AI & ML interests

None defined yet.

Recent Activity

AdinaY 
posted an update 10 days ago
Nymbo 
posted an update 10 days ago
view post
Post
1760
🚨 New tool for the Nymbo/Tools MCP server: The new Agent_Skills tool provides full support for Agent Skills (Claude Skills but open-source).

How it works: The tool exposes the standard discover/info/resources/validate actions. Skills live in /Skills under the same File_System root, and any bundled scripts run through Shell_Command, no new infrastructure required.

Agent_Skills(action="discover")  # List all available skills
Agent_Skills(action="info", skill_name="music-downloader")  # Full SKILL.md
Agent_Skills(action="resources", skill_name="music-downloader")  # Scripts, refs, assets


I've included a music-downloader skill as a working demo, it wraps yt-dlp for YouTube/SoundCloud audio extraction.

Caveat: On HF Spaces, Shell_Command works for most tasks, but some operations (like YouTube downloads) are restricted due to the container environment. For full functionality, run the server locally on your machine.

Try it out ~ https://www.nymbo.net/nymbot
AdinaY 
posted an update 13 days ago
view post
Post
4506
Finch 💰 an enterprise-grade benchmark that measures whether AI agents can truly handle real world finance & accounting work.

FinWorkBench/Finch

✨ Built from real enterprise data (Enron + financial institutions), not synthetic tasks
✨ Tests end-to-end finance workflows
✨ Multimodal & cross-file reasoning
✨ Expert annotated (700+ hours) and genuinely challenging hard
DavidVivancos 
posted an update 23 days ago
Nymbo 
posted an update about 1 month ago
view post
Post
5032
🚀 I've just shipped a major update to the Nymbo/Tools MCP server: the Agent_Terminal, a single "master tool" that cuts token usage by over 90%!

Anthropic found 98.7% context savings using code execution with MCP, Cloudflare published similar findings. This is my open-source implementation of the same idea.

# The Problem

Traditional MCP exposes every tool definition directly to the model. With 12 tools, that's thousands of tokens consumed *before the conversation even starts*. Each tool call also passes intermediate results through the context window — a 10,000-row spreadsheet? That's all going into context just to sum a column.

# The Solution: One Tool to Rule Them All

Agent_Terminal wraps all 12 tools (Web_Search, Web_Fetch, File_System, Generate_Image, Generate_Speech, Generate_Video, Deep_Research, Memory_Manager, Obsidian_Vault, Shell_Command, Code_Interpreter) into a single Python code execution gateway.

Instead of the model making individual tool calls, it writes Python code that orchestrates the tools directly:

# Search for Bitcoin price
result = Web_Search("current price of bitcoin", max_results=3)
print(result)


Don't know what tools are available? The agent can discover them at runtime:

print(search_tools('image'))  # Find tools by keyword
print(usage('Generate_Image'))  # Get full docs for a specific tool


The individual direct tool calls are all still there, but they can be disabled if using the Agent_Terminal. Try it now - https://www.nymbo.net/nymbot
  • 1 reply
·