File size: 26,961 Bytes
aa9003d
 
 
 
 
 
 
 
 
 
 
 
6d2a17c
aa9003d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d063204
aa9003d
 
 
 
d063204
 
aa9003d
d063204
aa9003d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7196ae9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa9003d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f17704
aa9003d
 
8f17704
aa9003d
 
 
8f17704
 
 
aa9003d
 
 
 
f80e242
 
 
 
 
 
 
 
 
aa9003d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe5243a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f17704
fe5243a
 
f80e242
8f17704
f80e242
 
fe5243a
f80e242
 
 
fe5243a
f80e242
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f17704
 
f80e242
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe5243a
8f17704
d063204
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa9003d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3855268
aa9003d
 
 
 
 
 
 
 
 
3855268
 
 
 
 
 
 
 
 
 
 
aa9003d
 
 
 
 
 
 
 
3855268
 
 
 
 
 
 
 
 
 
 
 
 
aa9003d
 
3855268
aa9003d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6f12b05
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
# ────────────────────────────── memo/core.py ──────────────────────────────
"""
Core Memory System

Main memory system that provides both legacy and enhanced functionality.
"""

import os
import asyncio
from typing import List, Dict, Any, Optional, Tuple

from utils.logger import get_logger
from utils.rag.embeddings import EmbeddingClient
from memo.legacy import MemoryLRU
from memo.persistent import PersistentMemory

logger = get_logger("CORE_MEMORY", __name__)

class MemorySystem:
    """
    Main memory system that provides both legacy and enhanced functionality.
    Automatically uses enhanced features when MongoDB is available.
    """
    
    def __init__(self, mongo_uri: str = None, db_name: str = "studybuddy"):
        self.mongo_uri = mongo_uri or os.getenv("MONGO_URI", "mongodb://localhost:27017")
        self.db_name = db_name
        
        # Initialize legacy memory system (always available)
        self.legacy_memory = MemoryLRU()
        
        # Initialize enhanced memory system if MongoDB is available
        self.enhanced_available = False
        self.enhanced_memory = None
        self.embedder = None
        self.session_memory = None
        
        try:
            self.embedder = EmbeddingClient()
            self.enhanced_memory = PersistentMemory(self.mongo_uri, self.db_name, self.embedder)
            from memo.session import get_session_memory_manager
            self.session_memory = get_session_memory_manager(self.mongo_uri, self.db_name)
            self.enhanced_available = True
            logger.info("[CORE_MEMORY] Enhanced memory system and session memory initialized")
        except Exception as e:
            logger.warning(f"[CORE_MEMORY] Enhanced memory system unavailable: {e}")
            self.enhanced_available = False
        
        logger.info(f"[CORE_MEMORY] Initialized with enhanced_available={self.enhanced_available}")
    
    # ────────────────────────────── Core Memory Operations ──────────────────────────────
    
    def add(self, user_id: str, qa_summary: str):
        """Add a Q&A summary to memory (backward compatibility)"""
        try:
            # Add to legacy memory
            self.legacy_memory.add(user_id, qa_summary)
            
            # Also add to enhanced memory if available
            if self.enhanced_available:
                # Extract question and answer from summary
                lines = qa_summary.split('\n')
                question = ""
                answer = ""
                
                for line in lines:
                    if line.strip().lower().startswith('q:'):
                        question = line.strip()[2:].strip()
                    elif line.strip().lower().startswith('a:'):
                        answer = line.strip()[2:].strip()
                
                if question and answer:
                    asyncio.create_task(self._add_enhanced_memory(user_id, question, answer))
            
            logger.debug(f"[CORE_MEMORY] Added memory for user {user_id}")
        except Exception as e:
            logger.error(f"[CORE_MEMORY] Failed to add memory: {e}")
    
    def recent(self, user_id: str, n: int = 3) -> List[str]:
        """Get recent memories (backward compatibility)"""
        return self.legacy_memory.recent(user_id, n)
    
    def rest(self, user_id: str, skip_n: int = 3) -> List[str]:
        """Get remaining memories excluding recent ones (backward compatibility)"""
        return self.legacy_memory.rest(user_id, skip_n)
    
    def all(self, user_id: str) -> List[str]:
        """Get all memories for a user (backward compatibility)"""
        return self.legacy_memory.all(user_id)
    
    def clear(self, user_id: str) -> None:
        """Clear all memories for a user (backward compatibility)"""
        self.legacy_memory.clear(user_id)
        
