Spaces:
Sleeping
Sleeping
File size: 26,961 Bytes
aa9003d 6d2a17c aa9003d d063204 aa9003d d063204 aa9003d d063204 aa9003d 7196ae9 aa9003d 8f17704 aa9003d 8f17704 aa9003d 8f17704 aa9003d f80e242 aa9003d fe5243a 8f17704 fe5243a f80e242 8f17704 f80e242 fe5243a f80e242 fe5243a f80e242 8f17704 f80e242 fe5243a 8f17704 d063204 aa9003d 3855268 aa9003d 3855268 aa9003d 3855268 aa9003d 3855268 aa9003d 6f12b05 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 |
# ────────────────────────────── memo/core.py ──────────────────────────────
"""
Core Memory System
Main memory system that provides both legacy and enhanced functionality.
"""
import os
import asyncio
from typing import List, Dict, Any, Optional, Tuple
from utils.logger import get_logger
from utils.rag.embeddings import EmbeddingClient
from memo.legacy import MemoryLRU
from memo.persistent import PersistentMemory
logger = get_logger("CORE_MEMORY", __name__)
class MemorySystem:
"""
Main memory system that provides both legacy and enhanced functionality.
Automatically uses enhanced features when MongoDB is available.
"""
def __init__(self, mongo_uri: str = None, db_name: str = "studybuddy"):
self.mongo_uri = mongo_uri or os.getenv("MONGO_URI", "mongodb://localhost:27017")
self.db_name = db_name
# Initialize legacy memory system (always available)
self.legacy_memory = MemoryLRU()
# Initialize enhanced memory system if MongoDB is available
self.enhanced_available = False
self.enhanced_memory = None
self.embedder = None
self.session_memory = None
try:
self.embedder = EmbeddingClient()
self.enhanced_memory = PersistentMemory(self.mongo_uri, self.db_name, self.embedder)
from memo.session import get_session_memory_manager
self.session_memory = get_session_memory_manager(self.mongo_uri, self.db_name)
self.enhanced_available = True
logger.info("[CORE_MEMORY] Enhanced memory system and session memory initialized")
except Exception as e:
logger.warning(f"[CORE_MEMORY] Enhanced memory system unavailable: {e}")
self.enhanced_available = False
logger.info(f"[CORE_MEMORY] Initialized with enhanced_available={self.enhanced_available}")
# ────────────────────────────── Core Memory Operations ──────────────────────────────
def add(self, user_id: str, qa_summary: str):
"""Add a Q&A summary to memory (backward compatibility)"""
try:
# Add to legacy memory
self.legacy_memory.add(user_id, qa_summary)
# Also add to enhanced memory if available
if self.enhanced_available:
# Extract question and answer from summary
lines = qa_summary.split('\n')
question = ""
answer = ""
for line in lines:
if line.strip().lower().startswith('q:'):
question = line.strip()[2:].strip()
elif line.strip().lower().startswith('a:'):
answer = line.strip()[2:].strip()
if question and answer:
asyncio.create_task(self._add_enhanced_memory(user_id, question, answer))
logger.debug(f"[CORE_MEMORY] Added memory for user {user_id}")
except Exception as e:
logger.error(f"[CORE_MEMORY] Failed to add memory: {e}")
def recent(self, user_id: str, n: int = 3) -> List[str]:
"""Get recent memories (backward compatibility)"""
return self.legacy_memory.recent(user_id, n)
def rest(self, user_id: str, skip_n: int = 3) -> List[str]:
"""Get remaining memories excluding recent ones (backward compatibility)"""
return self.legacy_memory.rest(user_id, skip_n)
def all(self, user_id: str) -> List[str]:
"""Get all memories for a user (backward compatibility)"""
return self.legacy_memory.all(user_id)
def clear(self, user_id: str) -> None:
"""Clear all memories for a user (backward compatibility)"""
self.legacy_memory.clear(user_id)
# Also clear enhanced memory if available
if self.enhanced_available:
try:
self.enhanced_memory.clear_user_memories(user_id)
logger.info(f"[CORE_MEMORY] Cleared enhanced memory for user {user_id}")
except Exception as e:
logger.warning(f"[CORE_MEMORY] Failed to clear enhanced memory: {e}")
def clear_all_memory(self, user_id: str, project_id: str = None) -> Dict[str, Any]:
