bniladridas
Update README: rebrand to harpertokenSysMon, remove noise and emojis, add contact email
08d09a1
| title: harpertokenSysMon Dataset | |
| tags: | |
| - system-monitoring | |
| - time-series | |
| - anomaly-detection | |
| - predictive-maintenance | |
| - macOS | |
| license: mit | |
| language: | |
| - en | |
| # harpertokenSysMon Dataset | |
| ## Dataset Summary | |
| This open-source dataset captures real-time system metrics from macOS for time-series analysis, anomaly detection, and predictive maintenance. | |
| ## Dataset Features | |
| - OS Compatibility: macOS | |
| - Data Collection Interval: 1-5 seconds | |
| - Total Storage Limit: 4GB | |
| - File Format: CSV & Parquet | |
| - Data Fields: | |
| - `timestamp`: Date and time of capture | |
| - `cpu_usage`: CPU usage percentage per core | |
| - `memory_used_mb`: RAM usage in MB | |
| - `disk_read_mb`: Disk read in MB | |
| - `disk_write_mb`: Disk write in MB | |
| - `net_sent_mb`: Network upload in MB | |
| - `net_recv_mb`: Network download in MB | |
| - `battery_status`: Battery percentage (Mac only) | |
| - `cpu_temp`: CPU temperature in °C | |
| ## Usage Examples | |
| ### 1. Load in Python | |
| ```python | |
| from datasets import load_dataset | |
| dataset = load_dataset("harpertoken/harpertokenSysMon") | |
| df = dataset["train"].to_pandas() | |
| print(df.head()) | |
| ``` | |
| ### 2. Train an Anomaly Detection Model | |
| ```python | |
| from sklearn.ensemble import IsolationForest | |
| # Convert time-series to numerical format | |
| df["cpu_usage_avg"] = df["cpu_usage"].apply(lambda x: sum(x) / len(x)) | |
| # Train model | |
| model = IsolationForest(contamination=0.05) | |
| model.fit(df[["cpu_usage_avg", "memory_used_mb", "disk_read_mb", "disk_write_mb"]]) | |
| # Predict anomalies | |
| df["anomaly"] = model.predict(df[["cpu_usage_avg", "memory_used_mb", "disk_read_mb", "disk_write_mb"]]) | |
| ``` | |
| ## Potential Use Cases | |
| AI Fine-Tuning for real-time system monitoring models | |
| Time-Series Forecasting of CPU & memory usage | |
| Anomaly Detection for overheating and system failures | |
| Predictive Maintenance for proactive issue detection | |
| ## Licensing | |
| - License: MIT | |
| ## Contact | |
| For questions or feedback, please contact [email protected] | |