t5_efficient_small_language_ID

This model is a fine-tuned version of google/t5-efficient-small on the generator dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4285
  • Accuracy: 0.6578
  • F1 Macro: 0.5633
  • F1 Weighted: 0.6050
  • Precision Macro: 0.6452
  • Recall Macro: 0.6124

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0005
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 128
  • optimizer: Use adamw_torch_fused with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine_with_restarts
  • lr_scheduler_warmup_steps: 1000
  • training_steps: 60000

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Macro F1 Weighted Precision Macro Recall Macro
0.3649 0.0083 500 0.8746 0.2458 0.1941 0.2013 0.2757 0.2370
0.1204 0.0167 1000 0.8914 0.3442 0.2543 0.2637 0.4155 0.3319
0.0788 0.025 1500 1.0181 0.3853 0.3001 0.3001 0.4832 0.3853
0.0771 0.0333 2000 0.5361 0.5775 0.4982 0.5166 0.5265 0.5569
0.0737 0.0417 2500 0.6765 0.5442 0.4678 0.4851 0.5409 0.5248
0.0399 0.05 3000 0.6103 0.5444 0.4692 0.4866 0.5858 0.5250
0.0557 0.0583 3500 0.4436 0.6128 0.5453 0.5655 0.6635 0.5909
0.0963 0.0667 4000 0.4755 0.6027 0.5328 0.5526 0.6001 0.5812
0.0282 0.075 4500 0.4607 0.6347 0.5728 0.5728 0.6121 0.6347
0.0386 0.0833 5000 0.5344 0.6501 0.5574 0.5781 0.6186 0.6269
0.0355 0.0917 5500 0.4191 0.6575 0.5793 0.6008 0.6199 0.6340
0.0244 0.1 6000 0.4040 0.6802 0.5880 0.6316 0.6406 0.6333
0.0331 0.1083 6500 0.4438 0.6517 0.6053 0.6053 0.7090 0.6517
0.0224 0.1167 7000 0.4869 0.6649 0.5878 0.6096 0.6689 0.6412
0.0263 0.125 7500 0.4285 0.6578 0.5633 0.6050 0.6452 0.6124

Framework versions

  • Transformers 4.57.1
  • Pytorch 2.9.0+cu128
  • Datasets 4.3.0
  • Tokenizers 0.22.1
Downloads last month
16
Safetensors
Model size
60.5M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for yigagilbert/t5_efficient_small_language_ID

Finetuned
(2)
this model
Finetunes
1 model

Evaluation results