Datasets:
Tasks:
Token Classification
Modalities:
Text
Formats:
parquet
Sub-tasks:
named-entity-recognition
Languages:
English
Size:
1K - 10K
ArXiv:
License:
| annotations_creators: | |
| - expert-generated | |
| language_creators: | |
| - found | |
| language: | |
| - en | |
| license: | |
| - other | |
| multilinguality: | |
| - monolingual | |
| size_categories: | |
| - 10K<n<100K | |
| source_datasets: | |
| - original | |
| task_categories: | |
| - token-classification | |
| task_ids: | |
| - named-entity-recognition | |
| paperswithcode_id: crossner | |
| pretty_name: CrossNER-SCIENCE | |
| dataset_info: | |
| features: | |
| - name: tokens | |
| sequence: string | |
| - name: ner_tags | |
| sequence: | |
| class_label: | |
| names: | |
| "0": O | |
| "1": B-scientist | |
| "2": I-scientist | |
| "3": B-person | |
| "4": I-person | |
| "5": B-university | |
| "6": I-university | |
| "7": B-organisation | |
| "8": I-organisation | |
| "9": B-country | |
| "10": I-country | |
| "11": B-location | |
| "12": I-location | |
| "13": B-discipline | |
| "14": I-discipline | |
| "15": B-enzyme | |
| "16": I-enzyme | |
| "17": B-protein | |
| "18": I-protein | |
| "19": B-chemicalelement | |
| "20": I-chemicalelement | |
| "21": B-chemicalcompound | |
| "22": I-chemicalcompound | |
| "23": B-astronomicalobject | |
| "24": I-astronomicalobject | |
| "25": B-academicjournal | |
| "26": I-academicjournal | |
| "27": B-event | |
| "28": I-event | |
| "29": B-theory | |
| "30": I-theory | |
| "31": B-award | |
| "32": I-award | |
| "33": B-misc | |
| "34": I-misc | |
| splits: | |
| - name: train | |
| num_bytes: 20000 | |
| num_examples: 200 | |
| - name: validation | |
| num_bytes: 45000 | |
| num_examples: 450 | |
| - name: test | |
| num_bytes: 54300 | |
| num_examples: 543 | |
| # CrossNER SCIENCE Dataset | |
| An NER dataset for cross-domain evaluation, [read more](https://arxiv.org/abs/2012.04373). | |
| This split contains labeled data from the SCIENCE domain. | |
| ## Features | |
| - **tokens**: A list of words in the sentence | |
| - **ner_tags**: A list of NER labels (as integers) corresponding to each token | |
| ## Label Mapping | |
| The dataset uses the following 35 labels: | |
| | Index | Label | | |
| |-------|-------| | |
| | 0 | O | | |
| | 1 | B-scientist | | |
| | 2 | I-scientist | | |
| | 3 | B-person | | |
| | 4 | I-person | | |
| | 5 | B-university | | |
| | 6 | I-university | | |
| | 7 | B-organisation | | |
| | 8 | I-organisation | | |
| | 9 | B-country | | |
| | 10 | I-country | | |
| | 11 | B-location | | |
| | 12 | I-location | | |
| | 13 | B-discipline | | |
| | 14 | I-discipline | | |
| | 15 | B-enzyme | | |
| | 16 | I-enzyme | | |
| | 17 | B-protein | | |
| | 18 | I-protein | | |
| | 19 | B-chemicalelement | | |
| | 20 | I-chemicalelement | | |
| | 21 | B-chemicalcompound | | |
| | 22 | I-chemicalcompound | | |
| | 23 | B-astronomicalobject | | |
| | 24 | I-astronomicalobject | | |
| | 25 | B-academicjournal | | |
| | 26 | I-academicjournal | | |
| | 27 | B-event | | |
| | 28 | I-event | | |
| | 29 | B-theory | | |
| | 30 | I-theory | | |
| | 31 | B-award | | |
| | 32 | I-award | | |
| | 33 | B-misc | | |
| | 34 | I-misc | | |
| ## Usage | |
| ```python | |
| from datasets import load_dataset | |
| dataset = load_dataset("eesuhn/crossner-science") | |
| ``` | |