        # Also clear enhanced memory if available
        if self.enhanced_available:
            try:
                self.enhanced_memory.clear_user_memories(user_id)
                logger.info(f"[CORE_MEMORY] Cleared enhanced memory for user {user_id}")
            except Exception as e:
                logger.warning(f"[CORE_MEMORY] Failed to clear enhanced memory: {e}")
    
    def clear_all_memory(self, user_id: str, project_id: str = None) -> Dict[str, Any]:
        """Clear all memory components for a user including sessions and planning state"""
        try:
            results = {
                "legacy_cleared": False,
                "enhanced_cleared": False,
                "session_cleared": False,
                "planning_reset": False,
                "errors": []
            }
            
            # Clear legacy memory
            try:
                self.legacy_memory.clear(user_id)
                results["legacy_cleared"] = True
                logger.info(f"[CORE_MEMORY] Cleared legacy memory for user {user_id}")
            except Exception as e:
                error_msg = f"Failed to clear legacy memory: {e}"
                results["errors"].append(error_msg)
                logger.warning(f"[CORE_MEMORY] {error_msg}")
            
            # Clear enhanced memory if available
            if self.enhanced_available:
                try:
                    if project_id:
                        # Clear project-specific memories
                        self.enhanced_memory.memories.delete_many({
                            "user_id": user_id, 
                            "project_id": project_id
                        })
                    else:
                        # Clear all user memories
                        self.enhanced_memory.clear_user_memories(user_id)
                    results["enhanced_cleared"] = True
                    logger.info(f"[CORE_MEMORY] Cleared enhanced memory for user {user_id}, project {project_id}")
                except Exception as e:
                    error_msg = f"Failed to clear enhanced memory: {e}"
                    results["errors"].append(error_msg)
                    logger.warning(f"[CORE_MEMORY] {error_msg}")
            
            # Clear conversation sessions
            try:
                from memo.sessions import get_session_manager
                session_manager = get_session_manager()
                session_manager.clear_session(user_id)
                results["session_cleared"] = True
                logger.info(f"[CORE_MEMORY] Cleared session for user {user_id}")
            except Exception as e:
                error_msg = f"Failed to clear session: {e}"
                results["errors"].append(error_msg)
                logger.warning(f"[CORE_MEMORY] {error_msg}")
            
            # Reset planning state (if needed)
            try:
                # Planning state is stateless, but we can log the reset
                results["planning_reset"] = True
                logger.info(f"[CORE_MEMORY] Reset planning state for user {user_id}")
            except Exception as e:
                error_msg = f"Failed to reset planning state: {e}"
                results["errors"].append(error_msg)
                logger.warning(f"[CORE_MEMORY] {error_msg}")
            
            # Clear any cached contexts
            try:
                from memo.retrieval import get_retrieval_manager
                retrieval_manager = get_retrieval_manager(self, self.embedder)
                # Reset any cached state if needed
                logger.info(f"[CORE_MEMORY] Cleared cached contexts for user {user_id}")
            except Exception as e:
                error_msg = f"Failed to clear cached contexts: {e}"
                results["errors"].append(error_msg)
                logger.warning(f"[CORE_MEMORY] {error_msg}")
            
            success = all([results["legacy_cleared"], results["session_cleared"]])
            if self.enhanced_available:
                success = success and results["enhanced_cleared"]
            
            if success:
                logger.info(f"[CORE_MEMORY] Successfully cleared all memory for user {user_id}, project {project_id}")
            else:
                logger.warning(f"[CORE_MEMORY] Partial memory clear for user {user_id}, project {project_id}: {results}")
            
            return results
            
        except Exception as e:
            logger.error(f"[CORE_MEMORY] Failed to clear all memory for user {user_id}: {e}")
            return {
                "legacy_cleared": False,
                "enhanced_cleared": False,
                "session_cleared": False,
                "planning_reset": False,
                "errors": [f"Critical error: {e}"]
            }
    
    def is_enhanced_available(self) -> bool:
        """Check if enhanced memory features are available"""
        return self.enhanced_available
    
