Sign Identification with AutoGluon
This model was trained using AutoGluon's AutoML capabilities for sign identification. Performance not good enough because of the limited amount of data (only 30 images).
Model Description
- Framework: AutoGluon MultiModal
- Task: Multi-class image classification (N classes)
- Dataset: ecopus/sign_identification
- Architecture: ResNet18 (
timm_image) - Training:
medium_qualitypreset
Performance
| Metric | Validation | Test |
|---|---|---|
| Accuracy | 0.833 | 0.571 |
| F1 Score (Weighted) | 0.829 | 0.571 |
Usage
Download and Load Model (Recommended β Native Directory)
from autogluon.multimodal import MultiModalPredictor
from huggingface_hub import hf_hub_download
import zipfile
import os
# Download the zipped predictor directory
zip_path = hf_hub_download(
repo_id="yusenthebot/sign-identification-autogluon",
filename="autogluon_sign_predictor_dir.zip"
)
# Extract
extract_dir = "predictor_dir"
os.makedirs(extract_dir, exist_ok=True)
with zipfile.ZipFile(zip_path, "r") as zf:
zf.extractall(extract_dir)
# Load predictor
predictor = MultiModalPredictor.load(extract_dir)
# Predict (replace `your_dataframe` with a pandas DataFrame that matches training schema)
# predictions = predictor.predict(your_dataframe)
Dataset used to train yusenthebot/sign-identification-autogluon
Spaces using yusenthebot/sign-identification-autogluon 2
Evaluation results
- Test Accuracy on Sign Identificationself-reported0.833
- Test F1 Score (Weighted) on Sign Identificationself-reported0.829