|
|
--- |
|
|
library_name: autogluon |
|
|
tags: |
|
|
- image-classification |
|
|
- autogluon |
|
|
- automl |
|
|
- sign-identification |
|
|
datasets: |
|
|
- ecopus/sign_identification |
|
|
metrics: |
|
|
- accuracy |
|
|
- f1 |
|
|
model-index: |
|
|
- name: sign-identification-autogluon |
|
|
results: |
|
|
- task: |
|
|
type: image-classification |
|
|
name: Image Classification |
|
|
dataset: |
|
|
type: ecopus/sign_identification |
|
|
name: Sign Identification |
|
|
metrics: |
|
|
- type: accuracy |
|
|
value: 0.833 |
|
|
name: Test Accuracy |
|
|
- type: f1 |
|
|
value: 0.829 |
|
|
name: Test F1 Score (Weighted) |
|
|
--- |
|
|
|
|
|
# Sign Identification with AutoGluon |
|
|
|
|
|
This model was trained using AutoGluon's AutoML capabilities for sign identification. |
|
|
Performance not good enough because of the limited amount of data (only 30 images). |
|
|
|
|
|
|
|
|
## Model Description |
|
|
|
|
|
- **Framework**: AutoGluon MultiModal |
|
|
- **Task**: Multi-class image classification (N classes) |
|
|
- **Dataset**: [ecopus/sign_identification](https://huggingface.co/datasets/ecopus/sign_identification) |
|
|
- **Architecture**: ResNet18 (`timm_image`) |
|
|
- **Training**: `medium_quality` preset |
|
|
|
|
|
## Performance |
|
|
|
|
|
| Metric | Validation | Test | |
|
|
|--------|------------|------| |
|
|
| Accuracy | 0.833 | 0.571 | |
|
|
| F1 Score (Weighted) | 0.829 | 0.571 | |
|
|
|
|
|
|
|
|
## Usage |
|
|
|
|
|
### Download and Load Model (Recommended — Native Directory) |
|
|
|
|
|
```python |
|
|
from autogluon.multimodal import MultiModalPredictor |
|
|
from huggingface_hub import hf_hub_download |
|
|
import zipfile |
|
|
import os |
|
|
|
|
|
# Download the zipped predictor directory |
|
|
zip_path = hf_hub_download( |
|
|
repo_id="yusenthebot/sign-identification-autogluon", |
|
|
filename="autogluon_sign_predictor_dir.zip" |
|
|
) |
|
|
|
|
|
# Extract |
|
|
extract_dir = "predictor_dir" |
|
|
os.makedirs(extract_dir, exist_ok=True) |
|
|
with zipfile.ZipFile(zip_path, "r") as zf: |
|
|
zf.extractall(extract_dir) |
|
|
|
|
|
# Load predictor |
|
|
predictor = MultiModalPredictor.load(extract_dir) |
|
|
|
|
|
# Predict (replace `your_dataframe` with a pandas DataFrame that matches training schema) |
|
|
# predictions = predictor.predict(your_dataframe) |
|
|
|