nightmedia's picture
Update README.md
32284fc verified
---
language:
- en
library_name: mlx
tags:
- qwen-coder
- MOE
- pruning
- compression
- mlx
license: apache-2.0
name: cerebras/Qwen3-Coder-REAP-25B-A3B
description: 'This model was obtained by uniformly pruning 20% of experts in Qwen3-Coder-30B-A3B-Instruct
using the REAP method.
'
readme: 'https://huggingface.co/cerebras/Qwen3-Coder-REAP-25B-A3B/main/README.md
'
license_link: https://huggingface.co/cerebras/Qwen3-Coder-REAP-25B-A3B/blob/main/LICENSE
pipeline_tag: text-generation
base_model: cerebras/Qwen3-Coder-REAP-25B-A3B
---
# Qwen3-Coder-REAP-25B-A3B-qx64-hi-mlx
The regular Deckard(qx) formula uses embeddings at the same bit as the data stores, in this case 4 bit.
The head and select attention paths are enhanced to 6 bit, and the model is quantized with group size 32(hi).
There is an updated model: [Qwen3-Coder-REAP-25B-A3B-qx65x-hi-mlx](https://huggingface.co/nightmedia/Qwen3-Coder-REAP-25B-A3B-qx65x-hi-mlx) that uses embeddings at 6 bit and a base of 5 bit, and should perform slightly better on long context.
Metrics coming soon.
-G
This model [Qwen3-Coder-REAP-25B-A3B-qx64-hi-mlx](https://huggingface.co/nightmedia/Qwen3-Coder-REAP-25B-A3B-qx64-hi-mlx) was
converted to MLX format from [cerebras/Qwen3-Coder-REAP-25B-A3B](https://huggingface.co/cerebras/Qwen3-Coder-REAP-25B-A3B)
using mlx-lm version **0.28.3**.
## Use with mlx
```bash
pip install mlx-lm
```
```python
from mlx_lm import load, generate
model, tokenizer = load("Qwen3-Coder-REAP-25B-A3B-qx64-hi-mlx")
prompt = "hello"
if tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)
```