|
|
--- |
|
|
language: |
|
|
- en |
|
|
library_name: mlx |
|
|
tags: |
|
|
- qwen-coder |
|
|
- MOE |
|
|
- pruning |
|
|
- compression |
|
|
- mlx |
|
|
license: apache-2.0 |
|
|
name: cerebras/Qwen3-Coder-REAP-25B-A3B |
|
|
description: 'This model was obtained by uniformly pruning 20% of experts in Qwen3-Coder-30B-A3B-Instruct |
|
|
using the REAP method. |
|
|
|
|
|
' |
|
|
readme: 'https://huggingface.co/cerebras/Qwen3-Coder-REAP-25B-A3B/main/README.md |
|
|
|
|
|
' |
|
|
license_link: https://huggingface.co/cerebras/Qwen3-Coder-REAP-25B-A3B/blob/main/LICENSE |
|
|
pipeline_tag: text-generation |
|
|
base_model: cerebras/Qwen3-Coder-REAP-25B-A3B |
|
|
--- |
|
|
|
|
|
# Qwen3-Coder-REAP-25B-A3B-qx64-hi-mlx |
|
|
|
|
|
The regular Deckard(qx) formula uses embeddings at the same bit as the data stores, in this case 4 bit. |
|
|
|
|
|
The head and select attention paths are enhanced to 6 bit, and the model is quantized with group size 32(hi). |
|
|
|
|
|
There is an updated model: [Qwen3-Coder-REAP-25B-A3B-qx65x-hi-mlx](https://huggingface.co/nightmedia/Qwen3-Coder-REAP-25B-A3B-qx65x-hi-mlx) that uses embeddings at 6 bit and a base of 5 bit, and should perform slightly better on long context. |
|
|
|
|
|
Metrics coming soon. |
|
|
|
|
|
-G |
|
|
|
|
|
This model [Qwen3-Coder-REAP-25B-A3B-qx64-hi-mlx](https://huggingface.co/nightmedia/Qwen3-Coder-REAP-25B-A3B-qx64-hi-mlx) was |
|
|
converted to MLX format from [cerebras/Qwen3-Coder-REAP-25B-A3B](https://huggingface.co/cerebras/Qwen3-Coder-REAP-25B-A3B) |
|
|
using mlx-lm version **0.28.3**. |
|
|
|
|
|
## Use with mlx |
|
|
|
|
|
```bash |
|
|
pip install mlx-lm |
|
|
``` |
|
|
|
|
|
```python |
|
|
from mlx_lm import load, generate |
|
|
|
|
|
model, tokenizer = load("Qwen3-Coder-REAP-25B-A3B-qx64-hi-mlx") |
|
|
|
|
|
prompt = "hello" |
|
|
|
|
|
if tokenizer.chat_template is not None: |
|
|
messages = [{"role": "user", "content": prompt}] |
|
|
prompt = tokenizer.apply_chat_template( |
|
|
messages, add_generation_prompt=True |
|
|
) |
|
|
|
|
|
response = generate(model, tokenizer, prompt=prompt, verbose=True) |
|
|
``` |
|
|
|