layoutlmv3-cordv2 / README.md
mohamedeijy's picture
layoutlmv3-cordv2
0e1b329 verified
metadata
license: cc-by-nc-sa-4.0
base_model: microsoft/layoutlmv3-base
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: layoutlmv3-cordv2
    results: []

layoutlmv3-cordv2

This model is a fine-tuned version of microsoft/layoutlmv3-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3190
  • Precision: 0.8830
  • Recall: 0.8864
  • F1: 0.8847
  • Accuracy: 0.9201

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 1500

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 0.3333 100 1.5910 0.5469 0.4954 0.5199 0.5926
No log 0.6667 200 1.0875 0.6533 0.6685 0.6608 0.7540
No log 1.0 300 0.8007 0.7629 0.7782 0.7705 0.8144
No log 1.3333 400 0.6082 0.8099 0.8130 0.8114 0.8471
1.2178 1.6667 500 0.5302 0.8222 0.8184 0.8203 0.8568
1.2178 2.0 600 0.5046 0.8300 0.8261 0.8280 0.8624
1.2178 2.3333 700 0.4537 0.8498 0.8485 0.8492 0.8785
1.2178 2.6667 800 0.4270 0.8566 0.8586 0.8576 0.8870
1.2178 3.0 900 0.3938 0.8680 0.8686 0.8683 0.8980
0.4128 3.3333 1000 0.3926 0.8765 0.8717 0.8741 0.9031
0.4128 3.6667 1100 0.3403 0.8644 0.8717 0.8680 0.9087
0.4128 4.0 1200 0.3326 0.8861 0.8841 0.8851 0.9159
0.4128 4.3333 1300 0.3223 0.8824 0.8872 0.8848 0.9201
0.4128 4.6667 1400 0.3175 0.8852 0.8879 0.8866 0.9210
0.274 5.0 1500 0.3190 0.8830 0.8864 0.8847 0.9201

Framework versions

  • Transformers 4.43.0.dev0
  • Pytorch 2.3.0+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1