yigagilbert's picture
Upload tokenizer
3fec0ac verified
metadata
library_name: transformers
license: apache-2.0
base_model: google/t5-efficient-small
tags:
  - generated_from_trainer
datasets:
  - generator
metrics:
  - accuracy
model-index:
  - name: t5_efficient_small_language_ID
    results:
      - task:
          type: text2text-generation
          name: Sequence-to-sequence Language Modeling
        dataset:
          name: generator
          type: generator
          config: default
          split: train
          args: default
        metrics:
          - type: accuracy
            value: 0.6577572709259952
            name: Accuracy

t5_efficient_small_language_ID

This model is a fine-tuned version of google/t5-efficient-small on the generator dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4285
  • Accuracy: 0.6578
  • F1 Macro: 0.5633
  • F1 Weighted: 0.6050
  • Precision Macro: 0.6452
  • Recall Macro: 0.6124

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0005
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 128
  • optimizer: Use adamw_torch_fused with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine_with_restarts
  • lr_scheduler_warmup_steps: 1000
  • training_steps: 60000

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Macro F1 Weighted Precision Macro Recall Macro
0.3649 0.0083 500 0.8746 0.2458 0.1941 0.2013 0.2757 0.2370
0.1204 0.0167 1000 0.8914 0.3442 0.2543 0.2637 0.4155 0.3319
0.0788 0.025 1500 1.0181 0.3853 0.3001 0.3001 0.4832 0.3853
0.0771 0.0333 2000 0.5361 0.5775 0.4982 0.5166 0.5265 0.5569
0.0737 0.0417 2500 0.6765 0.5442 0.4678 0.4851 0.5409 0.5248
0.0399 0.05 3000 0.6103 0.5444 0.4692 0.4866 0.5858 0.5250
0.0557 0.0583 3500 0.4436 0.6128 0.5453 0.5655 0.6635 0.5909
0.0963 0.0667 4000 0.4755 0.6027 0.5328 0.5526 0.6001 0.5812
0.0282 0.075 4500 0.4607 0.6347 0.5728 0.5728 0.6121 0.6347
0.0386 0.0833 5000 0.5344 0.6501 0.5574 0.5781 0.6186 0.6269
0.0355 0.0917 5500 0.4191 0.6575 0.5793 0.6008 0.6199 0.6340
0.0244 0.1 6000 0.4040 0.6802 0.5880 0.6316 0.6406 0.6333
0.0331 0.1083 6500 0.4438 0.6517 0.6053 0.6053 0.7090 0.6517
0.0224 0.1167 7000 0.4869 0.6649 0.5878 0.6096 0.6689 0.6412
0.0263 0.125 7500 0.4285 0.6578 0.5633 0.6050 0.6452 0.6124

Framework versions

  • Transformers 4.57.1
  • Pytorch 2.9.0+cu128
  • Datasets 4.3.0
  • Tokenizers 0.22.1