) %/layers.6/Add_5_output_0 = Add(%/layers.6/Add_4_output_0, %/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_5_output_0, %onnx::Conv_1088, %onnx::Conv_1089) %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_6_output_0 = Add(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_4_output_0) %/layers.6/Add_7_output_0 = Add(%/layers.6/Add_6_output_0, %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_7_output_0, %onnx::Conv_1091, %onnx::Conv_1092) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1094, %onnx::Conv_1095) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_1097, %onnx::Conv_1098) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_1100, %onnx::Conv_1101) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1103, %onnx::Conv_1104) %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_2_output_0) %/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1106, %onnx::Conv_1107) %/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_3_output_0 = Add(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_3_output_0) %/layers.7/Add_4_output_0 = Add(%/layers.7/Add_3_output_0, %/layers.7/vertex_op.3/maxpool/MaxPool_output_0) %/layers.7/Add_5_output_0 = Add(%/layers.7/Add_4_output_0, %/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_5_output_0, %onnx::Conv_1109, %onnx::Conv_1110) %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_6_output_0 = Add(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_4_output_0) %/layers.7/Add_7_output_0 = Add(%/layers.7/Add_6_output_0, %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_7_output_0, %onnx::Conv_1112, %onnx::Conv_1113) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1115, %onnx::Conv_1116) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_1118, %onnx::Conv_1119) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_1121, %onnx::Conv_1122) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1124, %onnx::Conv_1125) %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_2_output_0) %/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1127, %onnx::Conv_1128) %/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_3_output_0 = Add(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_3_output_0) %/layers.9/Add_4_output_0 = Add(%/layers.9/Add_3_output_0, %/layers.9/vertex_op.3/maxpool/MaxPool_output_0) %/layers.9/Add_5_output_0 = Add(%/layers.9/Add_4_output_0, %/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_5_output_0, %onnx::Conv_1130, %onnx::Conv_1131) %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_6_output_0 = Add(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_4_output_0) %/layers.9/Add_7_output_0 = Add(%/layers.9/Add_6_output_0, %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_7_output_0, %onnx::Conv_1133, %onnx::Conv_1134) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1136, %onnx::Conv_1137) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_1139, %onnx::Conv_1140) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_1142, %onnx::Conv_1143) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1145, %onnx::Conv_1146) %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_2_output_0) %/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1148, %onnx::Conv_1149) %/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_3_output_0 = Add(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_3_output_0) %/layers.10/Add_4_output_0 = Add(%/layers.10/Add_3_output_0, %/layers.10/vertex_op.3/maxpool/MaxPool_output_0) %/layers.10/Add_5_output_0 = Add(%/layers.10/Add_4_output_0, %/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_5_output_0, %onnx::Conv_1151, %onnx::Conv_1152) %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_6_output_0 = Add(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_4_output_0) %/layers.10/Add_7_output_0 = Add(%/layers.10/Add_6_output_0, %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_7_output_0, %onnx::Conv_1154, %onnx::Conv_1155) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1157, %onnx::Conv_1158) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_1160, %onnx::Conv_1161) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_1163, %onnx::Conv_1164) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1166, %onnx::Conv_1167) %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_2_output_0) %/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1169, %onnx::Conv_1170) %/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_3_output_0 = Add(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_3_output_0) %/layers.11/Add_4_output_0 = Add(%/layers.11/Add_3_output_0, %/layers.11/vertex_op.3/maxpool/MaxPool_output_0) %/layers.11/Add_5_output_0 = Add(%/layers.11/Add_4_output_0, %/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_5_output_0, %onnx::Conv_1172, %onnx::Conv_1173) %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_6_output_0 = Add(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_4_output_0) %/layers.11/Add_7_output_0 = Add(%/layers.11/Add_6_output_0, %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_7_output_0, %onnx::Conv_1175, %onnx::Conv_1176) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %984 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %984 }
val_accuracy
92.027241
4,475,856,896
15,037,834
{'zcp_epe_nas': 192.60201245863428, 'zcp_fisher': 63.91111755371094, 'zcp_flops': 71613710336.0, 'zcp_grad_norm': 150.9674072265625, 'zcp_grasp': -9.355224609375, 'zcp_jacov': -16.053184889655395, 'zcp_l2_norm': 1437.9937744140625, 'zcp_nwot': 237.55369502340378, 'zcp_params': 15037834.0, 'zcp_plain': -0.018248561769723, 'zcp_snip': 1166.9603271484375, 'zcp_synflow': 126.13791091952494, 'zcp_zen': 116.53548431396484, 'zcp_val_accuracy': 0.882612168788909}
NASBench101_118459
NASBench101
118459
4787ec68ad841d2d0d36308be98fb10f
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_779[FLOAT, 128x3x3x3] %onnx::Conv_780[FLOAT, 128] %onnx::Conv_782[FLOAT, 128x128x1x1] %onnx::Conv_785[FLOAT, 128x128x1x1] %onnx::Conv_788[FLOAT, 128x128x1x1] %onnx::Conv_791[FLOAT, 128x128x3x3] %onnx::Conv_794[FLOAT, 128x128x3x3] %onnx::Conv_797[FLOAT, 128x128x1x1] %onnx::Conv_800[FLOAT, 128x128x1x1] %onnx::Conv_803[FLOAT, 128x128x1x1] %onnx::Conv_806[FLOAT, 128x128x3x3] %onnx::Conv_809[FLOAT, 128x128x3x3] %onnx::Conv_812[FLOAT, 128x128x1x1] %onnx::Conv_815[FLOAT, 128x128x1x1] %onnx::Conv_818[FLOAT, 128x128x1x1] %onnx::Conv_821[FLOAT, 128x128x3x3] %onnx::Conv_824[FLOAT, 128x128x3x3] %onnx::Conv_827[FLOAT, 256x128x1x1] %onnx::Conv_828[FLOAT, 256] %onnx::Conv_830[FLOAT, 256x256x1x1] %onnx::Conv_833[FLOAT, 256x256x1x1] %onnx::Conv_836[FLOAT, 256x256x3x3] %onnx::Conv_839[FLOAT, 256x256x3x3] %onnx::Conv_842[FLOAT, 256x256x1x1] %onnx::Conv_845[FLOAT, 256x256x1x1] %onnx::Conv_848[FLOAT, 256x256x1x1] %onnx::Conv_851[FLOAT, 256x256x3x3] %onnx::Conv_854[FLOAT, 256x256x3x3] %onnx::Conv_857[FLOAT, 256x256x1x1] %onnx::Conv_860[FLOAT, 256x256x1x1] %onnx::Conv_863[FLOAT, 256x256x1x1] %onnx::Conv_866[FLOAT, 256x256x3x3] %onnx::Conv_869[FLOAT, 256x256x3x3] %onnx::Conv_872[FLOAT, 512x256x1x1] %onnx::Conv_873[FLOAT, 512] %onnx::Conv_875[FLOAT, 512x512x1x1] %onnx::Conv_878[FLOAT, 512x512x1x1] %onnx::Conv_881[FLOAT, 512x512x3x3] %onnx::Conv_884[FLOAT, 512x512x3x3] %onnx::Conv_887[FLOAT, 512x512x1x1] %onnx::Conv_890[FLOAT, 512x512x1x1] %onnx::Conv_893[FLOAT, 512x512x1x1] %onnx::Conv_896[FLOAT, 512x512x3x3] %onnx::Conv_899[FLOAT, 512x512x3x3] %onnx::Conv_902[FLOAT, 512x512x1x1] %onnx::Conv_905[FLOAT, 512x512x1x1] %onnx::Conv_908[FLOAT, 512x512x1x1] %onnx::Conv_911[FLOAT, 512x512x3x3] %onnx::Conv_914[FLOAT, 512x512x3x3] ) { %onnx::Conv_915 = Identity(%onnx::Conv_873) %onnx::Conv_912 = Identity(%onnx::Conv_873) %onnx::Conv_909 = Identity(%onnx::Conv_873) %onnx::Conv_906 = Identity(%onnx::Conv_873) %onnx::Conv_903 = Identity(%onnx::Conv_873) %onnx::Conv_900 = Identity(%onnx::Conv_873) %onnx::Conv_897 = Identity(%onnx::Conv_873) %onnx::Conv_894 = Identity(%onnx::Conv_873) %onnx::Conv_891 = Identity(%onnx::Conv_873) %onnx::Conv_888 = Identity(%onnx::Conv_873) %onnx::Conv_885 = Identity(%onnx::Conv_873) %onnx::Conv_882 = Identity(%onnx::Conv_873) %onnx::Conv_879 = Identity(%onnx::Conv_873) %onnx::Conv_876 = Identity(%onnx::Conv_873) %onnx::Conv_870 = Identity(%onnx::Conv_828) %onnx::Conv_867 = Identity(%onnx::Conv_828) %onnx::Conv_864 = Identity(%onnx::Conv_828) %onnx::Conv_861 = Identity(%onnx::Conv_828) %onnx::Conv_858 = Identity(%onnx::Conv_828) %onnx::Conv_855 = Identity(%onnx::Conv_828) %onnx::Conv_852 = Identity(%onnx::Conv_828) %onnx::Conv_849 = Identity(%onnx::Conv_828) %onnx::Conv_846 = Identity(%onnx::Conv_828) %onnx::Conv_843 = Identity(%onnx::Conv_828) %onnx::Conv_840 = Identity(%onnx::Conv_828) %onnx::Conv_837 = Identity(%onnx::Conv_828) %onnx::Conv_834 = Identity(%onnx::Conv_828) %onnx::Conv_831 = Identity(%onnx::Conv_828) %onnx::Conv_825 = Identity(%onnx::Conv_780) %onnx::Conv_822 = Identity(%onnx::Conv_780) %onnx::Conv_819 = Identity(%onnx::Conv_780) %onnx::Conv_816 = Identity(%onnx::Conv_780) %onnx::Conv_813 = Identity(%onnx::Conv_780) %onnx::Conv_810 = Identity(%onnx::Conv_780) %onnx::Conv_807 = Identity(%onnx::Conv_780) %onnx::Conv_804 = Identity(%onnx::Conv_780) %onnx::Conv_801 = Identity(%onnx::Conv_780) %onnx::Conv_798 = Identity(%onnx::Conv_780) %onnx::Conv_795 = Identity(%onnx::Conv_780) %onnx::Conv_792 = Identity(%onnx::Conv_780) %onnx::Conv_789 = Identity(%onnx::Conv_780) %onnx::Conv_786 = Identity(%onnx::Conv_780) %onnx::Conv_783 = Identity(%onnx::Conv_780) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_779, %onnx::Conv_780) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_782, %onnx::Conv_783) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_785, %onnx::Conv_786) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_788, %onnx::Conv_789) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/Add_3_output_0 = Add(%/layers.1/Add_2_output_0, %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_3_output_0, %onnx::Conv_791, %onnx::Conv_792) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_4_output_0 = Add(%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_3_output_0) %/layers.1/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_4_output_0) %/layers.1/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_5_output_0 = Add(%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_4_output_0) %/layers.1/Add_6_output_0 = Add(%/layers.1/Add_5_output_0, %/layers.1/vertex_op.4/maxpool/MaxPool_output_0) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_6_output_0, %onnx::Conv_794, %onnx::Conv_795) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_797, %onnx::Conv_798) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_800, %onnx::Conv_801) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_803, %onnx::Conv_804) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/Add_3_output_0 = Add(%/layers.2/Add_2_output_0, %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_3_output_0, %onnx::Conv_806, %onnx::Conv_807) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_4_output_0 = Add(%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_3_output_0) %/layers.2/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_4_output_0) %/layers.2/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_5_output_0 = Add(%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_4_output_0) %/layers.2/Add_6_output_0 = Add(%/layers.2/Add_5_output_0, %/layers.2/vertex_op.4/maxpool/MaxPool_output_0) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_6_output_0, %onnx::Conv_809, %onnx::Conv_810) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_812, %onnx::Conv_813) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_815, %onnx::Conv_816) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_818, %onnx::Conv_819) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/Add_3_output_0 = Add(%/layers.3/Add_2_output_0, %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_3_output_0, %onnx::Conv_821, %onnx::Conv_822) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_4_output_0 = Add(%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_3_output_0) %/layers.3/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_4_output_0) %/layers.3/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_5_output_0 = Add(%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_4_output_0) %/layers.3/Add_6_output_0 = Add(%/layers.3/Add_5_output_0, %/layers.3/vertex_op.4/maxpool/MaxPool_output_0) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_6_output_0, %onnx::Conv_824, %onnx::Conv_825) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_827, %onnx::Conv_828) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_830, %onnx::Conv_831) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_833, %onnx::Conv_834) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/Add_3_output_0 = Add(%/layers.5/Add_2_output_0, %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_3_output_0, %onnx::Conv_836, %onnx::Conv_837) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_4_output_0 = Add(%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_3_output_0) %/layers.5/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_4_output_0) %/layers.5/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_5_output_0 = Add(%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_4_output_0) %/layers.5/Add_6_output_0 = Add(%/layers.5/Add_5_output_0, %/layers.5/vertex_op.4/maxpool/MaxPool_output_0) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_6_output_0, %onnx::Conv_839, %onnx::Conv_840) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_842, %onnx::Conv_843) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_845, %onnx::Conv_846) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_848, %onnx::Conv_849) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/Add_3_output_0 = Add(%/layers.6/Add_2_output_0, %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_3_output_0, %onnx::Conv_851, %onnx::Conv_852) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_4_output_0 = Add(%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_3_output_0) %/layers.6/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_4_output_0) %/layers.6/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_5_output_0 = Add(%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_4_output_0) %/layers.6/Add_6_output_0 = Add(%/layers.6/Add_5_output_0, %/layers.6/vertex_op.4/maxpool/MaxPool_output_0) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_6_output_0, %onnx::Conv_854, %onnx::Conv_855) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_857, %onnx::Conv_858) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_860, %onnx::Conv_861) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_863, %onnx::Conv_864) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/Add_3_output_0 = Add(%/layers.7/Add_2_output_0, %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_3_output_0, %onnx::Conv_866, %onnx::Conv_867) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_4_output_0 = Add(%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_3_output_0) %/layers.7/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_4_output_0) %/layers.7/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_5_output_0 = Add(%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_4_output_0) %/layers.7/Add_6_output_0 = Add(%/layers.7/Add_5_output_0, %/layers.7/vertex_op.4/maxpool/MaxPool_output_0) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_6_output_0, %onnx::Conv_869, %onnx::Conv_870) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_872, %onnx::Conv_873) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_875, %onnx::Conv_876) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_878, %onnx::Conv_879) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/Add_3_output_0 = Add(%/layers.9/Add_2_output_0, %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_3_output_0, %onnx::Conv_881, %onnx::Conv_882) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_4_output_0 = Add(%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_3_output_0) %/layers.9/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_4_output_0) %/layers.9/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_5_output_0 = Add(%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_4_output_0) %/layers.9/Add_6_output_0 = Add(%/layers.9/Add_5_output_0, %/layers.9/vertex_op.4/maxpool/MaxPool_output_0) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_6_output_0, %onnx::Conv_884, %onnx::Conv_885) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_887, %onnx::Conv_888) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_890, %onnx::Conv_891) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_893, %onnx::Conv_894) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/Add_3_output_0 = Add(%/layers.10/Add_2_output_0, %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_3_output_0, %onnx::Conv_896, %onnx::Conv_897) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_4_output_0 = Add(%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_3_output_0) %/layers.10/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_4_output_0) %/layers.10/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_5_output_0 = Add(%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_4_output_0) %/layers.10/Add_6_output_0 = Add(%/layers.10/Add_5_output_0, %/layers.10/vertex_op.4/maxpool/MaxPool_output_0) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_6_output_0, %onnx::Conv_899, %onnx::Conv_900) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_902, %onnx::Conv_903) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_905, %onnx::Conv_906) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_908, %onnx::Conv_909) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/Add_3_output_0 = Add(%/layers.11/Add_2_output_0, %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_3_output_0, %onnx::Conv_911, %onnx::Conv_912) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_4_output_0 = Add(%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_3_output_0) %/layers.11/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_4_output_0) %/layers.11/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_5_output_0 = Add(%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_4_output_0) %/layers.11/Add_6_output_0 = Add(%/layers.11/Add_5_output_0, %/layers.11/vertex_op.4/maxpool/MaxPool_output_0) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_6_output_0, %onnx::Conv_914, %onnx::Conv_915) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %777 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %777 }
val_accuracy
89.973956
6,343,895,040
21,547,914
{'zcp_epe_nas': 159.03549740726922, 'zcp_fisher': 1340.13720703125, 'zcp_flops': 101502320640.0, 'zcp_grad_norm': 485.3724060058594, 'zcp_grasp': -76.3984375, 'zcp_jacov': -16.047898868554366, 'zcp_l2_norm': 1046.615234375, 'zcp_nwot': 232.09747604531108, 'zcp_params': 21547914.0, 'zcp_plain': -0.019847029820084003, 'zcp_snip': 3890.093505859375, 'zcp_synflow': 162.3461354134618, 'zcp_zen': 100.8752670288086, 'zcp_val_accuracy': 0.912760436534881}
NASBench101_376670
NASBench101
376670
e3bc6008f7bb4b25d25ac95d5b2e9c74
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_653[FLOAT, 128x3x3x3] %onnx::Conv_654[FLOAT, 128] %onnx::Conv_656[FLOAT, 43x128x1x1] %onnx::Conv_657[FLOAT, 43] %onnx::Conv_659[FLOAT, 43x43x1x1] %onnx::Conv_662[FLOAT, 42x42x3x3] %onnx::Conv_663[FLOAT, 42] %onnx::Conv_665[FLOAT, 43x128x1x1] %onnx::Conv_668[FLOAT, 43x43x1x1] %onnx::Conv_671[FLOAT, 42x42x3x3] %onnx::Conv_674[FLOAT, 43x128x1x1] %onnx::Conv_677[FLOAT, 43x43x1x1] %onnx::Conv_680[FLOAT, 42x42x3x3] %onnx::Conv_683[FLOAT, 86x128x1x1] %onnx::Conv_684[FLOAT, 86] %onnx::Conv_686[FLOAT, 86x86x1x1] %onnx::Conv_689[FLOAT, 85x85x3x3] %onnx::Conv_690[FLOAT, 85] %onnx::Conv_692[FLOAT, 86x256x1x1] %onnx::Conv_695[FLOAT, 86x86x1x1] %onnx::Conv_698[FLOAT, 85x85x3x3] %onnx::Conv_701[FLOAT, 86x256x1x1] %onnx::Conv_704[FLOAT, 86x86x1x1] %onnx::Conv_707[FLOAT, 85x85x3x3] %onnx::Conv_710[FLOAT, 171x256x1x1] %onnx::Conv_711[FLOAT, 171] %onnx::Conv_713[FLOAT, 171x171x1x1] %onnx::Conv_716[FLOAT, 170x170x3x3] %onnx::Conv_717[FLOAT, 170] %onnx::Conv_719[FLOAT, 171x512x1x1] %onnx::Conv_722[FLOAT, 171x171x1x1] %onnx::Conv_725[FLOAT, 170x170x3x3] %onnx::Conv_728[FLOAT, 171x512x1x1] %onnx::Conv_731[FLOAT, 171x171x1x1] %onnx::Conv_734[FLOAT, 170x170x3x3] ) { %onnx::Conv_735 = Identity(%onnx::Conv_717) %onnx::Conv_732 = Identity(%onnx::Conv_711) %onnx::Conv_729 = Identity(%onnx::Conv_711) %onnx::Conv_726 = Identity(%onnx::Conv_717) %onnx::Conv_723 = Identity(%onnx::Conv_711) %onnx::Conv_720 = Identity(%onnx::Conv_711) %onnx::Conv_714 = Identity(%onnx::Conv_711) %onnx::Conv_708 = Identity(%onnx::Conv_690) %onnx::Conv_705 = Identity(%onnx::Conv_684) %onnx::Conv_702 = Identity(%onnx::Conv_684) %onnx::Conv_699 = Identity(%onnx::Conv_690) %onnx::Conv_696 = Identity(%onnx::Conv_684) %onnx::Conv_693 = Identity(%onnx::Conv_684) %onnx::Conv_687 = Identity(%onnx::Conv_684) %onnx::Conv_681 = Identity(%onnx::Conv_663) %onnx::Conv_678 = Identity(%onnx::Conv_657) %onnx::Conv_675 = Identity(%onnx::Conv_657) %onnx::Conv_672 = Identity(%onnx::Conv_663) %onnx::Conv_669 = Identity(%onnx::Conv_657) %onnx::Conv_666 = Identity(%onnx::Conv_657) %onnx::Conv_660 = Identity(%onnx::Conv_657) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_653, %onnx::Conv_654) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_656, %onnx::Conv_657) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_659, %onnx::Conv_660) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_1_output_0) %/layers.1/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/vertex_op.2/maxpool/MaxPool_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.1/Slice_output_0 = Slice(%/layers.1/vertex_op.2/maxpool/MaxPool_output_0, %/layers.1/Constant_3_output_0, %/layers.1/Constant_4_output_0, %/layers.1/Constant_2_output_0, %/layers.1/Constant_5_output_0) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Slice_output_0, %onnx::Conv_662, %onnx::Conv_663) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_8_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_9_output_0 = Constant[value = <Tensor>]() %/layers.1/Slice_1_output_0 = Slice(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_7_output_0, %/layers.1/Constant_8_output_0, %/layers.1/Constant_6_output_0, %/layers.1/Constant_9_output_0) %/layers.1/Constant_10_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/Slice_1_output_0, %/layers.1/Constant_10_output_0) %/layers.1/Add_3_output_0 = Add(%/layers.1/Add_2_output_0, %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_3_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.3/maxpool/MaxPool_output_0, %/layers.1/vertex_op.5/maxpool/MaxPool_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_665, %onnx::Conv_666) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_668, %onnx::Conv_669) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_1_output_0) %/layers.2/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/vertex_op.2/maxpool/MaxPool_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.2/Slice_output_0 = Slice(%/layers.2/vertex_op.2/maxpool/MaxPool_output_0, %/layers.2/Constant_3_output_0, %/layers.2/Constant_4_output_0, %/layers.2/Constant_2_output_0, %/layers.2/Constant_5_output_0) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Slice_output_0, %onnx::Conv_671, %onnx::Conv_672) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_8_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_9_output_0 = Constant[value = <Tensor>]() %/layers.2/Slice_1_output_0 = Slice(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_7_output_0, %/layers.2/Constant_8_output_0, %/layers.2/Constant_6_output_0, %/layers.2/Constant_9_output_0) %/layers.2/Constant_10_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/Slice_1_output_0, %/layers.2/Constant_10_output_0) %/layers.2/Add_3_output_0 = Add(%/layers.2/Add_2_output_0, %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_3_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.3/maxpool/MaxPool_output_0, %/layers.2/vertex_op.5/maxpool/MaxPool_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_674, %onnx::Conv_675) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_677, %onnx::Conv_678) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_1_output_0) %/layers.3/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/vertex_op.2/maxpool/MaxPool_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.3/Slice_output_0 = Slice(%/layers.3/vertex_op.2/maxpool/MaxPool_output_0, %/layers.3/Constant_3_output_0, %/layers.3/Constant_4_output_0, %/layers.3/Constant_2_output_0, %/layers.3/Constant_5_output_0) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Slice_output_0, %onnx::Conv_680, %onnx::Conv_681) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_8_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_9_output_0 = Constant[value = <Tensor>]() %/layers.3/Slice_1_output_0 = Slice(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_7_output_0, %/layers.3/Constant_8_output_0, %/layers.3/Constant_6_output_0, %/layers.3/Constant_9_output_0) %/layers.3/Constant_10_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/Slice_1_output_0, %/layers.3/Constant_10_output_0) %/layers.3/Add_3_output_0 = Add(%/layers.3/Add_2_output_0, %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_3_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.3/maxpool/MaxPool_output_0, %/layers.3/vertex_op.5/maxpool/MaxPool_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Concat_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_683, %onnx::Conv_684) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_686, %onnx::Conv_687) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.5/Slice_output_0 = Slice(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0, %/layers.5/Constant_3_output_0, %/layers.5/Constant_1_output_0, %/layers.5/Constant_4_output_0) %/layers.5/Constant_5_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/Slice_output_0, %/layers.5/Constant_5_output_0) %/layers.5/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_1_output_0) %/layers.5/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/vertex_op.2/maxpool/MaxPool_output_0) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_689, %onnx::Conv_690) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_8_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_9_output_0 = Constant[value = <Tensor>]() %/layers.5/Slice_1_output_0 = Slice(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_7_output_0, %/layers.5/Constant_8_output_0, %/layers.5/Constant_6_output_0, %/layers.5/Constant_9_output_0) %/layers.5/Constant_10_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/Slice_1_output_0, %/layers.5/Constant_10_output_0) %/layers.5/Add_3_output_0 = Add(%/layers.5/Add_2_output_0, %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_3_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.3/maxpool/MaxPool_output_0, %/layers.5/vertex_op.5/maxpool/MaxPool_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_692, %onnx::Conv_693) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_695, %onnx::Conv_696) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.6/Slice_output_0 = Slice(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0, %/layers.6/Constant_3_output_0, %/layers.6/Constant_1_output_0, %/layers.6/Constant_4_output_0) %/layers.6/Constant_5_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/Slice_output_0, %/layers.6/Constant_5_output_0) %/layers.6/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_1_output_0) %/layers.6/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/vertex_op.2/maxpool/MaxPool_output_0) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_698, %onnx::Conv_699) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_8_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_9_output_0 = Constant[value = <Tensor>]() %/layers.6/Slice_1_output_0 = Slice(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_7_output_0, %/layers.6/Constant_8_output_0, %/layers.6/Constant_6_output_0, %/layers.6/Constant_9_output_0) %/layers.6/Constant_10_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/Slice_1_output_0, %/layers.6/Constant_10_output_0) %/layers.6/Add_3_output_0 = Add(%/layers.6/Add_2_output_0, %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_3_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.3/maxpool/MaxPool_output_0, %/layers.6/vertex_op.5/maxpool/MaxPool_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_701, %onnx::Conv_702) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_704, %onnx::Conv_705) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.7/Slice_output_0 = Slice(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0, %/layers.7/Constant_3_output_0, %/layers.7/Constant_1_output_0, %/layers.7/Constant_4_output_0) %/layers.7/Constant_5_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/Slice_output_0, %/layers.7/Constant_5_output_0) %/layers.7/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_1_output_0) %/layers.7/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/vertex_op.2/maxpool/MaxPool_output_0) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_707, %onnx::Conv_708) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_8_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_9_output_0 = Constant[value = <Tensor>]() %/layers.7/Slice_1_output_0 = Slice(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_7_output_0, %/layers.7/Constant_8_output_0, %/layers.7/Constant_6_output_0, %/layers.7/Constant_9_output_0) %/layers.7/Constant_10_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/Slice_1_output_0, %/layers.7/Constant_10_output_0) %/layers.7/Add_3_output_0 = Add(%/layers.7/Add_2_output_0, %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_3_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.3/maxpool/MaxPool_output_0, %/layers.7/vertex_op.5/maxpool/MaxPool_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Concat_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_710, %onnx::Conv_711) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_713, %onnx::Conv_714) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_1_output_0) %/layers.9/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/vertex_op.2/maxpool/MaxPool_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.9/Slice_output_0 = Slice(%/layers.9/vertex_op.2/maxpool/MaxPool_output_0, %/layers.9/Constant_3_output_0, %/layers.9/Constant_4_output_0, %/layers.9/Constant_2_output_0, %/layers.9/Constant_5_output_0) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Slice_output_0, %onnx::Conv_716, %onnx::Conv_717) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_8_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_9_output_0 = Constant[value = <Tensor>]() %/layers.9/Slice_1_output_0 = Slice(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_7_output_0, %/layers.9/Constant_8_output_0, %/layers.9/Constant_6_output_0, %/layers.9/Constant_9_output_0) %/layers.9/Constant_10_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/Slice_1_output_0, %/layers.9/Constant_10_output_0) %/layers.9/Add_3_output_0 = Add(%/layers.9/Add_2_output_0, %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_3_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.3/maxpool/MaxPool_output_0, %/layers.9/vertex_op.5/maxpool/MaxPool_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_719, %onnx::Conv_720) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_722, %onnx::Conv_723) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_1_output_0) %/layers.10/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/vertex_op.2/maxpool/MaxPool_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.10/Slice_output_0 = Slice(%/layers.10/vertex_op.2/maxpool/MaxPool_output_0, %/layers.10/Constant_3_output_0, %/layers.10/Constant_4_output_0, %/layers.10/Constant_2_output_0, %/layers.10/Constant_5_output_0) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Slice_output_0, %onnx::Conv_725, %onnx::Conv_726) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_8_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_9_output_0 = Constant[value = <Tensor>]() %/layers.10/Slice_1_output_0 = Slice(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_7_output_0, %/layers.10/Constant_8_output_0, %/layers.10/Constant_6_output_0, %/layers.10/Constant_9_output_0) %/layers.10/Constant_10_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/Slice_1_output_0, %/layers.10/Constant_10_output_0) %/layers.10/Add_3_output_0 = Add(%/layers.10/Add_2_output_0, %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_3_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.3/maxpool/MaxPool_output_0, %/layers.10/vertex_op.5/maxpool/MaxPool_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_728, %onnx::Conv_729) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_731, %onnx::Conv_732) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_1_output_0) %/layers.11/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/vertex_op.2/maxpool/MaxPool_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.11/Slice_output_0 = Slice(%/layers.11/vertex_op.2/maxpool/MaxPool_output_0, %/layers.11/Constant_3_output_0, %/layers.11/Constant_4_output_0, %/layers.11/Constant_2_output_0, %/layers.11/Constant_5_output_0) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Slice_output_0, %onnx::Conv_734, %onnx::Conv_735) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_8_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_9_output_0 = Constant[value = <Tensor>]() %/layers.11/Slice_1_output_0 = Slice(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_7_output_0, %/layers.11/Constant_8_output_0, %/layers.11/Constant_6_output_0, %/layers.11/Constant_9_output_0) %/layers.11/Constant_10_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/Slice_1_output_0, %/layers.11/Constant_10_output_0) %/layers.11/Add_3_output_0 = Add(%/layers.11/Add_2_output_0, %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_3_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.3/maxpool/MaxPool_output_0, %/layers.11/vertex_op.5/maxpool/MaxPool_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Concat_output_0) %651 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %651 }
val_accuracy
88.521636
434,909,568
1,443,117
{'zcp_epe_nas': 72.47914530028613, 'zcp_fisher': 38.518577575683594, 'zcp_flops': 6958553088.0, 'zcp_grad_norm': 109.05760192871094, 'zcp_grasp': -8.2734375, 'zcp_jacov': -16.054153492175057, 'zcp_l2_norm': 444.3429870605469, 'zcp_nwot': 208.57687317668777, 'zcp_params': 1443117.0, 'zcp_plain': 0.09536188095808001, 'zcp_snip': 478.5603332519531, 'zcp_synflow': 79.62266326260772, 'zcp_zen': 50.49729537963867, 'zcp_val_accuracy': 0.9131610393524171}
NASBench101_306755
NASBench101
306755
b9977296011b1ad0d0284361bb2e7a33
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_968[FLOAT, 128x3x3x3] %onnx::Conv_969[FLOAT, 128] %onnx::Conv_971[FLOAT, 64x128x1x1] %onnx::Conv_972[FLOAT, 64] %onnx::Conv_974[FLOAT, 64x64x3x3] %onnx::Conv_977[FLOAT, 64x64x3x3] %onnx::Conv_980[FLOAT, 64x128x1x1] %onnx::Conv_983[FLOAT, 64x64x3x3] %onnx::Conv_986[FLOAT, 64x64x1x1] %onnx::Conv_989[FLOAT, 64x64x1x1] %onnx::Conv_992[FLOAT, 64x128x1x1] %onnx::Conv_995[FLOAT, 64x64x3x3] %onnx::Conv_998[FLOAT, 64x64x3x3] %onnx::Conv_1001[FLOAT, 64x128x1x1] %onnx::Conv_1004[FLOAT, 64x64x3x3] %onnx::Conv_1007[FLOAT, 64x64x1x1] %onnx::Conv_1010[FLOAT, 64x64x1x1] %onnx::Conv_1013[FLOAT, 64x128x1x1] %onnx::Conv_1016[FLOAT, 64x64x3x3] %onnx::Conv_1019[FLOAT, 64x64x3x3] %onnx::Conv_1022[FLOAT, 64x128x1x1] %onnx::Conv_1025[FLOAT, 64x64x3x3] %onnx::Conv_1028[FLOAT, 64x64x1x1] %onnx::Conv_1031[FLOAT, 64x64x1x1] %onnx::Conv_1034[FLOAT, 128x128x1x1] %onnx::Conv_1037[FLOAT, 128x128x3x3] %onnx::Conv_1040[FLOAT, 128x128x3x3] %onnx::Conv_1043[FLOAT, 128x128x1x1] %onnx::Conv_1046[FLOAT, 128x128x3x3] %onnx::Conv_1049[FLOAT, 128x128x1x1] %onnx::Conv_1052[FLOAT, 128x128x1x1] %onnx::Conv_1055[FLOAT, 128x256x1x1] %onnx::Conv_1058[FLOAT, 128x128x3x3] %onnx::Conv_1061[FLOAT, 128x128x3x3] %onnx::Conv_1064[FLOAT, 128x256x1x1] %onnx::Conv_1067[FLOAT, 128x128x3x3] %onnx::Conv_1070[FLOAT, 128x128x1x1] %onnx::Conv_1073[FLOAT, 128x128x1x1] %onnx::Conv_1076[FLOAT, 128x256x1x1] %onnx::Conv_1079[FLOAT, 128x128x3x3] %onnx::Conv_1082[FLOAT, 128x128x3x3] %onnx::Conv_1085[FLOAT, 128x256x1x1] %onnx::Conv_1088[FLOAT, 128x128x3x3] %onnx::Conv_1091[FLOAT, 128x128x1x1] %onnx::Conv_1094[FLOAT, 128x128x1x1] %onnx::Conv_1097[FLOAT, 256x256x1x1] %onnx::Conv_1098[FLOAT, 256] %onnx::Conv_1100[FLOAT, 256x256x3x3] %onnx::Conv_1103[FLOAT, 256x256x3x3] %onnx::Conv_1106[FLOAT, 256x256x1x1] %onnx::Conv_1109[FLOAT, 256x256x3x3] %onnx::Conv_1112[FLOAT, 256x256x1x1] %onnx::Conv_1115[FLOAT, 256x256x1x1] %onnx::Conv_1118[FLOAT, 256x512x1x1] %onnx::Conv_1121[FLOAT, 256x256x3x3] %onnx::Conv_1124[FLOAT, 256x256x3x3] %onnx::Conv_1127[FLOAT, 256x512x1x1] %onnx::Conv_1130[FLOAT, 256x256x3x3] %onnx::Conv_1133[FLOAT, 256x256x1x1] %onnx::Conv_1136[FLOAT, 256x256x1x1] %onnx::Conv_1139[FLOAT, 256x512x1x1] %onnx::Conv_1142[FLOAT, 256x256x3x3] %onnx::Conv_1145[FLOAT, 256x256x3x3] %onnx::Conv_1148[FLOAT, 256x512x1x1] %onnx::Conv_1151[FLOAT, 256x256x3x3] %onnx::Conv_1154[FLOAT, 256x256x1x1] %onnx::Conv_1157[FLOAT, 256x256x1x1] ) { %onnx::Conv_1158 = Identity(%onnx::Conv_1098) %onnx::Conv_1155 = Identity(%onnx::Conv_1098) %onnx::Conv_1152 = Identity(%onnx::Conv_1098) %onnx::Conv_1149 = Identity(%onnx::Conv_1098) %onnx::Conv_1146 = Identity(%onnx::Conv_1098) %onnx::Conv_1143 = Identity(%onnx::Conv_1098) %onnx::Conv_1140 = Identity(%onnx::Conv_1098) %onnx::Conv_1137 = Identity(%onnx::Conv_1098) %onnx::Conv_1134 = Identity(%onnx::Conv_1098) %onnx::Conv_1131 = Identity(%onnx::Conv_1098) %onnx::Conv_1128 = Identity(%onnx::Conv_1098) %onnx::Conv_1125 = Identity(%onnx::Conv_1098) %onnx::Conv_1122 = Identity(%onnx::Conv_1098) %onnx::Conv_1119 = Identity(%onnx::Conv_1098) %onnx::Conv_1116 = Identity(%onnx::Conv_1098) %onnx::Conv_1113 = Identity(%onnx::Conv_1098) %onnx::Conv_1110 = Identity(%onnx::Conv_1098) %onnx::Conv_1107 = Identity(%onnx::Conv_1098) %onnx::Conv_1104 = Identity(%onnx::Conv_1098) %onnx::Conv_1101 = Identity(%onnx::Conv_1098) %onnx::Conv_1095 = Identity(%onnx::Conv_969) %onnx::Conv_1092 = Identity(%onnx::Conv_969) %onnx::Conv_1089 = Identity(%onnx::Conv_969) %onnx::Conv_1086 = Identity(%onnx::Conv_969) %onnx::Conv_1083 = Identity(%onnx::Conv_969) %onnx::Conv_1080 = Identity(%onnx::Conv_969) %onnx::Conv_1077 = Identity(%onnx::Conv_969) %onnx::Conv_1074 = Identity(%onnx::Conv_969) %onnx::Conv_1071 = Identity(%onnx::Conv_969) %onnx::Conv_1068 = Identity(%onnx::Conv_969) %onnx::Conv_1065 = Identity(%onnx::Conv_969) %onnx::Conv_1062 = Identity(%onnx::Conv_969) %onnx::Conv_1059 = Identity(%onnx::Conv_969) %onnx::Conv_1056 = Identity(%onnx::Conv_969) %onnx::Conv_1053 = Identity(%onnx::Conv_969) %onnx::Conv_1050 = Identity(%onnx::Conv_969) %onnx::Conv_1047 = Identity(%onnx::Conv_969) %onnx::Conv_1044 = Identity(%onnx::Conv_969) %onnx::Conv_1041 = Identity(%onnx::Conv_969) %onnx::Conv_1038 = Identity(%onnx::Conv_969) %onnx::Conv_1035 = Identity(%onnx::Conv_969) %onnx::Conv_1032 = Identity(%onnx::Conv_972) %onnx::Conv_1029 = Identity(%onnx::Conv_972) %onnx::Conv_1026 = Identity(%onnx::Conv_972) %onnx::Conv_1023 = Identity(%onnx::Conv_972) %onnx::Conv_1020 = Identity(%onnx::Conv_972) %onnx::Conv_1017 = Identity(%onnx::Conv_972) %onnx::Conv_1014 = Identity(%onnx::Conv_972) %onnx::Conv_1011 = Identity(%onnx::Conv_972) %onnx::Conv_1008 = Identity(%onnx::Conv_972) %onnx::Conv_1005 = Identity(%onnx::Conv_972) %onnx::Conv_1002 = Identity(%onnx::Conv_972) %onnx::Conv_999 = Identity(%onnx::Conv_972) %onnx::Conv_996 = Identity(%onnx::Conv_972) %onnx::Conv_993 = Identity(%onnx::Conv_972) %onnx::Conv_990 = Identity(%onnx::Conv_972) %onnx::Conv_987 = Identity(%onnx::Conv_972) %onnx::Conv_984 = Identity(%onnx::Conv_972) %onnx::Conv_981 = Identity(%onnx::Conv_972) %onnx::Conv_978 = Identity(%onnx::Conv_972) %onnx::Conv_975 = Identity(%onnx::Conv_972) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_968, %onnx::Conv_969) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_971, %onnx::Conv_972) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_974, %onnx::Conv_975) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_977, %onnx::Conv_978) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_980, %onnx::Conv_981) %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_2_output_0, %onnx::Conv_983, %onnx::Conv_984) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_3_output_0 = Add(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_3_output_0) %/layers.1/Add_4_output_0 = Add(%/layers.1/Add_3_output_0, %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_4_output_0, %onnx::Conv_986, %onnx::Conv_987) %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_5_output_0 = Add(%/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_4_output_0) %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_5_output_0, %onnx::Conv_989, %onnx::Conv_990) %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_992, %onnx::Conv_993) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_995, %onnx::Conv_996) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_998, %onnx::Conv_999) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_1001, %onnx::Conv_1002) %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_2_output_0, %onnx::Conv_1004, %onnx::Conv_1005) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_3_output_0 = Add(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_3_output_0) %/layers.2/Add_4_output_0 = Add(%/layers.2/Add_3_output_0, %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_4_output_0, %onnx::Conv_1007, %onnx::Conv_1008) %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_5_output_0 = Add(%/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_4_output_0) %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_5_output_0, %onnx::Conv_1010, %onnx::Conv_1011) %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_1013, %onnx::Conv_1014) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_1016, %onnx::Conv_1017) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_1019, %onnx::Conv_1020) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_1022, %onnx::Conv_1023) %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_2_output_0, %onnx::Conv_1025, %onnx::Conv_1026) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_3_output_0 = Add(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_3_output_0) %/layers.3/Add_4_output_0 = Add(%/layers.3/Add_3_output_0, %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_4_output_0, %onnx::Conv_1028, %onnx::Conv_1029) %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_5_output_0 = Add(%/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_4_output_0) %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_5_output_0, %onnx::Conv_1031, %onnx::Conv_1032) %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Concat_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_1034, %onnx::Conv_1035) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_1037, %onnx::Conv_1038) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_1040, %onnx::Conv_1041) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_1043, %onnx::Conv_1044) %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_2_output_0, %onnx::Conv_1046, %onnx::Conv_1047) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_3_output_0 = Add(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_3_output_0) %/layers.5/Add_4_output_0 = Add(%/layers.5/Add_3_output_0, %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_4_output_0, %onnx::Conv_1049, %onnx::Conv_1050) %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_5_output_0 = Add(%/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_4_output_0) %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_5_output_0, %onnx::Conv_1052, %onnx::Conv_1053) %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_1055, %onnx::Conv_1056) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_1058, %onnx::Conv_1059) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_1061, %onnx::Conv_1062) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_1064, %onnx::Conv_1065) %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_2_output_0, %onnx::Conv_1067, %onnx::Conv_1068) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_3_output_0 = Add(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_3_output_0) %/layers.6/Add_4_output_0 = Add(%/layers.6/Add_3_output_0, %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_4_output_0, %onnx::Conv_1070, %onnx::Conv_1071) %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_5_output_0 = Add(%/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_4_output_0) %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_5_output_0, %onnx::Conv_1073, %onnx::Conv_1074) %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_1076, %onnx::Conv_1077) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_1079, %onnx::Conv_1080) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_1082, %onnx::Conv_1083) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_1085, %onnx::Conv_1086) %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_2_output_0, %onnx::Conv_1088, %onnx::Conv_1089) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_3_output_0 = Add(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_3_output_0) %/layers.7/Add_4_output_0 = Add(%/layers.7/Add_3_output_0, %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_4_output_0, %onnx::Conv_1091, %onnx::Conv_1092) %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_5_output_0 = Add(%/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_4_output_0) %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_5_output_0, %onnx::Conv_1094, %onnx::Conv_1095) %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Concat_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1097, %onnx::Conv_1098) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_1100, %onnx::Conv_1101) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_1103, %onnx::Conv_1104) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1106, %onnx::Conv_1107) %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_2_output_0, %onnx::Conv_1109, %onnx::Conv_1110) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_3_output_0 = Add(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_3_output_0) %/layers.9/Add_4_output_0 = Add(%/layers.9/Add_3_output_0, %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_4_output_0, %onnx::Conv_1112, %onnx::Conv_1113) %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_5_output_0 = Add(%/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_4_output_0) %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_5_output_0, %onnx::Conv_1115, %onnx::Conv_1116) %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_1118, %onnx::Conv_1119) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_1121, %onnx::Conv_1122) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_1124, %onnx::Conv_1125) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_1127, %onnx::Conv_1128) %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_2_output_0, %onnx::Conv_1130, %onnx::Conv_1131) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_3_output_0 = Add(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_3_output_0) %/layers.10/Add_4_output_0 = Add(%/layers.10/Add_3_output_0, %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_4_output_0, %onnx::Conv_1133, %onnx::Conv_1134) %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_5_output_0 = Add(%/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_4_output_0) %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_5_output_0, %onnx::Conv_1136, %onnx::Conv_1137) %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_1139, %onnx::Conv_1140) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_1142, %onnx::Conv_1143) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_1145, %onnx::Conv_1146) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_1148, %onnx::Conv_1149) %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_2_output_0, %onnx::Conv_1151, %onnx::Conv_1152) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_3_output_0 = Add(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_3_output_0) %/layers.11/Add_4_output_0 = Add(%/layers.11/Add_3_output_0, %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_4_output_0, %onnx::Conv_1154, %onnx::Conv_1155) %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_5_output_0 = Add(%/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_4_output_0) %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_5_output_0, %onnx::Conv_1157, %onnx::Conv_1158) %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Concat_output_0) %966 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %966 }
val_accuracy
92.818511
2,485,266,432
8,379,402
{'zcp_epe_nas': 116.88095944522819, 'zcp_fisher': 42.765380859375, 'zcp_flops': 39764262912.0, 'zcp_grad_norm': 138.4330596923828, 'zcp_grasp': 34.2255859375, 'zcp_jacov': -16.062430900954915, 'zcp_l2_norm': 1144.5084228515625, 'zcp_nwot': 226.94272225313227, 'zcp_params': 8379402.0, 'zcp_plain': 0.0076257921755310005, 'zcp_snip': 828.935302734375, 'zcp_synflow': 139.87857633179385, 'zcp_zen': 112.61927795410156, 'zcp_val_accuracy': 0.8891226053237911}
NASBench101_45402
NASBench101
45402
1b8ca862cf045106a6565d0a22f297b9
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_776[FLOAT, 128x3x3x3] %onnx::Conv_777[FLOAT, 128] %onnx::Conv_779[FLOAT, 43x128x1x1] %onnx::Conv_780[FLOAT, 43] %onnx::Conv_782[FLOAT, 43x43x3x3] %onnx::Conv_785[FLOAT, 43x43x3x3] %onnx::Conv_788[FLOAT, 42x128x1x1] %onnx::Conv_789[FLOAT, 42] %onnx::Conv_791[FLOAT, 42x42x3x3] %onnx::Conv_794[FLOAT, 43x128x1x1] %onnx::Conv_797[FLOAT, 43x43x3x3] %onnx::Conv_800[FLOAT, 43x43x3x3] %onnx::Conv_803[FLOAT, 42x128x1x1] %onnx::Conv_806[FLOAT, 42x42x3x3] %onnx::Conv_809[FLOAT, 43x128x1x1] %onnx::Conv_812[FLOAT, 43x43x3x3] %onnx::Conv_815[FLOAT, 43x43x3x3] %onnx::Conv_818[FLOAT, 42x128x1x1] %onnx::Conv_821[FLOAT, 42x42x3x3] %onnx::Conv_824[FLOAT, 86x128x1x1] %onnx::Conv_825[FLOAT, 86] %onnx::Conv_827[FLOAT, 86x86x3x3] %onnx::Conv_830[FLOAT, 85x85x3x3] %onnx::Conv_831[FLOAT, 85] %onnx::Conv_833[FLOAT, 85x128x1x1] %onnx::Conv_836[FLOAT, 85x85x3x3] %onnx::Conv_839[FLOAT, 86x256x1x1] %onnx::Conv_842[FLOAT, 86x86x3x3] %onnx::Conv_845[FLOAT, 85x85x3x3] %onnx::Conv_848[FLOAT, 85x256x1x1] %onnx::Conv_851[FLOAT, 85x85x3x3] %onnx::Conv_854[FLOAT, 86x256x1x1] %onnx::Conv_857[FLOAT, 86x86x3x3] %onnx::Conv_860[FLOAT, 85x85x3x3] %onnx::Conv_863[FLOAT, 85x256x1x1] %onnx::Conv_866[FLOAT, 85x85x3x3] %onnx::Conv_869[FLOAT, 171x256x1x1] %onnx::Conv_870[FLOAT, 171] %onnx::Conv_872[FLOAT, 171x171x3x3] %onnx::Conv_875[FLOAT, 171x171x3x3] %onnx::Conv_878[FLOAT, 170x256x1x1] %onnx::Conv_879[FLOAT, 170] %onnx::Conv_881[FLOAT, 170x170x3x3] %onnx::Conv_884[FLOAT, 171x512x1x1] %onnx::Conv_887[FLOAT, 171x171x3x3] %onnx::Conv_890[FLOAT, 171x171x3x3] %onnx::Conv_893[FLOAT, 170x512x1x1] %onnx::Conv_896[FLOAT, 170x170x3x3] %onnx::Conv_899[FLOAT, 171x512x1x1] %onnx::Conv_902[FLOAT, 171x171x3x3] %onnx::Conv_905[FLOAT, 171x171x3x3] %onnx::Conv_908[FLOAT, 170x512x1x1] %onnx::Conv_911[FLOAT, 170x170x3x3] ) { %onnx::Conv_912 = Identity(%onnx::Conv_879) %onnx::Conv_909 = Identity(%onnx::Conv_879) %onnx::Conv_906 = Identity(%onnx::Conv_870) %onnx::Conv_903 = Identity(%onnx::Conv_870) %onnx::Conv_900 = Identity(%onnx::Conv_870) %onnx::Conv_897 = Identity(%onnx::Conv_879) %onnx::Conv_894 = Identity(%onnx::Conv_879) %onnx::Conv_891 = Identity(%onnx::Conv_870) %onnx::Conv_888 = Identity(%onnx::Conv_870) %onnx::Conv_885 = Identity(%onnx::Conv_870) %onnx::Conv_882 = Identity(%onnx::Conv_879) %onnx::Conv_876 = Identity(%onnx::Conv_870) %onnx::Conv_873 = Identity(%onnx::Conv_870) %onnx::Conv_867 = Identity(%onnx::Conv_831) %onnx::Conv_864 = Identity(%onnx::Conv_831) %onnx::Conv_861 = Identity(%onnx::Conv_831) %onnx::Conv_858 = Identity(%onnx::Conv_825) %onnx::Conv_855 = Identity(%onnx::Conv_825) %onnx::Conv_852 = Identity(%onnx::Conv_831) %onnx::Conv_849 = Identity(%onnx::Conv_831) %onnx::Conv_846 = Identity(%onnx::Conv_831) %onnx::Conv_843 = Identity(%onnx::Conv_825) %onnx::Conv_840 = Identity(%onnx::Conv_825) %onnx::Conv_837 = Identity(%onnx::Conv_831) %onnx::Conv_834 = Identity(%onnx::Conv_831) %onnx::Conv_828 = Identity(%onnx::Conv_825) %onnx::Conv_822 = Identity(%onnx::Conv_789) %onnx::Conv_819 = Identity(%onnx::Conv_789) %onnx::Conv_816 = Identity(%onnx::Conv_780) %onnx::Conv_813 = Identity(%onnx::Conv_780) %onnx::Conv_810 = Identity(%onnx::Conv_780) %onnx::Conv_807 = Identity(%onnx::Conv_789) %onnx::Conv_804 = Identity(%onnx::Conv_789) %onnx::Conv_801 = Identity(%onnx::Conv_780) %onnx::Conv_798 = Identity(%onnx::Conv_780) %onnx::Conv_795 = Identity(%onnx::Conv_780) %onnx::Conv_792 = Identity(%onnx::Conv_789) %onnx::Conv_786 = Identity(%onnx::Conv_780) %onnx::Conv_783 = Identity(%onnx::Conv_780) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_776, %onnx::Conv_777) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_779, %onnx::Conv_780) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_782, %onnx::Conv_783) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_785, %onnx::Conv_786) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_2_output_0) %/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_788, %onnx::Conv_789) %/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_3_output_0 = Add(%/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_3_output_0) %/layers.1/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_3_output_0) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/vertex_op.4/maxpool/MaxPool_output_0, %onnx::Conv_791, %onnx::Conv_792) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.3/maxpool/MaxPool_output_0, %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_794, %onnx::Conv_795) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_797, %onnx::Conv_798) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_800, %onnx::Conv_801) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_2_output_0) %/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_803, %onnx::Conv_804) %/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_3_output_0 = Add(%/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_3_output_0) %/layers.2/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_3_output_0) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/vertex_op.4/maxpool/MaxPool_output_0, %onnx::Conv_806, %onnx::Conv_807) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.3/maxpool/MaxPool_output_0, %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_809, %onnx::Conv_810) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_812, %onnx::Conv_813) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_815, %onnx::Conv_816) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_2_output_0) %/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_818, %onnx::Conv_819) %/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_3_output_0 = Add(%/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_3_output_0) %/layers.3/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_3_output_0) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/vertex_op.4/maxpool/MaxPool_output_0, %onnx::Conv_821, %onnx::Conv_822) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.3/maxpool/MaxPool_output_0, %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Concat_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_824, %onnx::Conv_825) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_827, %onnx::Conv_828) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.5/Slice_output_0 = Slice(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0, %/layers.5/Constant_3_output_0, %/layers.5/Constant_1_output_0, %/layers.5/Constant_4_output_0) %/layers.5/Constant_5_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/Slice_output_0, %/layers.5/Constant_5_output_0) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_830, %onnx::Conv_831) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_6_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_6_output_0) %/layers.5/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_2_output_0) %/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_833, %onnx::Conv_834) %/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_3_output_0 = Add(%/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_7_output_0) %/layers.5/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_3_output_0) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/vertex_op.4/maxpool/MaxPool_output_0, %onnx::Conv_836, %onnx::Conv_837) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.3/maxpool/MaxPool_output_0, %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_839, %onnx::Conv_840) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_842, %onnx::Conv_843) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.6/Slice_output_0 = Slice(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0, %/layers.6/Constant_3_output_0, %/layers.6/Constant_1_output_0, %/layers.6/Constant_4_output_0) %/layers.6/Constant_5_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/Slice_output_0, %/layers.6/Constant_5_output_0) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_845, %onnx::Conv_846) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_6_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_6_output_0) %/layers.6/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_2_output_0) %/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_848, %onnx::Conv_849) %/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_3_output_0 = Add(%/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_7_output_0) %/layers.6/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_3_output_0) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/vertex_op.4/maxpool/MaxPool_output_0, %onnx::Conv_851, %onnx::Conv_852) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.3/maxpool/MaxPool_output_0, %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_854, %onnx::Conv_855) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_857, %onnx::Conv_858) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.7/Slice_output_0 = Slice(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0, %/layers.7/Constant_3_output_0, %/layers.7/Constant_1_output_0, %/layers.7/Constant_4_output_0) %/layers.7/Constant_5_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/Slice_output_0, %/layers.7/Constant_5_output_0) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_860, %onnx::Conv_861) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_6_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_6_output_0) %/layers.7/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_2_output_0) %/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_863, %onnx::Conv_864) %/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_3_output_0 = Add(%/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_7_output_0) %/layers.7/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_3_output_0) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/vertex_op.4/maxpool/MaxPool_output_0, %onnx::Conv_866, %onnx::Conv_867) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.3/maxpool/MaxPool_output_0, %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Concat_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_869, %onnx::Conv_870) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_872, %onnx::Conv_873) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_875, %onnx::Conv_876) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_2_output_0) %/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_878, %onnx::Conv_879) %/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_3_output_0 = Add(%/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_3_output_0) %/layers.9/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_3_output_0) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/vertex_op.4/maxpool/MaxPool_output_0, %onnx::Conv_881, %onnx::Conv_882) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.3/maxpool/MaxPool_output_0, %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_884, %onnx::Conv_885) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_887, %onnx::Conv_888) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_890, %onnx::Conv_891) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_2_output_0) %/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_893, %onnx::Conv_894) %/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_3_output_0 = Add(%/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_3_output_0) %/layers.10/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_3_output_0) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/vertex_op.4/maxpool/MaxPool_output_0, %onnx::Conv_896, %onnx::Conv_897) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.3/maxpool/MaxPool_output_0, %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_899, %onnx::Conv_900) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_902, %onnx::Conv_903) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_905, %onnx::Conv_906) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_2_output_0) %/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_908, %onnx::Conv_909) %/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_3_output_0 = Add(%/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_3_output_0) %/layers.11/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_3_output_0) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/vertex_op.4/maxpool/MaxPool_output_0, %onnx::Conv_911, %onnx::Conv_912) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.3/maxpool/MaxPool_output_0, %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Concat_output_0) %774 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %774 }
val_accuracy
92.047274
1,102,072,576
3,692,990
{'zcp_epe_nas': 74.62981849281545, 'zcp_fisher': 33.60569381713867, 'zcp_flops': 17633161216.0, 'zcp_grad_norm': 112.54422760009766, 'zcp_grasp': 5.00146484375, 'zcp_jacov': -16.04923078553712, 'zcp_l2_norm': 762.5319213867188, 'zcp_nwot': 215.56300397858107, 'zcp_params': 3692990.0, 'zcp_plain': 0.054725971072912, 'zcp_snip': 598.3374633789062, 'zcp_synflow': 89.13360288357812, 'zcp_zen': 88.1977767944336, 'zcp_val_accuracy': 0.921574532985687}
NASBench101_253020
NASBench101
253020
9927eb43f3fea8ae0b58a4645e09e776
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_860[FLOAT, 128x3x3x3] %onnx::Conv_861[FLOAT, 128] %onnx::Conv_863[FLOAT, 128x128x1x1] %onnx::Conv_866[FLOAT, 128x128x3x3] %onnx::Conv_869[FLOAT, 128x128x1x1] %onnx::Conv_872[FLOAT, 128x128x3x3] %onnx::Conv_875[FLOAT, 128x128x1x1] %onnx::Conv_878[FLOAT, 128x128x1x1] %onnx::Conv_881[FLOAT, 128x128x1x1] %onnx::Conv_884[FLOAT, 128x128x3x3] %onnx::Conv_887[FLOAT, 128x128x1x1] %onnx::Conv_890[FLOAT, 128x128x3x3] %onnx::Conv_893[FLOAT, 128x128x1x1] %onnx::Conv_896[FLOAT, 128x128x1x1] %onnx::Conv_899[FLOAT, 128x128x1x1] %onnx::Conv_902[FLOAT, 128x128x3x3] %onnx::Conv_905[FLOAT, 128x128x1x1] %onnx::Conv_908[FLOAT, 128x128x3x3] %onnx::Conv_911[FLOAT, 128x128x1x1] %onnx::Conv_914[FLOAT, 128x128x1x1] %onnx::Conv_917[FLOAT, 256x128x1x1] %onnx::Conv_918[FLOAT, 256] %onnx::Conv_920[FLOAT, 256x256x3x3] %onnx::Conv_923[FLOAT, 256x128x1x1] %onnx::Conv_926[FLOAT, 256x256x3x3] %onnx::Conv_929[FLOAT, 256x128x1x1] %onnx::Conv_932[FLOAT, 256x256x1x1] %onnx::Conv_935[FLOAT, 256x256x1x1] %onnx::Conv_938[FLOAT, 256x256x3x3] %onnx::Conv_941[FLOAT, 256x256x1x1] %onnx::Conv_944[FLOAT, 256x256x3x3] %onnx::Conv_947[FLOAT, 256x256x1x1] %onnx::Conv_950[FLOAT, 256x256x1x1] %onnx::Conv_953[FLOAT, 256x256x1x1] %onnx::Conv_956[FLOAT, 256x256x3x3] %onnx::Conv_959[FLOAT, 256x256x1x1] %onnx::Conv_962[FLOAT, 256x256x3x3] %onnx::Conv_965[FLOAT, 256x256x1x1] %onnx::Conv_968[FLOAT, 256x256x1x1] %onnx::Conv_971[FLOAT, 512x256x1x1] %onnx::Conv_972[FLOAT, 512] %onnx::Conv_974[FLOAT, 512x512x3x3] %onnx::Conv_977[FLOAT, 512x256x1x1] %onnx::Conv_980[FLOAT, 512x512x3x3] %onnx::Conv_983[FLOAT, 512x256x1x1] %onnx::Conv_986[FLOAT, 512x512x1x1] %onnx::Conv_989[FLOAT, 512x512x1x1] %onnx::Conv_992[FLOAT, 512x512x3x3] %onnx::Conv_995[FLOAT, 512x512x1x1] %onnx::Conv_998[FLOAT, 512x512x3x3] %onnx::Conv_1001[FLOAT, 512x512x1x1] %onnx::Conv_1004[FLOAT, 512x512x1x1] %onnx::Conv_1007[FLOAT, 512x512x1x1] %onnx::Conv_1010[FLOAT, 512x512x3x3] %onnx::Conv_1013[FLOAT, 512x512x1x1] %onnx::Conv_1016[FLOAT, 512x512x3x3] %onnx::Conv_1019[FLOAT, 512x512x1x1] %onnx::Conv_1022[FLOAT, 512x512x1x1] ) { %onnx::Conv_1023 = Identity(%onnx::Conv_972) %onnx::Conv_1020 = Identity(%onnx::Conv_972) %onnx::Conv_1017 = Identity(%onnx::Conv_972) %onnx::Conv_1014 = Identity(%onnx::Conv_972) %onnx::Conv_1011 = Identity(%onnx::Conv_972) %onnx::Conv_1008 = Identity(%onnx::Conv_972) %onnx::Conv_1005 = Identity(%onnx::Conv_972) %onnx::Conv_1002 = Identity(%onnx::Conv_972) %onnx::Conv_999 = Identity(%onnx::Conv_972) %onnx::Conv_996 = Identity(%onnx::Conv_972) %onnx::Conv_993 = Identity(%onnx::Conv_972) %onnx::Conv_990 = Identity(%onnx::Conv_972) %onnx::Conv_987 = Identity(%onnx::Conv_972) %onnx::Conv_984 = Identity(%onnx::Conv_972) %onnx::Conv_981 = Identity(%onnx::Conv_972) %onnx::Conv_978 = Identity(%onnx::Conv_972) %onnx::Conv_975 = Identity(%onnx::Conv_972) %onnx::Conv_969 = Identity(%onnx::Conv_918) %onnx::Conv_966 = Identity(%onnx::Conv_918) %onnx::Conv_963 = Identity(%onnx::Conv_918) %onnx::Conv_960 = Identity(%onnx::Conv_918) %onnx::Conv_957 = Identity(%onnx::Conv_918) %onnx::Conv_954 = Identity(%onnx::Conv_918) %onnx::Conv_951 = Identity(%onnx::Conv_918) %onnx::Conv_948 = Identity(%onnx::Conv_918) %onnx::Conv_945 = Identity(%onnx::Conv_918) %onnx::Conv_942 = Identity(%onnx::Conv_918) %onnx::Conv_939 = Identity(%onnx::Conv_918) %onnx::Conv_936 = Identity(%onnx::Conv_918) %onnx::Conv_933 = Identity(%onnx::Conv_918) %onnx::Conv_930 = Identity(%onnx::Conv_918) %onnx::Conv_927 = Identity(%onnx::Conv_918) %onnx::Conv_924 = Identity(%onnx::Conv_918) %onnx::Conv_921 = Identity(%onnx::Conv_918) %onnx::Conv_915 = Identity(%onnx::Conv_861) %onnx::Conv_912 = Identity(%onnx::Conv_861) %onnx::Conv_909 = Identity(%onnx::Conv_861) %onnx::Conv_906 = Identity(%onnx::Conv_861) %onnx::Conv_903 = Identity(%onnx::Conv_861) %onnx::Conv_900 = Identity(%onnx::Conv_861) %onnx::Conv_897 = Identity(%onnx::Conv_861) %onnx::Conv_894 = Identity(%onnx::Conv_861) %onnx::Conv_891 = Identity(%onnx::Conv_861) %onnx::Conv_888 = Identity(%onnx::Conv_861) %onnx::Conv_885 = Identity(%onnx::Conv_861) %onnx::Conv_882 = Identity(%onnx::Conv_861) %onnx::Conv_879 = Identity(%onnx::Conv_861) %onnx::Conv_876 = Identity(%onnx::Conv_861) %onnx::Conv_873 = Identity(%onnx::Conv_861) %onnx::Conv_870 = Identity(%onnx::Conv_861) %onnx::Conv_867 = Identity(%onnx::Conv_861) %onnx::Conv_864 = Identity(%onnx::Conv_861) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_860, %onnx::Conv_861) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_863, %onnx::Conv_864) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_866, %onnx::Conv_867) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_1_output_0) %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_869, %onnx::Conv_870) %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_2_output_0, %onnx::Conv_872, %onnx::Conv_873) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Add_3_output_0 = Add(%/layers.1/vertex_op.2/maxpool/MaxPool_output_0, %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_3_output_0) %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_875, %onnx::Conv_876) %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Add_4_output_0 = Add(%/layers.1/vertex_op.2/maxpool/MaxPool_output_0, %/layers.1/vertex_op.4/maxpool/MaxPool_output_0) %/layers.1/Add_5_output_0 = Add(%/layers.1/Add_4_output_0, %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_5_output_0, %onnx::Conv_878, %onnx::Conv_879) %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_881, %onnx::Conv_882) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_884, %onnx::Conv_885) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_1_output_0) %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_887, %onnx::Conv_888) %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_2_output_0, %onnx::Conv_890, %onnx::Conv_891) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Add_3_output_0 = Add(%/layers.2/vertex_op.2/maxpool/MaxPool_output_0, %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_3_output_0) %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_893, %onnx::Conv_894) %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Add_4_output_0 = Add(%/layers.2/vertex_op.2/maxpool/MaxPool_output_0, %/layers.2/vertex_op.4/maxpool/MaxPool_output_0) %/layers.2/Add_5_output_0 = Add(%/layers.2/Add_4_output_0, %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_5_output_0, %onnx::Conv_896, %onnx::Conv_897) %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_899, %onnx::Conv_900) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_902, %onnx::Conv_903) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_1_output_0) %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_905, %onnx::Conv_906) %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_2_output_0, %onnx::Conv_908, %onnx::Conv_909) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Add_3_output_0 = Add(%/layers.3/vertex_op.2/maxpool/MaxPool_output_0, %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_3_output_0) %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_911, %onnx::Conv_912) %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Add_4_output_0 = Add(%/layers.3/vertex_op.2/maxpool/MaxPool_output_0, %/layers.3/vertex_op.4/maxpool/MaxPool_output_0) %/layers.3/Add_5_output_0 = Add(%/layers.3/Add_4_output_0, %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_5_output_0, %onnx::Conv_914, %onnx::Conv_915) %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_917, %onnx::Conv_918) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_920, %onnx::Conv_921) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_1_output_0) %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_923, %onnx::Conv_924) %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_2_output_0, %onnx::Conv_926, %onnx::Conv_927) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Add_3_output_0 = Add(%/layers.5/vertex_op.2/maxpool/MaxPool_output_0, %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_3_output_0) %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_929, %onnx::Conv_930) %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Add_4_output_0 = Add(%/layers.5/vertex_op.2/maxpool/MaxPool_output_0, %/layers.5/vertex_op.4/maxpool/MaxPool_output_0) %/layers.5/Add_5_output_0 = Add(%/layers.5/Add_4_output_0, %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_5_output_0, %onnx::Conv_932, %onnx::Conv_933) %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_935, %onnx::Conv_936) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_938, %onnx::Conv_939) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_1_output_0) %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_941, %onnx::Conv_942) %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_2_output_0, %onnx::Conv_944, %onnx::Conv_945) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Add_3_output_0 = Add(%/layers.6/vertex_op.2/maxpool/MaxPool_output_0, %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_3_output_0) %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_947, %onnx::Conv_948) %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Add_4_output_0 = Add(%/layers.6/vertex_op.2/maxpool/MaxPool_output_0, %/layers.6/vertex_op.4/maxpool/MaxPool_output_0) %/layers.6/Add_5_output_0 = Add(%/layers.6/Add_4_output_0, %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_5_output_0, %onnx::Conv_950, %onnx::Conv_951) %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_953, %onnx::Conv_954) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_956, %onnx::Conv_957) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_1_output_0) %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_959, %onnx::Conv_960) %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_2_output_0, %onnx::Conv_962, %onnx::Conv_963) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Add_3_output_0 = Add(%/layers.7/vertex_op.2/maxpool/MaxPool_output_0, %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_3_output_0) %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_965, %onnx::Conv_966) %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Add_4_output_0 = Add(%/layers.7/vertex_op.2/maxpool/MaxPool_output_0, %/layers.7/vertex_op.4/maxpool/MaxPool_output_0) %/layers.7/Add_5_output_0 = Add(%/layers.7/Add_4_output_0, %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_5_output_0, %onnx::Conv_968, %onnx::Conv_969) %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_971, %onnx::Conv_972) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_974, %onnx::Conv_975) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_1_output_0) %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_977, %onnx::Conv_978) %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_2_output_0, %onnx::Conv_980, %onnx::Conv_981) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Add_3_output_0 = Add(%/layers.9/vertex_op.2/maxpool/MaxPool_output_0, %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_3_output_0) %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_983, %onnx::Conv_984) %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Add_4_output_0 = Add(%/layers.9/vertex_op.2/maxpool/MaxPool_output_0, %/layers.9/vertex_op.4/maxpool/MaxPool_output_0) %/layers.9/Add_5_output_0 = Add(%/layers.9/Add_4_output_0, %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_5_output_0, %onnx::Conv_986, %onnx::Conv_987) %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_989, %onnx::Conv_990) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_992, %onnx::Conv_993) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_1_output_0) %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_995, %onnx::Conv_996) %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_2_output_0, %onnx::Conv_998, %onnx::Conv_999) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Add_3_output_0 = Add(%/layers.10/vertex_op.2/maxpool/MaxPool_output_0, %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_3_output_0) %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1001, %onnx::Conv_1002) %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Add_4_output_0 = Add(%/layers.10/vertex_op.2/maxpool/MaxPool_output_0, %/layers.10/vertex_op.4/maxpool/MaxPool_output_0) %/layers.10/Add_5_output_0 = Add(%/layers.10/Add_4_output_0, %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_5_output_0, %onnx::Conv_1004, %onnx::Conv_1005) %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1007, %onnx::Conv_1008) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_1010, %onnx::Conv_1011) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_1_output_0) %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1013, %onnx::Conv_1014) %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_2_output_0, %onnx::Conv_1016, %onnx::Conv_1017) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Add_3_output_0 = Add(%/layers.11/vertex_op.2/maxpool/MaxPool_output_0, %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_3_output_0) %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1019, %onnx::Conv_1020) %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Add_4_output_0 = Add(%/layers.11/vertex_op.2/maxpool/MaxPool_output_0, %/layers.11/vertex_op.4/maxpool/MaxPool_output_0) %/layers.11/Add_5_output_0 = Add(%/layers.11/Add_4_output_0, %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_5_output_0, %onnx::Conv_1022, %onnx::Conv_1023) %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %858 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %858 }
val_accuracy
92.387819
6,584,281,088
22,257,802
{'zcp_epe_nas': 108.8501231787318, 'zcp_fisher': 119.60293579101562, 'zcp_flops': 105348497408.0, 'zcp_grad_norm': 164.22946166992188, 'zcp_grasp': -22.311279296875, 'zcp_jacov': -16.061501873359965, 'zcp_l2_norm': 1226.7584228515625, 'zcp_nwot': 235.41004027728508, 'zcp_params': 22257802.0, 'zcp_plain': 0.061663310974836, 'zcp_snip': 1450.9481201171875, 'zcp_synflow': 103.55015551725093, 'zcp_zen': 112.00055694580078, 'zcp_val_accuracy': 0.911858975887298}
NASBench101_157086
NASBench101
157086
5f14db94a47a90dd37d9f6793bdf2dc3
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_887[FLOAT, 128x3x3x3] %onnx::Conv_888[FLOAT, 128] %onnx::Conv_890[FLOAT, 128x128x1x1] %onnx::Conv_893[FLOAT, 128x128x3x3] %onnx::Conv_896[FLOAT, 128x128x1x1] %onnx::Conv_899[FLOAT, 128x128x3x3] %onnx::Conv_902[FLOAT, 128x128x3x3] %onnx::Conv_905[FLOAT, 128x128x3x3] %onnx::Conv_908[FLOAT, 128x128x1x1] %onnx::Conv_911[FLOAT, 128x128x3x3] %onnx::Conv_914[FLOAT, 128x128x1x1] %onnx::Conv_917[FLOAT, 128x128x3x3] %onnx::Conv_920[FLOAT, 128x128x3x3] %onnx::Conv_923[FLOAT, 128x128x3x3] %onnx::Conv_926[FLOAT, 128x128x1x1] %onnx::Conv_929[FLOAT, 128x128x3x3] %onnx::Conv_932[FLOAT, 128x128x1x1] %onnx::Conv_935[FLOAT, 128x128x3x3] %onnx::Conv_938[FLOAT, 128x128x3x3] %onnx::Conv_941[FLOAT, 128x128x3x3] %onnx::Conv_944[FLOAT, 256x128x1x1] %onnx::Conv_945[FLOAT, 256] %onnx::Conv_947[FLOAT, 256x256x3x3] %onnx::Conv_950[FLOAT, 256x128x1x1] %onnx::Conv_953[FLOAT, 256x256x3x3] %onnx::Conv_956[FLOAT, 256x256x3x3] %onnx::Conv_959[FLOAT, 256x256x3x3] %onnx::Conv_962[FLOAT, 256x256x1x1] %onnx::Conv_965[FLOAT, 256x256x3x3] %onnx::Conv_968[FLOAT, 256x256x1x1] %onnx::Conv_971[FLOAT, 256x256x3x3] %onnx::Conv_974[FLOAT, 256x256x3x3] %onnx::Conv_977[FLOAT, 256x256x3x3] %onnx::Conv_980[FLOAT, 256x256x1x1] %onnx::Conv_983[FLOAT, 256x256x3x3] %onnx::Conv_986[FLOAT, 256x256x1x1] %onnx::Conv_989[FLOAT, 256x256x3x3] %onnx::Conv_992[FLOAT, 256x256x3x3] %onnx::Conv_995[FLOAT, 256x256x3x3] %onnx::Conv_998[FLOAT, 512x256x1x1] %onnx::Conv_999[FLOAT, 512] %onnx::Conv_1001[FLOAT, 512x512x3x3] %onnx::Conv_1004[FLOAT, 512x256x1x1] %onnx::Conv_1007[FLOAT, 512x512x3x3] %onnx::Conv_1010[FLOAT, 512x512x3x3] %onnx::Conv_1013[FLOAT, 512x512x3x3] %onnx::Conv_1016[FLOAT, 512x512x1x1] %onnx::Conv_1019[FLOAT, 512x512x3x3] %onnx::Conv_1022[FLOAT, 512x512x1x1] %onnx::Conv_1025[FLOAT, 512x512x3x3] %onnx::Conv_1028[FLOAT, 512x512x3x3] %onnx::Conv_1031[FLOAT, 512x512x3x3] %onnx::Conv_1034[FLOAT, 512x512x1x1] %onnx::Conv_1037[FLOAT, 512x512x3x3] %onnx::Conv_1040[FLOAT, 512x512x1x1] %onnx::Conv_1043[FLOAT, 512x512x3x3] %onnx::Conv_1046[FLOAT, 512x512x3x3] %onnx::Conv_1049[FLOAT, 512x512x3x3] ) { %onnx::Conv_1050 = Identity(%onnx::Conv_999) %onnx::Conv_1047 = Identity(%onnx::Conv_999) %onnx::Conv_1044 = Identity(%onnx::Conv_999) %onnx::Conv_1041 = Identity(%onnx::Conv_999) %onnx::Conv_1038 = Identity(%onnx::Conv_999) %onnx::Conv_1035 = Identity(%onnx::Conv_999) %onnx::Conv_1032 = Identity(%onnx::Conv_999) %onnx::Conv_1029 = Identity(%onnx::Conv_999) %onnx::Conv_1026 = Identity(%onnx::Conv_999) %onnx::Conv_1023 = Identity(%onnx::Conv_999) %onnx::Conv_1020 = Identity(%onnx::Conv_999) %onnx::Conv_1017 = Identity(%onnx::Conv_999) %onnx::Conv_1014 = Identity(%onnx::Conv_999) %onnx::Conv_1011 = Identity(%onnx::Conv_999) %onnx::Conv_1008 = Identity(%onnx::Conv_999) %onnx::Conv_1005 = Identity(%onnx::Conv_999) %onnx::Conv_1002 = Identity(%onnx::Conv_999) %onnx::Conv_996 = Identity(%onnx::Conv_945) %onnx::Conv_993 = Identity(%onnx::Conv_945) %onnx::Conv_990 = Identity(%onnx::Conv_945) %onnx::Conv_987 = Identity(%onnx::Conv_945) %onnx::Conv_984 = Identity(%onnx::Conv_945) %onnx::Conv_981 = Identity(%onnx::Conv_945) %onnx::Conv_978 = Identity(%onnx::Conv_945) %onnx::Conv_975 = Identity(%onnx::Conv_945) %onnx::Conv_972 = Identity(%onnx::Conv_945) %onnx::Conv_969 = Identity(%onnx::Conv_945) %onnx::Conv_966 = Identity(%onnx::Conv_945) %onnx::Conv_963 = Identity(%onnx::Conv_945) %onnx::Conv_960 = Identity(%onnx::Conv_945) %onnx::Conv_957 = Identity(%onnx::Conv_945) %onnx::Conv_954 = Identity(%onnx::Conv_945) %onnx::Conv_951 = Identity(%onnx::Conv_945) %onnx::Conv_948 = Identity(%onnx::Conv_945) %onnx::Conv_942 = Identity(%onnx::Conv_888) %onnx::Conv_939 = Identity(%onnx::Conv_888) %onnx::Conv_936 = Identity(%onnx::Conv_888) %onnx::Conv_933 = Identity(%onnx::Conv_888) %onnx::Conv_930 = Identity(%onnx::Conv_888) %onnx::Conv_927 = Identity(%onnx::Conv_888) %onnx::Conv_924 = Identity(%onnx::Conv_888) %onnx::Conv_921 = Identity(%onnx::Conv_888) %onnx::Conv_918 = Identity(%onnx::Conv_888) %onnx::Conv_915 = Identity(%onnx::Conv_888) %onnx::Conv_912 = Identity(%onnx::Conv_888) %onnx::Conv_909 = Identity(%onnx::Conv_888) %onnx::Conv_906 = Identity(%onnx::Conv_888) %onnx::Conv_903 = Identity(%onnx::Conv_888) %onnx::Conv_900 = Identity(%onnx::Conv_888) %onnx::Conv_897 = Identity(%onnx::Conv_888) %onnx::Conv_894 = Identity(%onnx::Conv_888) %onnx::Conv_891 = Identity(%onnx::Conv_888) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_887, %onnx::Conv_888) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_890, %onnx::Conv_891) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_893, %onnx::Conv_894) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_1_output_0) %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_896, %onnx::Conv_897) %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_2_output_0, %onnx::Conv_899, %onnx::Conv_900) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_3_output_0 = Add(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_3_output_0) %/layers.1/Add_4_output_0 = Add(%/layers.1/Add_3_output_0, %/layers.1/vertex_op.2/maxpool/MaxPool_output_0) %/layers.1/Add_5_output_0 = Add(%/layers.1/Add_4_output_0, %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_5_output_0, %onnx::Conv_902, %onnx::Conv_903) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_6_output_0 = Add(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_4_output_0) %/layers.1/Add_7_output_0 = Add(%/layers.1/Add_6_output_0, %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_7_output_0, %onnx::Conv_905, %onnx::Conv_906) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_908, %onnx::Conv_909) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_911, %onnx::Conv_912) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_1_output_0) %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_914, %onnx::Conv_915) %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_2_output_0, %onnx::Conv_917, %onnx::Conv_918) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_3_output_0 = Add(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_3_output_0) %/layers.2/Add_4_output_0 = Add(%/layers.2/Add_3_output_0, %/layers.2/vertex_op.2/maxpool/MaxPool_output_0) %/layers.2/Add_5_output_0 = Add(%/layers.2/Add_4_output_0, %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_5_output_0, %onnx::Conv_920, %onnx::Conv_921) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_6_output_0 = Add(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_4_output_0) %/layers.2/Add_7_output_0 = Add(%/layers.2/Add_6_output_0, %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_7_output_0, %onnx::Conv_923, %onnx::Conv_924) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_926, %onnx::Conv_927) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_929, %onnx::Conv_930) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_1_output_0) %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_932, %onnx::Conv_933) %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_2_output_0, %onnx::Conv_935, %onnx::Conv_936) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_3_output_0 = Add(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_3_output_0) %/layers.3/Add_4_output_0 = Add(%/layers.3/Add_3_output_0, %/layers.3/vertex_op.2/maxpool/MaxPool_output_0) %/layers.3/Add_5_output_0 = Add(%/layers.3/Add_4_output_0, %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_5_output_0, %onnx::Conv_938, %onnx::Conv_939) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_6_output_0 = Add(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_4_output_0) %/layers.3/Add_7_output_0 = Add(%/layers.3/Add_6_output_0, %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_7_output_0, %onnx::Conv_941, %onnx::Conv_942) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_944, %onnx::Conv_945) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_947, %onnx::Conv_948) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_1_output_0) %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_950, %onnx::Conv_951) %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_2_output_0, %onnx::Conv_953, %onnx::Conv_954) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_3_output_0 = Add(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_3_output_0) %/layers.5/Add_4_output_0 = Add(%/layers.5/Add_3_output_0, %/layers.5/vertex_op.2/maxpool/MaxPool_output_0) %/layers.5/Add_5_output_0 = Add(%/layers.5/Add_4_output_0, %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_5_output_0, %onnx::Conv_956, %onnx::Conv_957) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_6_output_0 = Add(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_4_output_0) %/layers.5/Add_7_output_0 = Add(%/layers.5/Add_6_output_0, %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_7_output_0, %onnx::Conv_959, %onnx::Conv_960) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_962, %onnx::Conv_963) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_965, %onnx::Conv_966) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_1_output_0) %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_968, %onnx::Conv_969) %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_2_output_0, %onnx::Conv_971, %onnx::Conv_972) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_3_output_0 = Add(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_3_output_0) %/layers.6/Add_4_output_0 = Add(%/layers.6/Add_3_output_0, %/layers.6/vertex_op.2/maxpool/MaxPool_output_0) %/layers.6/Add_5_output_0 = Add(%/layers.6/Add_4_output_0, %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_5_output_0, %onnx::Conv_974, %onnx::Conv_975) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_6_output_0 = Add(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_4_output_0) %/layers.6/Add_7_output_0 = Add(%/layers.6/Add_6_output_0, %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_7_output_0, %onnx::Conv_977, %onnx::Conv_978) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_980, %onnx::Conv_981) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_983, %onnx::Conv_984) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_1_output_0) %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_986, %onnx::Conv_987) %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_2_output_0, %onnx::Conv_989, %onnx::Conv_990) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_3_output_0 = Add(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_3_output_0) %/layers.7/Add_4_output_0 = Add(%/layers.7/Add_3_output_0, %/layers.7/vertex_op.2/maxpool/MaxPool_output_0) %/layers.7/Add_5_output_0 = Add(%/layers.7/Add_4_output_0, %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_5_output_0, %onnx::Conv_992, %onnx::Conv_993) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_6_output_0 = Add(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_4_output_0) %/layers.7/Add_7_output_0 = Add(%/layers.7/Add_6_output_0, %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_7_output_0, %onnx::Conv_995, %onnx::Conv_996) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_998, %onnx::Conv_999) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_1001, %onnx::Conv_1002) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_1_output_0) %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1004, %onnx::Conv_1005) %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_2_output_0, %onnx::Conv_1007, %onnx::Conv_1008) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_3_output_0 = Add(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_3_output_0) %/layers.9/Add_4_output_0 = Add(%/layers.9/Add_3_output_0, %/layers.9/vertex_op.2/maxpool/MaxPool_output_0) %/layers.9/Add_5_output_0 = Add(%/layers.9/Add_4_output_0, %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_5_output_0, %onnx::Conv_1010, %onnx::Conv_1011) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_6_output_0 = Add(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_4_output_0) %/layers.9/Add_7_output_0 = Add(%/layers.9/Add_6_output_0, %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_7_output_0, %onnx::Conv_1013, %onnx::Conv_1014) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1016, %onnx::Conv_1017) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_1019, %onnx::Conv_1020) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_1_output_0) %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1022, %onnx::Conv_1023) %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_2_output_0, %onnx::Conv_1025, %onnx::Conv_1026) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_3_output_0 = Add(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_3_output_0) %/layers.10/Add_4_output_0 = Add(%/layers.10/Add_3_output_0, %/layers.10/vertex_op.2/maxpool/MaxPool_output_0) %/layers.10/Add_5_output_0 = Add(%/layers.10/Add_4_output_0, %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_5_output_0, %onnx::Conv_1028, %onnx::Conv_1029) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_6_output_0 = Add(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_4_output_0) %/layers.10/Add_7_output_0 = Add(%/layers.10/Add_6_output_0, %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_7_output_0, %onnx::Conv_1031, %onnx::Conv_1032) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1034, %onnx::Conv_1035) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_1037, %onnx::Conv_1038) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_1_output_0) %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1040, %onnx::Conv_1041) %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_2_output_0, %onnx::Conv_1043, %onnx::Conv_1044) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_3_output_0 = Add(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_3_output_0) %/layers.11/Add_4_output_0 = Add(%/layers.11/Add_3_output_0, %/layers.11/vertex_op.2/maxpool/MaxPool_output_0) %/layers.11/Add_5_output_0 = Add(%/layers.11/Add_4_output_0, %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_5_output_0, %onnx::Conv_1046, %onnx::Conv_1047) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_6_output_0 = Add(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_4_output_0) %/layers.11/Add_7_output_0 = Add(%/layers.11/Add_6_output_0, %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_7_output_0, %onnx::Conv_1049, %onnx::Conv_1050) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %885 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %885 }
val_accuracy
92.508012
11,449,673,728
38,936,714
{'zcp_epe_nas': 163.7268793926842, 'zcp_fisher': 49.82976150512695, 'zcp_flops': 183194779648.0, 'zcp_grad_norm': 121.77214050292969, 'zcp_grasp': -1.6883544921875, 'zcp_jacov': -16.051668569763596, 'zcp_l2_norm': 1242.26611328125, 'zcp_nwot': 234.46268248330287, 'zcp_params': 38936714.0, 'zcp_plain': 0.007804110646247001, 'zcp_snip': 1064.5850830078125, 'zcp_synflow': 148.76751946206275, 'zcp_zen': 131.98609924316406, 'zcp_val_accuracy': 0.9056490659713741}
NASBench101_206098
NASBench101
206098
7ccd2dd0d647236b6aada48779d02522
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_1076[FLOAT, 128x3x3x3] %onnx::Conv_1077[FLOAT, 128] %onnx::Conv_1079[FLOAT, 64x128x1x1] %onnx::Conv_1080[FLOAT, 64] %onnx::Conv_1082[FLOAT, 64x64x1x1] %onnx::Conv_1085[FLOAT, 64x64x3x3] %onnx::Conv_1088[FLOAT, 64x128x1x1] %onnx::Conv_1091[FLOAT, 64x64x1x1] %onnx::Conv_1094[FLOAT, 64x64x1x1] %onnx::Conv_1097[FLOAT, 64x128x1x1] %onnx::Conv_1100[FLOAT, 64x64x3x3] %onnx::Conv_1103[FLOAT, 64x128x1x1] %onnx::Conv_1106[FLOAT, 64x64x1x1] %onnx::Conv_1109[FLOAT, 64x64x3x3] %onnx::Conv_1112[FLOAT, 64x128x1x1] %onnx::Conv_1115[FLOAT, 64x64x1x1] %onnx::Conv_1118[FLOAT, 64x64x1x1] %onnx::Conv_1121[FLOAT, 64x128x1x1] %onnx::Conv_1124[FLOAT, 64x64x3x3] %onnx::Conv_1127[FLOAT, 64x128x1x1] %onnx::Conv_1130[FLOAT, 64x64x1x1] %onnx::Conv_1133[FLOAT, 64x64x3x3] %onnx::Conv_1136[FLOAT, 64x128x1x1] %onnx::Conv_1139[FLOAT, 64x64x1x1] %onnx::Conv_1142[FLOAT, 64x64x1x1] %onnx::Conv_1145[FLOAT, 64x128x1x1] %onnx::Conv_1148[FLOAT, 64x64x3x3] %onnx::Conv_1151[FLOAT, 128x128x1x1] %onnx::Conv_1154[FLOAT, 128x128x1x1] %onnx::Conv_1157[FLOAT, 128x128x3x3] %onnx::Conv_1160[FLOAT, 128x128x1x1] %onnx::Conv_1163[FLOAT, 128x128x1x1] %onnx::Conv_1166[FLOAT, 128x128x1x1] %onnx::Conv_1169[FLOAT, 128x128x1x1] %onnx::Conv_1172[FLOAT, 128x128x3x3] %onnx::Conv_1175[FLOAT, 128x256x1x1] %onnx::Conv_1178[FLOAT, 128x128x1x1] %onnx::Conv_1181[FLOAT, 128x128x3x3] %onnx::Conv_1184[FLOAT, 128x256x1x1] %onnx::Conv_1187[FLOAT, 128x128x1x1] %onnx::Conv_1190[FLOAT, 128x128x1x1] %onnx::Conv_1193[FLOAT, 128x256x1x1] %onnx::Conv_1196[FLOAT, 128x128x3x3] %onnx::Conv_1199[FLOAT, 128x256x1x1] %onnx::Conv_1202[FLOAT, 128x128x1x1] %onnx::Conv_1205[FLOAT, 128x128x3x3] %onnx::Conv_1208[FLOAT, 128x256x1x1] %onnx::Conv_1211[FLOAT, 128x128x1x1] %onnx::Conv_1214[FLOAT, 128x128x1x1] %onnx::Conv_1217[FLOAT, 128x256x1x1] %onnx::Conv_1220[FLOAT, 128x128x3x3] %onnx::Conv_1223[FLOAT, 256x256x1x1] %onnx::Conv_1224[FLOAT, 256] %onnx::Conv_1226[FLOAT, 256x256x1x1] %onnx::Conv_1229[FLOAT, 256x256x3x3] %onnx::Conv_1232[FLOAT, 256x256x1x1] %onnx::Conv_1235[FLOAT, 256x256x1x1] %onnx::Conv_1238[FLOAT, 256x256x1x1] %onnx::Conv_1241[FLOAT, 256x256x1x1] %onnx::Conv_1244[FLOAT, 256x256x3x3] %onnx::Conv_1247[FLOAT, 256x512x1x1] %onnx::Conv_1250[FLOAT, 256x256x1x1] %onnx::Conv_1253[FLOAT, 256x256x3x3] %onnx::Conv_1256[FLOAT, 256x512x1x1] %onnx::Conv_1259[FLOAT, 256x256x1x1] %onnx::Conv_1262[FLOAT, 256x256x1x1] %onnx::Conv_1265[FLOAT, 256x512x1x1] %onnx::Conv_1268[FLOAT, 256x256x3x3] %onnx::Conv_1271[FLOAT, 256x512x1x1] %onnx::Conv_1274[FLOAT, 256x256x1x1] %onnx::Conv_1277[FLOAT, 256x256x3x3] %onnx::Conv_1280[FLOAT, 256x512x1x1] %onnx::Conv_1283[FLOAT, 256x256x1x1] %onnx::Conv_1286[FLOAT, 256x256x1x1] %onnx::Conv_1289[FLOAT, 256x512x1x1] %onnx::Conv_1292[FLOAT, 256x256x3x3] ) { %onnx::Conv_1293 = Identity(%onnx::Conv_1224) %onnx::Conv_1290 = Identity(%onnx::Conv_1224) %onnx::Conv_1287 = Identity(%onnx::Conv_1224) %onnx::Conv_1284 = Identity(%onnx::Conv_1224) %onnx::Conv_1281 = Identity(%onnx::Conv_1224) %onnx::Conv_1278 = Identity(%onnx::Conv_1224) %onnx::Conv_1275 = Identity(%onnx::Conv_1224) %onnx::Conv_1272 = Identity(%onnx::Conv_1224) %onnx::Conv_1269 = Identity(%onnx::Conv_1224) %onnx::Conv_1266 = Identity(%onnx::Conv_1224) %onnx::Conv_1263 = Identity(%onnx::Conv_1224) %onnx::Conv_1260 = Identity(%onnx::Conv_1224) %onnx::Conv_1257 = Identity(%onnx::Conv_1224) %onnx::Conv_1254 = Identity(%onnx::Conv_1224) %onnx::Conv_1251 = Identity(%onnx::Conv_1224) %onnx::Conv_1248 = Identity(%onnx::Conv_1224) %onnx::Conv_1245 = Identity(%onnx::Conv_1224) %onnx::Conv_1242 = Identity(%onnx::Conv_1224) %onnx::Conv_1239 = Identity(%onnx::Conv_1224) %onnx::Conv_1236 = Identity(%onnx::Conv_1224) %onnx::Conv_1233 = Identity(%onnx::Conv_1224) %onnx::Conv_1230 = Identity(%onnx::Conv_1224) %onnx::Conv_1227 = Identity(%onnx::Conv_1224) %onnx::Conv_1221 = Identity(%onnx::Conv_1077) %onnx::Conv_1218 = Identity(%onnx::Conv_1077) %onnx::Conv_1215 = Identity(%onnx::Conv_1077) %onnx::Conv_1212 = Identity(%onnx::Conv_1077) %onnx::Conv_1209 = Identity(%onnx::Conv_1077) %onnx::Conv_1206 = Identity(%onnx::Conv_1077) %onnx::Conv_1203 = Identity(%onnx::Conv_1077) %onnx::Conv_1200 = Identity(%onnx::Conv_1077) %onnx::Conv_1197 = Identity(%onnx::Conv_1077) %onnx::Conv_1194 = Identity(%onnx::Conv_1077) %onnx::Conv_1191 = Identity(%onnx::Conv_1077) %onnx::Conv_1188 = Identity(%onnx::Conv_1077) %onnx::Conv_1185 = Identity(%onnx::Conv_1077) %onnx::Conv_1182 = Identity(%onnx::Conv_1077) %onnx::Conv_1179 = Identity(%onnx::Conv_1077) %onnx::Conv_1176 = Identity(%onnx::Conv_1077) %onnx::Conv_1173 = Identity(%onnx::Conv_1077) %onnx::Conv_1170 = Identity(%onnx::Conv_1077) %onnx::Conv_1167 = Identity(%onnx::Conv_1077) %onnx::Conv_1164 = Identity(%onnx::Conv_1077) %onnx::Conv_1161 = Identity(%onnx::Conv_1077) %onnx::Conv_1158 = Identity(%onnx::Conv_1077) %onnx::Conv_1155 = Identity(%onnx::Conv_1077) %onnx::Conv_1152 = Identity(%onnx::Conv_1077) %onnx::Conv_1149 = Identity(%onnx::Conv_1080) %onnx::Conv_1146 = Identity(%onnx::Conv_1080) %onnx::Conv_1143 = Identity(%onnx::Conv_1080) %onnx::Conv_1140 = Identity(%onnx::Conv_1080) %onnx::Conv_1137 = Identity(%onnx::Conv_1080) %onnx::Conv_1134 = Identity(%onnx::Conv_1080) %onnx::Conv_1131 = Identity(%onnx::Conv_1080) %onnx::Conv_1128 = Identity(%onnx::Conv_1080) %onnx::Conv_1125 = Identity(%onnx::Conv_1080) %onnx::Conv_1122 = Identity(%onnx::Conv_1080) %onnx::Conv_1119 = Identity(%onnx::Conv_1080) %onnx::Conv_1116 = Identity(%onnx::Conv_1080) %onnx::Conv_1113 = Identity(%onnx::Conv_1080) %onnx::Conv_1110 = Identity(%onnx::Conv_1080) %onnx::Conv_1107 = Identity(%onnx::Conv_1080) %onnx::Conv_1104 = Identity(%onnx::Conv_1080) %onnx::Conv_1101 = Identity(%onnx::Conv_1080) %onnx::Conv_1098 = Identity(%onnx::Conv_1080) %onnx::Conv_1095 = Identity(%onnx::Conv_1080) %onnx::Conv_1092 = Identity(%onnx::Conv_1080) %onnx::Conv_1089 = Identity(%onnx::Conv_1080) %onnx::Conv_1086 = Identity(%onnx::Conv_1080) %onnx::Conv_1083 = Identity(%onnx::Conv_1080) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_1076, %onnx::Conv_1077) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1079, %onnx::Conv_1080) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_1082, %onnx::Conv_1083) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_1085, %onnx::Conv_1086) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1088, %onnx::Conv_1089) %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_2_output_0, %onnx::Conv_1091, %onnx::Conv_1092) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_3_output_0 = Add(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_3_output_0) %/layers.1/Add_4_output_0 = Add(%/layers.1/Add_3_output_0, %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_4_output_0, %onnx::Conv_1094, %onnx::Conv_1095) %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1097, %onnx::Conv_1098) %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_5_output_0 = Add(%/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_4_output_0) %/layers.1/Add_6_output_0 = Add(%/layers.1/Add_5_output_0, %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_6_output_0, %onnx::Conv_1100, %onnx::Conv_1101) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_1103, %onnx::Conv_1104) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_1106, %onnx::Conv_1107) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_1109, %onnx::Conv_1110) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_1112, %onnx::Conv_1113) %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_2_output_0, %onnx::Conv_1115, %onnx::Conv_1116) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_3_output_0 = Add(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_3_output_0) %/layers.2/Add_4_output_0 = Add(%/layers.2/Add_3_output_0, %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_4_output_0, %onnx::Conv_1118, %onnx::Conv_1119) %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_1121, %onnx::Conv_1122) %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_5_output_0 = Add(%/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_4_output_0) %/layers.2/Add_6_output_0 = Add(%/layers.2/Add_5_output_0, %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_6_output_0, %onnx::Conv_1124, %onnx::Conv_1125) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_1127, %onnx::Conv_1128) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_1130, %onnx::Conv_1131) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_1133, %onnx::Conv_1134) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_1136, %onnx::Conv_1137) %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_2_output_0, %onnx::Conv_1139, %onnx::Conv_1140) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_3_output_0 = Add(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_3_output_0) %/layers.3/Add_4_output_0 = Add(%/layers.3/Add_3_output_0, %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_4_output_0, %onnx::Conv_1142, %onnx::Conv_1143) %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_1145, %onnx::Conv_1146) %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_5_output_0 = Add(%/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_4_output_0) %/layers.3/Add_6_output_0 = Add(%/layers.3/Add_5_output_0, %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_6_output_0, %onnx::Conv_1148, %onnx::Conv_1149) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Concat_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_1151, %onnx::Conv_1152) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_1154, %onnx::Conv_1155) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_1157, %onnx::Conv_1158) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_1160, %onnx::Conv_1161) %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_2_output_0, %onnx::Conv_1163, %onnx::Conv_1164) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_3_output_0 = Add(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_3_output_0) %/layers.5/Add_4_output_0 = Add(%/layers.5/Add_3_output_0, %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_4_output_0, %onnx::Conv_1166, %onnx::Conv_1167) %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_1169, %onnx::Conv_1170) %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_5_output_0 = Add(%/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_4_output_0) %/layers.5/Add_6_output_0 = Add(%/layers.5/Add_5_output_0, %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_6_output_0, %onnx::Conv_1172, %onnx::Conv_1173) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_1175, %onnx::Conv_1176) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_1178, %onnx::Conv_1179) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_1181, %onnx::Conv_1182) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_1184, %onnx::Conv_1185) %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_2_output_0, %onnx::Conv_1187, %onnx::Conv_1188) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_3_output_0 = Add(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_3_output_0) %/layers.6/Add_4_output_0 = Add(%/layers.6/Add_3_output_0, %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_4_output_0, %onnx::Conv_1190, %onnx::Conv_1191) %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_1193, %onnx::Conv_1194) %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_5_output_0 = Add(%/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_4_output_0) %/layers.6/Add_6_output_0 = Add(%/layers.6/Add_5_output_0, %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_6_output_0, %onnx::Conv_1196, %onnx::Conv_1197) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_1199, %onnx::Conv_1200) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_1202, %onnx::Conv_1203) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_1205, %onnx::Conv_1206) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_1208, %onnx::Conv_1209) %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_2_output_0, %onnx::Conv_1211, %onnx::Conv_1212) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_3_output_0 = Add(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_3_output_0) %/layers.7/Add_4_output_0 = Add(%/layers.7/Add_3_output_0, %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_4_output_0, %onnx::Conv_1214, %onnx::Conv_1215) %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_1217, %onnx::Conv_1218) %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_5_output_0 = Add(%/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_4_output_0) %/layers.7/Add_6_output_0 = Add(%/layers.7/Add_5_output_0, %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_6_output_0, %onnx::Conv_1220, %onnx::Conv_1221) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Concat_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1223, %onnx::Conv_1224) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_1226, %onnx::Conv_1227) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_1229, %onnx::Conv_1230) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1232, %onnx::Conv_1233) %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_2_output_0, %onnx::Conv_1235, %onnx::Conv_1236) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_3_output_0 = Add(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_3_output_0) %/layers.9/Add_4_output_0 = Add(%/layers.9/Add_3_output_0, %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_4_output_0, %onnx::Conv_1238, %onnx::Conv_1239) %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1241, %onnx::Conv_1242) %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_5_output_0 = Add(%/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_4_output_0) %/layers.9/Add_6_output_0 = Add(%/layers.9/Add_5_output_0, %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_6_output_0, %onnx::Conv_1244, %onnx::Conv_1245) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_1247, %onnx::Conv_1248) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_1250, %onnx::Conv_1251) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_1253, %onnx::Conv_1254) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_1256, %onnx::Conv_1257) %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_2_output_0, %onnx::Conv_1259, %onnx::Conv_1260) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_3_output_0 = Add(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_3_output_0) %/layers.10/Add_4_output_0 = Add(%/layers.10/Add_3_output_0, %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_4_output_0, %onnx::Conv_1262, %onnx::Conv_1263) %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_1265, %onnx::Conv_1266) %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_5_output_0 = Add(%/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_4_output_0) %/layers.10/Add_6_output_0 = Add(%/layers.10/Add_5_output_0, %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_6_output_0, %onnx::Conv_1268, %onnx::Conv_1269) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_1271, %onnx::Conv_1272) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_1274, %onnx::Conv_1275) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_1277, %onnx::Conv_1278) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_1280, %onnx::Conv_1281) %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_2_output_0, %onnx::Conv_1283, %onnx::Conv_1284) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_3_output_0 = Add(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_3_output_0) %/layers.11/Add_4_output_0 = Add(%/layers.11/Add_3_output_0, %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_4_output_0, %onnx::Conv_1286, %onnx::Conv_1287) %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_1289, %onnx::Conv_1290) %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_5_output_0 = Add(%/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_4_output_0) %/layers.11/Add_6_output_0 = Add(%/layers.11/Add_5_output_0, %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_6_output_0, %onnx::Conv_1292, %onnx::Conv_1293) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Concat_output_0) %1074 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %1074 }
val_accuracy
93.780047
2,018,256,896
6,751,882
{'zcp_epe_nas': 96.72855019938618, 'zcp_fisher': 3.8950777053833012, 'zcp_flops': 32292110336.0, 'zcp_grad_norm': 48.88551330566406, 'zcp_grasp': 0.779052734375, 'zcp_jacov': -16.06041878203461, 'zcp_l2_norm': 1339.616943359375, 'zcp_nwot': 229.04779612052891, 'zcp_params': 6751882.0, 'zcp_plain': 0.011697992682456, 'zcp_snip': 290.2289733886719, 'zcp_synflow': 139.86629829877603, 'zcp_zen': 118.72466278076172, 'zcp_val_accuracy': 0.892327725887298}