"""Clear all memory components for a user including sessions and planning state"""
try:
results = {
"legacy_cleared": False,
"enhanced_cleared": False,
"session_cleared": False,
"planning_reset": False,
"errors": []
}
# Clear legacy memory
try:
self.legacy_memory.clear(user_id)
results["legacy_cleared"] = True
logger.info(f"[CORE_MEMORY] Cleared legacy memory for user {user_id}")
except Exception as e:
error_msg = f"Failed to clear legacy memory: {e}"
results["errors"].append(error_msg)
logger.warning(f"[CORE_MEMORY] {error_msg}")
# Clear enhanced memory if available
if self.enhanced_available:
try:
if project_id:
# Clear project-specific memories
self.enhanced_memory.memories.delete_many({
"user_id": user_id,
"project_id": project_id
})
else:
# Clear all user memories
self.enhanced_memory.clear_user_memories(user_id)
results["enhanced_cleared"] = True
logger.info(f"[CORE_MEMORY] Cleared enhanced memory for user {user_id}, project {project_id}")
except Exception as e:
error_msg = f"Failed to clear enhanced memory: {e}"
results["errors"].append(error_msg)
logger.warning(f"[CORE_MEMORY] {error_msg}")
# Clear conversation sessions
try:
from memo.sessions import get_session_manager
session_manager = get_session_manager()
session_manager.clear_session(user_id)
results["session_cleared"] = True
logger.info(f"[CORE_MEMORY] Cleared session for user {user_id}")
except Exception as e:
error_msg = f"Failed to clear session: {e}"
results["errors"].append(error_msg)
logger.warning(f"[CORE_MEMORY] {error_msg}")
# Reset planning state (if needed)
try:
# Planning state is stateless, but we can log the reset
results["planning_reset"] = True
logger.info(f"[CORE_MEMORY] Reset planning state for user {user_id}")
except Exception as e:
error_msg = f"Failed to reset planning state: {e}"
results["errors"].append(error_msg)
logger.warning(f"[CORE_MEMORY] {error_msg}")
# Clear any cached contexts
try:
from memo.retrieval import get_retrieval_manager
retrieval_manager = get_retrieval_manager(self, self.embedder)
# Reset any cached state if needed
logger.info(f"[CORE_MEMORY] Cleared cached contexts for user {user_id}")
except Exception as e:
error_msg = f"Failed to clear cached contexts: {e}"
results["errors"].append(error_msg)
logger.warning(f"[CORE_MEMORY] {error_msg}")
success = all([results["legacy_cleared"], results["session_cleared"]])
if self.enhanced_available:
success = success and results["enhanced_cleared"]
if success:
logger.info(f"[CORE_MEMORY] Successfully cleared all memory for user {user_id}, project {project_id}")
else:
logger.warning(f"[CORE_MEMORY] Partial memory clear for user {user_id}, project {project_id}: {results}")
return results
except Exception as e:
logger.error(f"[CORE_MEMORY] Failed to clear all memory for user {user_id}: {e}")
return {
"legacy_cleared": False,
"enhanced_cleared": False,
"session_cleared": False,
"planning_reset": False,
"errors": [f"Critical error: {e}"]
}
def is_enhanced_available(self) -> bool:
"""Check if enhanced memory features are available"""
return self.enhanced_available
# ────────────────────────────── Enhanced Features ──────────────────────────────
async def add_conversation_memory(self, user_id: str, question: str, answer: str,
project_id: Optional[str] = None,
context: Dict[str, Any] = None) -> str:
"""Add conversation memory with enhanced context"""
if not self.enhanced_available:
logger.warning("[CORE_MEMORY] Enhanced features not available")
return ""
try:
memory_id = self.enhanced_memory.add_memory(
user_id=user_id,
content=f"Q: {question}\nA: {answer}",
memory_type="conversation",
project_id=project_id,
importance="medium",
tags=["conversation", "qa"],
metadata=context or {}
)
return memory_id
except Exception as e:
logger.error(f"[CORE_MEMORY] Failed to add conversation memory: {e}")
return ""
async def get_conversation_context(self, user_id: str, question: str,
project_id: Optional[str] = None) -> Tuple[str, str]:
"""Get conversation context for chat continuity with enhanced memory ability"""