    # ────────────────────────────── Enhanced Features ──────────────────────────────
    
    async def add_conversation_memory(self, user_id: str, question: str, answer: str,
                                    project_id: Optional[str] = None,
                                    context: Dict[str, Any] = None) -> str:
        """Add conversation memory with enhanced context"""
        if not self.enhanced_available:
            logger.warning("[CORE_MEMORY] Enhanced features not available")
            return ""
        
        try:
            memory_id = self.enhanced_memory.add_memory(
                user_id=user_id,
                content=f"Q: {question}\nA: {answer}",
                memory_type="conversation",
                project_id=project_id,
                importance="medium",
                tags=["conversation", "qa"],
                metadata=context or {}
            )
            return memory_id
        except Exception as e:
            logger.error(f"[CORE_MEMORY] Failed to add conversation memory: {e}")
            return ""
    
    async def get_conversation_context(self, user_id: str, question: str,
                                     project_id: Optional[str] = None) -> Tuple[str, str]:
        """Get conversation context for chat continuity with enhanced memory ability"""
        try:
            if self.enhanced_available:
                # Use enhanced context retrieval with better integration
                recent_context, semantic_context = await self._get_enhanced_context(user_id, question)
                return recent_context, semantic_context
            else:
                # Use legacy context with enhanced semantic selection
                from memo.context import get_legacy_context
                return await get_legacy_context(user_id, question, self, self.embedder, 3)
        except Exception as e:
            logger.error(f"[CORE_MEMORY] Failed to get conversation context: {e}")
            return "", ""
    
    async def get_enhanced_context(self, user_id: str, question: str,
                                 project_id: Optional[str] = None) -> Tuple[str, str, Dict[str, Any]]:
        """Get enhanced context using the new memory planning system"""
        try:
            return await self.get_smart_context(user_id, question, None, project_id, "chat")
        except Exception as e:
            logger.error(f"[CORE_MEMORY] Failed to get enhanced context: {e}")
            return "", "", {"error": str(e)}
    
    async def search_memories(self, user_id: str, query: str,
                            project_id: Optional[str] = None,
                            limit: int = 10) -> List[Tuple[str, float]]:
        """Search memories using semantic similarity"""
        if not self.enhanced_available:
            return []
        
        try:
            results = self.enhanced_memory.search_memories(
                user_id=user_id,
                query=query,
                project_id=project_id,
                limit=limit
            )
            return [(m["content"], score) for m, score in results]
        except Exception as e:
            logger.error(f"[CORE_MEMORY] Failed to search memories: {e}")
            return []
    
    def get_memory_stats(self, user_id: str) -> Dict[str, Any]:
        """Get memory statistics for a user"""
        if self.enhanced_available:
            return self.enhanced_memory.get_memory_stats(user_id)
        else:
            # Legacy memory stats
            all_memories = self.legacy_memory.all(user_id)
            return {
                "total_memories": len(all_memories),
                "system_type": "legacy",
                "enhanced_available": False
            }
    
    async def consolidate_memories(self, user_id: str, nvidia_rotator=None) -> Dict[str, Any]:
        """Consolidate and prune memories to prevent information overload"""
        try:
            from memo.conversation import get_conversation_manager
            conversation_manager = get_conversation_manager(self, self.embedder)
            
            return await conversation_manager.consolidate_memories(user_id, nvidia_rotator)
        except Exception as e:
            logger.error(f"[CORE_MEMORY] Memory consolidation failed: {e}")
            return {"consolidated": 0, "pruned": 0, "error": str(e)}
    
    async def handle_context_switch(self, user_id: str, new_question: str, 
                                  nvidia_rotator=None) -> Dict[str, Any]:
        """Handle context switching when user changes topics"""
        try:
            from memo.conversation import get_conversation_manager
            conversation_manager = get_conversation_manager(self, self.embedder)
            
            return await conversation_manager.handle_context_switch(user_id, new_question, nvidia_rotator)
        except Exception as e:
            logger.error(f"[CORE_MEMORY] Context switch handling failed: {e}")
            return {"is_context_switch": False, "confidence": 0.0, "error": str(e)}
    
    def get_conversation_insights(self, user_id: str) -> Dict[str, Any]:
        """Get insights about the user's conversation patterns"""
        try:
            from memo.conversation import get_conversation_manager
            conversation_manager = get_conversation_manager(self, self.embedder)
            
            return conversation_manager.get_conversation_insights(user_id)
        except Exception as e:
            logger.error(f"[CORE_MEMORY] Failed to get conversation insights: {e}")
            return {"error": str(e)}
    
    async def get_smart_context(self, user_id: str, question: str, 
                              nvidia_rotator=None, project_id: Optional[str] = None,
                              conversation_mode: str = "chat") -> Tuple[str, str, Dict[str, Any]]:
        """Get smart context using advanced memory planning strategy"""
        try:
            from memo.planning import get_memory_planner
            memory_planner = get_memory_planner(self, self.embedder)
            
