Spaces:
Sleeping
Sleeping
File size: 7,640 Bytes
cd15e92 20d949d 4b49fbe 41dd0cf cd15e92 5e48cc5 cd15e92 5e48cc5 cd15e92 e6a7fa6 20d949d e6a7fa6 20d949d 5e48cc5 e358772 e6a7fa6 cd15e92 e6a7fa6 cd15e92 302476b 7660c81 302476b cd15e92 e6a7fa6 af231f5 e6a7fa6 e59d2a7 cd15e92 e6a7fa6 cd15e92 e6a7fa6 cd15e92 af231f5 7660c81 e358772 e6a7fa6 af231f5 e59d2a7 7660c81 e6a7fa6 20d949d e6a7fa6 20d949d 41dd0cf 7660c81 e6a7fa6 20d949d 7660c81 20d949d 7660c81 20d949d 7660c81 4b49fbe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 |
import logging
import textwrap
from typing import Literal, Optional
import gradio as gr
import outlines
import pandas as pd
import spaces
import torch
from peft import PeftConfig, PeftModel
from pydantic import BaseModel, ConfigDict
from transformers import (
AutoModelForCausalLM,
AutoModelForSequenceClassification,
AutoTokenizer,
BitsAndBytesConfig,
)
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
MODEL_ID = "rshwndsz/ft-longformer-base-4096"
DEVICE_MAP = "auto"
QUANTIZATION_BITS = 4
TEMPERATURE = 0.0
AVAILABLE_MODELS = [
"rshwndsz/ft-longformer-base-4096",
"rshwndsz/ft-hermes-3-llama-3.2-3b",
"rshwndsz/ft-phi-3.5-mini-instruct",
"rshwndsz/ft-mistral-7b-v0.3-instruct",
"rshwndsz/ft-phi-4",
"rshwndsz/ft_paraphrased-hermes-3-llama-3.2-3b",
"rshwndsz/ft_paraphrased-longformer-base-4096",
"rshwndsz/ft_paraphrased-phi-3.5-mini-instruct",
"rshwndsz/ft_paraphrased-mistral-7b-v0.3-instruct",
"rshwndsz/ft_paraphrased-phi-4",
]
DEFAULT_MODEL_ID = AVAILABLE_MODELS[0]
# Exact SYSTEM_PROMPT from training data
SYSTEM_PROMPT = textwrap.dedent("""
You are an assistant tasked with grading answers to a mind reading ability test. You will be provided with the following information:
1. A story that was presented to participants as context
2. The question that participants were asked to answer
3. A grading scheme to evaluate the answers (Correct Responses:1, incorrect response:0, Incomplete response:0, Irrelevant:0)
4. Grading examples
5. A participant answer
Your task is to grade each answer according to the grading scheme. For each answer, you should:
1. Carefully read and understand the answer and compare it to the grading criteria
2. Assigning an score 1 or 0 for each answer.
""").strip()
# Exact PROMPT_TEMPLATE from training data
PROMPT_TEMPLATE = textwrap.dedent("""
<Story>
{story}
</Story>
<Question>
{question}
</Question>
<GradingScheme>
{grading_scheme}
</GradingScheme>
<Answer>
{answer}
</Answer>
Score:""").strip()
class ResponseModel(BaseModel):
model_config = ConfigDict(extra="forbid")
score: Literal["0", "1"]
def get_outlines_model(
model_id: str, device_map: str = "auto", quantization_bits: Optional[int] = 4
):
if quantization_bits == 4:
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_use_double_quant=True,
bnb_4bit_compute_dtype=torch.bfloat16,
)
elif quantization_bits == 8:
quantization_config = BitsAndBytesConfig(load_in_8bit=True)
else:
quantization_config = None
if "longformer" in model_id:
hf_model = AutoModelForSequenceClassification.from_pretrained(model_id)
hf_tokenizer = AutoTokenizer.from_pretrained(model_id)
return hf_model, hf_tokenizer
peft_config = PeftConfig.from_pretrained(model_id)
base_model_id = peft_config.base_model_name_or_path
base_model = AutoModelForCausalLM.from_pretrained(
base_model_id,
device_map=device_map,
quantization_config=quantization_config,
)
hf_model = PeftModel.from_pretrained(base_model, model_id)
hf_tokenizer = AutoTokenizer.from_pretrained(
base_model_id, use_fast=True, clean_up_tokenization_spaces=True
)
