Datasets:
metadata
datasets: lh9171338/SS360
pretty_name: SS360 Dataset
license: mit
tags:
- computer-vision
- line-segment-detection
- wireframe-parsing
- spherical image
size_categories: 1K<n<10
SS360 Dataset
✏️ Github | 📑 Paper | 🖼️ Viewer
This is the SS360 dataset, designed for spherical image line segment detection.
Summary
The SS360 dataset is constructed by manually annotating images sourced from the SUN360 dataset and the Stanford 2D-3D-S dataset. It is organized into JSONL files (train/metadata.jsonl, test/metadata.jsonl) along with the corresponding images.
Number of samples:
- Train: 950
- Test: 118
Download
- Download with huggingface-hub
python3 -m pip install huggingface-hub
huggingface-cli download --repo-type dataset lh9171338/SS360 --local-dir ./
- Download with Git
git lfs install
git clone https://huggingface.co/datasets/lh9171338/SS360
Usage
- Load the dataset from Hugging Face Hub
from datasets import load_dataset
ds = load_dataset("lh9171338/SS360")
# or load from `refs/convert/parquet` for acceleration
# from datasets import load_dataset, Features, Image, Sequence, Value
# features = Features({
# "image": Image(),
# "image_file": Value("string"),
# "image_size": Sequence(Value("int32")),
# "camera_type": Value("string"),
# "lines": Sequence(Sequence(Sequence(Value("float32")))),
# })
# ds = load_dataset("lh9171338/SS360", features=features, revision="refs/convert/parquet")
print(ds)
# DatasetDict({
# train: Dataset({
# features: ['image', 'image_file', 'image_size', 'camera_type', 'lines'],
# num_rows: 950
# })
# test: Dataset({
# features: ['image', 'image_file', 'image_size', 'camera_type', 'lines'],
# num_rows: 118
# })
# })
print(ds["test"][0].keys())
# dict_keys(['image', 'image_file', 'image_size', 'camera_type', 'lines'])
- Load the dataset from local
from datasets import load_dataset
ds = load_dataset("imagefolder", data_dir=".")
print(ds)
# DatasetDict({
# train: Dataset({
# features: ['image', 'image_file', 'image_size', 'camera_type', 'lines'],
# num_rows: 950
# })
# test: Dataset({
# features: ['image', 'image_file', 'image_size', 'camera_type', 'lines'],
# num_rows: 118
# })
# })
print(ds["test"][0].keys())
# dict_keys(['image', 'image_file', 'image_size', 'camera_type', 'lines'])
- Load the dataset with jsonl files
import jsonlines
with jsonlines.open("test/metadata.jsonl") as reader:
infos = list(reader)
print(infos[0].keys())
# dict_keys(['image', 'image_file', 'image_size', 'camera_type', 'lines'])
Citation
@article{LI2021187,
title = {ULSD: Unified line segment detection across pinhole, fisheye, and spherical cameras},
author = {Hao Li and Huai Yu and Jinwang Wang and Wen Yang and Lei Yu and Sebastian Scherer},
journal = {ISPRS Journal of Photogrammetry and Remote Sensing},
volume = {178},
pages = {187-202},
year = {2021},
}