huevan's picture
Update README.md
f9702d9 verified
---
# 元数据标签,Hugging Face 会解析这些字段
language:
- en
tags:
- sentiment-analysis
- distilbert
- text-classification
- nlp
license: apache-2.0
datasets:
- amazon_polarity
metrics:
- accuracy
- f1
model-index:
- name: fine-tuned-distilbert
results:
- task:
type: text-classification
name: Sentiment Analysis
dataset:
name: Amazon Polarity
type: amazon_polarity
metrics:
- name: Accuracy
type: accuracy
value: 0.90 # 示例值,替换为你的实际结果
- name: F1
type: f1
value: 0.89 # 示例值,替换为你的实际结果
---
# Fine-Tuned DistilBERT for Sentiment Analysis
## Model Description
This model is a fine-tuned version of [`distilbert-base-uncased`](https://huggingface.co/distilbert-base-uncased) on the [`amazon_polarity`](https://huggingface.co/datasets/amazon_polarity) dataset. It is designed for binary sentiment classification, predicting whether a given text expresses a **positive** (1) or **negative** (0) sentiment. The model leverages the lightweight architecture of DistilBERT, making it efficient for deployment while maintaining strong performance.
- **Developed by**: [Jack.RX Tech]
- **Model Type**: Transformer-based text classification
- **Base Model**: `distilbert-base-uncased`
- **Language**: English
- **License**: Apache 2.0
## Intended Uses
This model is intended for sentiment analysis tasks, particularly in analyzing product reviews or user feedback. It can be used in:
- E-commerce platforms to monitor customer opinions.
- Social media analysis for brand reputation management.
- Market research to gauge consumer sentiment.
### Direct Use
The model can classify text directly without additional fine-tuning for similar binary sentiment tasks.
### Downstream Use
It can be further fine-tuned for domain-specific sentiment analysis (e.g., medical reviews, movie critiques).
## How to Use
### Python Code Example
Below is an example of how to load and use the model with the `transformers` library:
```python
from transformers import AutoModelForSequenceClassification, AutoTokenizer
# 加载模型和tokenizer
model_name = "huevan/distilbert-base-uncased-rx" # 替换为你的仓库名
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name)
# 输入文本
text = "I love this product, it's amazing!"
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=128)
# 预测
model.eval()
with torch.no_grad():
outputs = model(**inputs)
prediction = outputs.logits.argmax(-1).item()
sentiment = "positive" if prediction == 1 else "negative"
print(f"Sentiment: {sentiment}") # 输出: positive