            # Plan memory strategy based on user intent
            execution_plan = await memory_planner.plan_memory_strategy(
                user_id, question, nvidia_rotator, project_id
            )
            
            # Execute the planned strategy
            recent_context, semantic_context, metadata = await memory_planner.execute_memory_plan(
                user_id, question, execution_plan, nvidia_rotator, project_id
            )
            
            # Add planning metadata to response
            metadata.update({
                "memory_planning": True,
                "intent": execution_plan["intent"].value,
                "strategy": execution_plan["strategy"].value,
                "enhancement_focus": execution_plan["enhancement_focus"],
                "qa_focus": execution_plan["qa_focus"]
            })
            
            return recent_context, semantic_context, metadata
            
        except Exception as e:
            logger.error(f"[CORE_MEMORY] Failed to get smart context: {e}")
            # Fallback to original conversation manager
            try:
                from memo.conversation import get_conversation_manager
                conversation_manager = get_conversation_manager(self, self.embedder)
                
                return await conversation_manager.get_smart_context(
                    user_id, question, nvidia_rotator, project_id, conversation_mode
                )
            except Exception as fallback_error:
                logger.error(f"[CORE_MEMORY] Fallback also failed: {fallback_error}")
                return "", "", {"error": str(e)}
    
    async def get_enhancement_context(self, user_id: str, question: str, 
                                    nvidia_rotator=None, project_id: Optional[str] = None) -> Tuple[str, str, Dict[str, Any]]:
        """Get context specifically optimized for enhancement requests"""
        try:
            from memo.planning import get_memory_planner, QueryIntent, MemoryStrategy
            memory_planner = get_memory_planner(self, self.embedder)
            
            # Force enhancement intent and focused Q&A strategy
            execution_plan = {
                "intent": QueryIntent.ENHANCEMENT,
                "strategy": MemoryStrategy.FOCUSED_QA,
                "retrieval_params": {
                    "recent_limit": 5,
                    "semantic_limit": 10,
                    "qa_focus": True,
                    "enhancement_mode": True,
                    "priority_types": ["conversation", "qa"],
                    "similarity_threshold": 0.05,  # Very low threshold for maximum recall
                    "use_ai_selection": True
                },
                "conversation_context": {},
                "enhancement_focus": True,
                "qa_focus": True
            }
            
            # Execute the enhancement-focused strategy
            recent_context, semantic_context, metadata = await memory_planner.execute_memory_plan(
                user_id, question, execution_plan, nvidia_rotator, project_id
            )
            
            # Add enhancement-specific metadata
            metadata.update({
                "enhancement_mode": True,
                "qa_focused": True,
                "memory_planning": True,
                "intent": "enhancement",
                "strategy": "focused_qa"
            })
            
            logger.info(f"[CORE_MEMORY] Enhancement context retrieved: {len(recent_context)} recent, {len(semantic_context)} semantic")
            return recent_context, semantic_context, metadata
            
        except Exception as e:
            logger.error(f"[CORE_MEMORY] Failed to get enhancement context: {e}")
            return "", "", {"error": str(e)}
    
    # ────────────────────────────── Session-Specific Memory Operations ──────────────────────────────
    
    def add_session_memory(self, user_id: str, project_id: str, session_id: str, 
                          question: str, answer: str, context: Dict[str, Any] = None) -> str:
        """Add memory to a specific session"""
        try:
            if not self.session_memory:
                logger.warning("[CORE_MEMORY] Session memory not available")
                return ""
            
            # Create session-specific memory content
            content = f"Q: {question}\nA: {answer}"
            
            memory_id = self.session_memory.add_session_memory(
                user_id=user_id,
                project_id=project_id,
                session_id=session_id,
                content=content,
                memory_type="conversation",
                importance="medium",
                tags=["conversation", "qa"],
                metadata=context or {}
            )
            
            logger.debug(f"[CORE_MEMORY] Added session memory for session {session_id}")
            return memory_id
            
        except Exception as e:
            logger.error(f"[CORE_MEMORY] Failed to add session memory: {e}")
            return ""
    
    def get_session_memory_context(self, user_id: str, project_id: str, session_id: str,
                                  question: str, limit: int = 5) -> Tuple[str, str]:
        """Get memory context for a specific session"""
        try:
            if not self.session_memory:
                return "", ""
            
            # Get recent session memories
            recent_memories = self.session_memory.get_session_memories(
                user_id, project_id, session_id, memory_type="conversation", limit=limit
            )
            
            recent_context = ""
            if recent_memories:
                recent_context = "\n\n".join([mem["content"] for mem in recent_memories])
            