try:
if self.enhanced_available:
# Use enhanced context retrieval with better integration
recent_context, semantic_context = await self._get_enhanced_context(user_id, question)
return recent_context, semantic_context
else:
# Use legacy context with enhanced semantic selection
from memo.context import get_legacy_context
return await get_legacy_context(user_id, question, self, self.embedder, 3)
except Exception as e:
logger.error(f"[CORE_MEMORY] Failed to get conversation context: {e}")
return "", ""
async def get_enhanced_context(self, user_id: str, question: str,
project_id: Optional[str] = None) -> Tuple[str, str, Dict[str, Any]]:
"""Get enhanced context using the new memory planning system"""
try:
return await self.get_smart_context(user_id, question, None, project_id, "chat")
except Exception as e:
logger.error(f"[CORE_MEMORY] Failed to get enhanced context: {e}")
return "", "", {"error": str(e)}
async def search_memories(self, user_id: str, query: str,
project_id: Optional[str] = None,
limit: int = 10) -> List[Tuple[str, float]]:
"""Search memories using semantic similarity"""
if not self.enhanced_available:
return []
try:
results = self.enhanced_memory.search_memories(
user_id=user_id,
query=query,
project_id=project_id,
limit=limit
)
return [(m["content"], score) for m, score in results]
except Exception as e:
logger.error(f"[CORE_MEMORY] Failed to search memories: {e}")
return []
def get_memory_stats(self, user_id: str) -> Dict[str, Any]:
"""Get memory statistics for a user"""
if self.enhanced_available:
return self.enhanced_memory.get_memory_stats(user_id)
else:
# Legacy memory stats
all_memories = self.legacy_memory.all(user_id)
return {
"total_memories": len(all_memories),
"system_type": "legacy",
"enhanced_available": False
}
async def consolidate_memories(self, user_id: str, nvidia_rotator=None) -> Dict[str, Any]:
"""Consolidate and prune memories to prevent information overload"""
try:
from memo.conversation import get_conversation_manager
conversation_manager = get_conversation_manager(self, self.embedder)
return await conversation_manager.consolidate_memories(user_id, nvidia_rotator)
except Exception as e:
logger.error(f"[CORE_MEMORY] Memory consolidation failed: {e}")
return {"consolidated": 0, "pruned": 0, "error": str(e)}
async def handle_context_switch(self, user_id: str, new_question: str,
nvidia_rotator=None) -> Dict[str, Any]:
"""Handle context switching when user changes topics"""
try:
from memo.conversation import get_conversation_manager
conversation_manager = get_conversation_manager(self, self.embedder)
return await conversation_manager.handle_context_switch(user_id, new_question, nvidia_rotator)
except Exception as e:
logger.error(f"[CORE_MEMORY] Context switch handling failed: {e}")
return {"is_context_switch": False, "confidence": 0.0, "error": str(e)}
def get_conversation_insights(self, user_id: str) -> Dict[str, Any]:
"""Get insights about the user's conversation patterns"""
try:
from memo.conversation import get_conversation_manager
conversation_manager = get_conversation_manager(self, self.embedder)
return conversation_manager.get_conversation_insights(user_id)
except Exception as e:
logger.error(f"[CORE_MEMORY] Failed to get conversation insights: {e}")
return {"error": str(e)}
async def get_smart_context(self, user_id: str, question: str,
nvidia_rotator=None, project_id: Optional[str] = None,
conversation_mode: str = "chat") -> Tuple[str, str, Dict[str, Any]]:
"""Get smart context using advanced memory planning strategy"""
try:
from memo.planning import get_memory_planner
memory_planner = get_memory_planner(self, self.embedder)
# Plan memory strategy based on user intent
execution_plan = await memory_planner.plan_memory_strategy(
user_id, question, nvidia_rotator, project_id
)
# Execute the planned strategy
recent_context, semantic_context, metadata = await memory_planner.execute_memory_plan(
