|
|
--- |
|
|
library_name: peft |
|
|
license: apache-2.0 |
|
|
base_model: TinyLlama/TinyLlama-1.1B-Chat-v1.0 |
|
|
tags: |
|
|
- generated_from_trainer |
|
|
model-index: |
|
|
- name: tinyllama-lora-fast (Bangla Newspaper Model) |
|
|
results: [] |
|
|
datasets: |
|
|
- 25Iqbal/BanglaNewspaperDataset |
|
|
language: |
|
|
- bn |
|
|
- en |
|
|
pipeline_tag: sentence-similarity |
|
|
--- |
|
|
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
|
|
# tinyllama-lora-fast |
|
|
Trained primarily on Prothom Alo news data, this model naturally writes in that newspaper’s concise, reportorial Bangla style. |
|
|
|
|
|
This model is a fine-tuned version of [TinyLlama/TinyLlama-1.1B-Chat-v1.0](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0) Bangla Newspaper Dataset. |
|
|
The single goal: enable fast training and low VRAM usage—even on small GPUs or TPUs.Use Dynamic Padding + Token Budget for low Gpu And Tpu |
|
|
It achieves the following results on the evaluation set: |
|
|
- Loss: 0.8744 |
|
|
|
|
|
## Model description |
|
|
|
|
|
|
|
|
Base model: TinyLlama/TinyLlama-1.1B-Chat-v1.0 |
|
|
|
|
|
Adapter: PEFT-LoRA (r=16, alpha=32, dropout=0.05, bias=none) |
|
|
|
|
|
Target modules: q_proj, k_proj, v_proj, o_proj, gate_proj, up_proj, down_proj |
|
|
|
|
|
Context length (train max): MAX_LEN=768 |
|
|
|
|
|
Optimization: AdamW (lr≈3e-5, warmup≈0.03, weight_decay≈0.05) |
|
|
|
|
|
Batching: length-based bucketing + dynamic padding |
|
|
|
|
|
Precision: fp16 inference-ready (training setup Kaggle/Colab-friendly) |
|
|
|
|
|
Decoding (low hallucination preset): temperature=0.0, do_sample=False, no_repeat_ngram_size=4, repetition_penalty≈1.1–1.15 |
|
|
|
|
|
## Intended uses & limitations |
|
|
|
|
|
More information needed |
|
|
|
|
|
## Training and evaluation data |
|
|
|
|
|
More information needed |
|
|
|
|
|
## Training procedure |
|
|
|
|
|
### Training hyperparameters |
|
|
|
|
|
The following hyperparameters were used during training: |
|
|
- learning_rate: 3e-05 |
|
|
- train_batch_size: 2 |
|
|
- eval_batch_size: 2 |
|
|
- seed: 42 |
|
|
- gradient_accumulation_steps: 2 |
|
|
- total_train_batch_size: 4 |
|
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
|
- lr_scheduler_type: cosine |
|
|
- lr_scheduler_warmup_ratio: 0.03 |
|
|
- num_epochs: 2 |
|
|
- mixed_precision_training: Native AMP |
|
|
|
|
|
### Training results |
|
|
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|
|:-------------:|:------:|:----:|:---------------:| |
|
|
| 1.0752 | 0.1111 | 200 | 1.0674 | |
|
|
| 1.0248 | 0.2222 | 400 | 1.0167 | |
|
|
| 0.9839 | 0.3333 | 600 | 0.9843 | |
|
|
| 0.9479 | 0.4444 | 800 | 0.9620 | |
|
|
| 0.9478 | 0.5556 | 1000 | 0.9457 | |
|
|
| 0.914 | 0.6667 | 1200 | 0.9318 | |
|
|
| 0.9329 | 0.7778 | 1400 | 0.9182 | |
|
|
| 0.8929 | 0.8889 | 1600 | 0.9104 | |
|
|
| 0.911 | 1.0 | 1800 | 0.9005 | |
|
|
| 0.869 | 1.1111 | 2000 | 0.8949 | |
|
|
| 0.8873 | 1.2222 | 2200 | 0.8892 | |
|
|
| 0.8551 | 1.3333 | 2400 | 0.8848 | |
|
|
| 0.8543 | 1.4444 | 2600 | 0.8812 | |
|
|
| 0.8741 | 1.5556 | 2800 | 0.8779 | |
|
|
| 0.8652 | 1.6667 | 3000 | 0.8760 | |
|
|
| 0.8534 | 1.7778 | 3200 | 0.8751 | |
|
|
| 0.8378 | 1.8889 | 3400 | 0.8745 | |
|
|
| 0.8514 | 2.0 | 3600 | 0.8744 | |
|
|
|
|
|
|
|
|
### Framework versions |
|
|
|
|
|
- PEFT 0.12.0 |
|
|
- Transformers 4.45.2 |
|
|
- Pytorch 2.6.0+cu124 |
|
|
- Datasets 4.1.1 |
|
|
- Tokenizers 0.20.3 |