            # Get semantic context from session memories
            semantic_memories = self.session_memory.search_session_memories(
                user_id, project_id, session_id, question, self.embedder, limit=3
            )
            
            semantic_context = ""
            if semantic_memories:
                semantic_context = "\n\n".join([mem["content"] for mem, score in semantic_memories])
            
            return recent_context, semantic_context
            
        except Exception as e:
            logger.error(f"[CORE_MEMORY] Failed to get session memory context: {e}")
            return "", ""
    
    def clear_session_memories(self, user_id: str, project_id: str, session_id: str):
        """Clear all memories for a specific session"""
        try:
            if not self.session_memory:
                return 0
            
            deleted_count = self.session_memory.clear_session_memories(user_id, project_id, session_id)
            logger.info(f"[CORE_MEMORY] Cleared {deleted_count} session memories for session {session_id}")
            return deleted_count
            
        except Exception as e:
            logger.error(f"[CORE_MEMORY] Failed to clear session memories: {e}")
            return 0
    
    # ────────────────────────────── Private Helper Methods ──────────────────────────────
    
    async def _add_enhanced_memory(self, user_id: str, question: str, answer: str):
        """Add memory to enhanced system"""
        try:
            self.enhanced_memory.add_memory(
                user_id=user_id,
                content=f"Q: {question}\nA: {answer}",
                memory_type="conversation",
                importance="medium",
                tags=["conversation", "qa"]
            )
        except Exception as e:
            logger.warning(f"[CORE_MEMORY] Failed to add enhanced memory: {e}")
    
    async def _get_enhanced_context(self, user_id: str, question: str) -> Tuple[str, str]:
        """Get context from enhanced memory system with semantic selection"""
        try:
            # Get recent conversation memories
            recent_memories = self.enhanced_memory.get_memories(
                user_id=user_id,
                memory_type="conversation",
                limit=5
            )
            
            recent_context = ""
            if recent_memories and self.embedder:
                # Use semantic similarity to select most relevant recent memories
                try:
                    from memo.context import semantic_context
                    recent_summaries = [m["summary"] for m in recent_memories]
                    recent_context = await semantic_context(question, recent_summaries, self.embedder, 3)
                except Exception as e:
                    logger.warning(f"[CORE_MEMORY] Semantic recent context failed, using all: {e}")
                    recent_context = "\n\n".join([m["summary"] for m in recent_memories])
            elif recent_memories:
                recent_context = "\n\n".join([m["summary"] for m in recent_memories])
            
            # Get semantic context from other memory types
            semantic_memories = self.enhanced_memory.get_memories(
                user_id=user_id,
                limit=10
            )
            
            semantic_context = ""
            if semantic_memories and self.embedder:
                try:
                    from memo.context import semantic_context
                    other_memories = [m for m in semantic_memories if m.get("memory_type") != "conversation"]
                    if other_memories:
                        other_summaries = [m["summary"] for m in other_memories]
                        semantic_context = await semantic_context(question, other_summaries, self.embedder, 5)
                except Exception as e:
                    logger.warning(f"[CORE_MEMORY] Semantic context failed, using all: {e}")
                    other_memories = [m for m in semantic_memories if m.get("memory_type") != "conversation"]
                    if other_memories:
                        semantic_context = "\n\n".join([m["summary"] for m in other_memories])
            elif semantic_memories:
                other_memories = [m for m in semantic_memories if m.get("memory_type") != "conversation"]
                if other_memories:
                    semantic_context = "\n\n".join([m["summary"] for m in other_memories])
            
            return recent_context, semantic_context
            
        except Exception as e:
            logger.error(f"[CORE_MEMORY] Failed to get enhanced context: {e}")
            return "", ""

# ────────────────────────────── Global Instance ──────────────────────────────

_memory_system: Optional[MemorySystem] = None

def get_memory_system(mongo_uri: str = None, db_name: str = None) -> MemorySystem:
    """Get the global memory system instance"""
    global _memory_system
    
    if _memory_system is None:
        if mongo_uri is None:
            mongo_uri = os.getenv("MONGO_URI", "mongodb://localhost:27017")
        if db_name is None:
            db_name = os.getenv("MONGO_DB", "studybuddy")
        
        _memory_system = MemorySystem(mongo_uri, db_name)
        logger.info("[CORE_MEMORY] Global memory system initialized")
    
    return _memory_system

# def reset_memory_system():
#     """Reset the global memory system (for testing)"""
#     global _memory_system
#     _memory_system = None