user_id, question, execution_plan, nvidia_rotator, project_id
)
# Add planning metadata to response
metadata.update({
"memory_planning": True,
"intent": execution_plan["intent"].value,
"strategy": execution_plan["strategy"].value,
"enhancement_focus": execution_plan["enhancement_focus"],
"qa_focus": execution_plan["qa_focus"]
})
return recent_context, semantic_context, metadata
except Exception as e:
logger.error(f"[CORE_MEMORY] Failed to get smart context: {e}")
# Fallback to original conversation manager
try:
from memo.conversation import get_conversation_manager
conversation_manager = get_conversation_manager(self, self.embedder)
return await conversation_manager.get_smart_context(
user_id, question, nvidia_rotator, project_id, conversation_mode
)
except Exception as fallback_error:
logger.error(f"[CORE_MEMORY] Fallback also failed: {fallback_error}")
return "", "", {"error": str(e)}
async def get_enhancement_context(self, user_id: str, question: str,
nvidia_rotator=None, project_id: Optional[str] = None) -> Tuple[str, str, Dict[str, Any]]:
"""Get context specifically optimized for enhancement requests"""
try:
from memo.planning import get_memory_planner, QueryIntent, MemoryStrategy
memory_planner = get_memory_planner(self, self.embedder)
# Force enhancement intent and focused Q&A strategy
execution_plan = {
"intent": QueryIntent.ENHANCEMENT,
"strategy": MemoryStrategy.FOCUSED_QA,
"retrieval_params": {
"recent_limit": 5,
"semantic_limit": 10,
"qa_focus": True,
"enhancement_mode": True,
"priority_types": ["conversation", "qa"],
"similarity_threshold": 0.05, # Very low threshold for maximum recall
"use_ai_selection": True
},
"conversation_context": {},
"enhancement_focus": True,
"qa_focus": True
}
# Execute the enhancement-focused strategy
recent_context, semantic_context, metadata = await memory_planner.execute_memory_plan(
user_id, question, execution_plan, nvidia_rotator, project_id
)
# Add enhancement-specific metadata
metadata.update({
"enhancement_mode": True,
"qa_focused": True,
"memory_planning": True,
"intent": "enhancement",
"strategy": "focused_qa"
})
logger.info(f"[CORE_MEMORY] Enhancement context retrieved: {len(recent_context)} recent, {len(semantic_context)} semantic")
return recent_context, semantic_context, metadata
except Exception as e:
logger.error(f"[CORE_MEMORY] Failed to get enhancement context: {e}")
return "", "", {"error": str(e)}
# ────────────────────────────── Session-Specific Memory Operations ──────────────────────────────
def add_session_memory(self, user_id: str, project_id: str, session_id: str,
question: str, answer: str, context: Dict[str, Any] = None) -> str:
"""Add memory to a specific session"""
try:
if not self.session_memory:
logger.warning("[CORE_MEMORY] Session memory not available")
return ""
# Create session-specific memory content
content = f"Q: {question}\nA: {answer}"
memory_id = self.session_memory.add_session_memory(
user_id=user_id,
project_id=project_id,
session_id=session_id,
content=content,
memory_type="conversation",
importance="medium",
tags=["conversation", "qa"],
metadata=context or {}
)
logger.debug(f"[CORE_MEMORY] Added session memory for session {session_id}")
return memory_id
except Exception as e:
logger.error(f"[CORE_MEMORY] Failed to add session memory: {e}")
return ""
def get_session_memory_context(self, user_id: str, project_id: str, session_id: str,
question: str, limit: int = 5) -> Tuple[str, str]:
"""Get memory context for a specific session"""
try:
if not self.session_memory:
return "", ""
# Get recent session memories
recent_memories = self.session_memory.get_session_memories(
user_id, project_id, session_id, memory_type="conversation", limit=limit
)
recent_context = ""
if recent_memories:
recent_context = "\n\n".join([mem["content"] for mem in recent_memories])
# Get semantic context from session memories
semantic_memories = self.session_memory.search_session_memories(
user_id, project_id, session_id, question, self.embedder, limit=3
