metadata
library_name: autogluon
tags:
- image-classification
- autogluon
- automl
- sign-identification
datasets:
- ecopus/sign_identification
metrics:
- accuracy
- f1
model-index:
- name: sign-identification-autogluon
results:
- task:
type: image-classification
name: Image Classification
dataset:
type: ecopus/sign_identification
name: Sign Identification
metrics:
- type: accuracy
value: 0.833
name: Test Accuracy
- type: f1
value: 0.829
name: Test F1 Score (Weighted)
Sign Identification with AutoGluon
This model was trained using AutoGluon's AutoML capabilities for sign identification. Performance not good enough because of the limited amount of data (only 30 images).
Model Description
- Framework: AutoGluon MultiModal
- Task: Multi-class image classification (N classes)
- Dataset: ecopus/sign_identification
- Architecture: ResNet18 (
timm_image) - Training:
medium_qualitypreset
Performance
| Metric | Validation | Test |
|---|---|---|
| Accuracy | 0.833 | 0.571 |
| F1 Score (Weighted) | 0.829 | 0.571 |
Usage
Download and Load Model (Recommended — Native Directory)
from autogluon.multimodal import MultiModalPredictor
from huggingface_hub import hf_hub_download
import zipfile
import os
# Download the zipped predictor directory
zip_path = hf_hub_download(
repo_id="yusenthebot/sign-identification-autogluon",
filename="autogluon_sign_predictor_dir.zip"
)
# Extract
extract_dir = "predictor_dir"
os.makedirs(extract_dir, exist_ok=True)
with zipfile.ZipFile(zip_path, "r") as zf:
zf.extractall(extract_dir)
# Load predictor
predictor = MultiModalPredictor.load(extract_dir)
# Predict (replace `your_dataframe` with a pandas DataFrame that matches training schema)
# predictions = predictor.predict(your_dataframe)