)
semantic_context = ""
if semantic_memories:
semantic_context = "\n\n".join([mem["content"] for mem, score in semantic_memories])
return recent_context, semantic_context
except Exception as e:
logger.error(f"[CORE_MEMORY] Failed to get session memory context: {e}")
return "", ""
def clear_session_memories(self, user_id: str, project_id: str, session_id: str):
"""Clear all memories for a specific session"""
try:
if not self.session_memory:
return 0
deleted_count = self.session_memory.clear_session_memories(user_id, project_id, session_id)
logger.info(f"[CORE_MEMORY] Cleared {deleted_count} session memories for session {session_id}")
return deleted_count
except Exception as e:
logger.error(f"[CORE_MEMORY] Failed to clear session memories: {e}")
return 0
# ────────────────────────────── Private Helper Methods ──────────────────────────────
async def _add_enhanced_memory(self, user_id: str, question: str, answer: str):
"""Add memory to enhanced system"""
try:
self.enhanced_memory.add_memory(
user_id=user_id,
content=f"Q: {question}\nA: {answer}",
memory_type="conversation",
importance="medium",
tags=["conversation", "qa"]
)
except Exception as e:
logger.warning(f"[CORE_MEMORY] Failed to add enhanced memory: {e}")
async def _get_enhanced_context(self, user_id: str, question: str) -> Tuple[str, str]:
"""Get context from enhanced memory system with semantic selection"""
try:
# Get recent conversation memories
recent_memories = self.enhanced_memory.get_memories(
user_id=user_id,
memory_type="conversation",
limit=5
)
recent_context = ""
if recent_memories and self.embedder:
# Use semantic similarity to select most relevant recent memories
try:
from memo.context import semantic_context
recent_summaries = [m["summary"] for m in recent_memories]
recent_context = await semantic_context(question, recent_summaries, self.embedder, 3)
except Exception as e:
logger.warning(f"[CORE_MEMORY] Semantic recent context failed, using all: {e}")
recent_context = "\n\n".join([m["summary"] for m in recent_memories])
elif recent_memories:
recent_context = "\n\n".join([m["summary"] for m in recent_memories])
# Get semantic context from other memory types
semantic_memories = self.enhanced_memory.get_memories(
user_id=user_id,
limit=10
)
semantic_context = ""
if semantic_memories and self.embedder:
try:
from memo.context import semantic_context
other_memories = [m for m in semantic_memories if m.get("memory_type") != "conversation"]
if other_memories:
other_summaries = [m["summary"] for m in other_memories]
semantic_context = await semantic_context(question, other_summaries, self.embedder, 5)
except Exception as e:
logger.warning(f"[CORE_MEMORY] Semantic context failed, using all: {e}")
other_memories = [m for m in semantic_memories if m.get("memory_type") != "conversation"]
if other_memories:
semantic_context = "\n\n".join([m["summary"] for m in other_memories])
elif semantic_memories:
other_memories = [m for m in semantic_memories if m.get("memory_type") != "conversation"]
if other_memories:
semantic_context = "\n\n".join([m["summary"] for m in other_memories])
return recent_context, semantic_context
except Exception as e:
logger.error(f"[CORE_MEMORY] Failed to get enhanced context: {e}")
return "", ""
# ────────────────────────────── Global Instance ──────────────────────────────
_memory_system: Optional[MemorySystem] = None
def get_memory_system(mongo_uri: str = None, db_name: str = None) -> MemorySystem:
"""Get the global memory system instance"""
global _memory_system
if _memory_system is None:
if mongo_uri is None:
mongo_uri = os.getenv("MONGO_URI", "mongodb://localhost:27017")
if db_name is None:
db_name = os.getenv("MONGO_DB", "studybuddy")
_memory_system = MemorySystem(mongo_uri, db_name)
logger.info("[CORE_MEMORY] Global memory system initialized")
return _memory_system
# def reset_memory_system():
# """Reset the global memory system (for testing)"""
# global _memory_system
# _memory_system = None
|