# Updated for new outlines API
model = outlines.models.Transformers(hf_model, hf_tokenizer)
return model
def format_prompt(story: str, question: str, grading_scheme: str, answer: str) -> str:
# Exact format used during training
prompt = PROMPT_TEMPLATE.format(
story=story.strip(),
question=question.strip(),
grading_scheme=grading_scheme.strip(),
answer=answer.strip(),
)
# Exact concatenation used during training
full_prompt = SYSTEM_PROMPT + "\n" + prompt
return full_prompt
@spaces.GPU
def label_single_response_with_model(model_id, story, question, criteria, response):
prompt = format_prompt(story, question, criteria, response)
if "longformer" in model_id:
model, tokenizer = get_outlines_model(model_id, DEVICE_MAP, QUANTIZATION_BITS)
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, padding=True)
with torch.no_grad():
logits = model(**inputs).logits
predicted_class = torch.argmax(logits, dim=1).item()
return str(predicted_class)
else:
model = get_outlines_model(model_id, DEVICE_MAP, QUANTIZATION_BITS)
# Updated for new outlines API
generator = outlines.generate.json(model, ResponseModel)
result = generator(prompt)
return result.score
@spaces.GPU
def label_multi_responses_with_model(
model_id, story, question, criteria, response_file
):
df = pd.read_csv(response_file.name)
assert "response" in df.columns, "CSV must contain a 'response' column."
prompts = [
format_prompt(story, question, criteria, resp) for resp in df["response"]
]
if "longformer" in model_id:
model, tokenizer = get_outlines_model(model_id, DEVICE_MAP, QUANTIZATION_BITS)
inputs = tokenizer(prompts, return_tensors="pt", truncation=True, padding=True)
with torch.no_grad():
logits = model(**inputs).logits
predicted_classes = torch.argmax(logits, dim=1).tolist()
scores = [str(cls) for cls in predicted_classes]
else:
model = get_outlines_model(model_id, DEVICE_MAP, QUANTIZATION_BITS)
# Updated for new outlines API
generator = outlines.generate.json(model, ResponseModel)
results = generator(prompts)
scores = [r.score for r in results]
df["score"] = scores
return df
def single_response_ui(model_id):
return gr.Interface(
fn=lambda story, question, criteria, response: label_single_response_with_model(
model_id.value, story, question, criteria, response
),
inputs=[
gr.Textbox(label="Story", lines=6),
gr.Textbox(label="Question", lines=2),
gr.Textbox(label="Criteria (Grading Scheme)", lines=4),
gr.Textbox(label="Single Response", lines=3),
],
outputs=gr.Textbox(label="Score"),
live=False,
)
def multi_response_ui(model_id):
return gr.Interface(
fn=lambda story,
question,
criteria,
response_file: label_multi_responses_with_model(
model_id.value, story, question, criteria, response_file
),
inputs=[
gr.Textbox(label="Story", lines=6),
gr.Textbox(label="Question", lines=2),
gr.Textbox(label="Criteria (Grading Scheme)", lines=4),
gr.File(
label="Responses CSV (.csv with 'response' column)", file_types=[".csv"]
),
],
outputs=gr.Dataframe(label="Labeled Responses", type="pandas"),
live=False,
)
with gr.Blocks(title="Zero-Shot Evaluation Grader") as iface:
model_selector = gr.Dropdown(
label="Select Model",
choices=AVAILABLE_MODELS,
value=AVAILABLE_MODELS[0],
)
selected_model_id = gr.State(value=DEFAULT_MODEL_ID)
def update_model_id(choice):
return choice
model_selector.change(
fn=update_model_id, inputs=model_selector, outputs=selected_model_id
)
with gr.Tabs():
with gr.Tab("Single Response"):
single_response_ui(selected_model_id)
with gr.Tab("Batch (CSV)"):
multi_response_ui(selected_model_id)
if __name__ == "__main__":
iface.launch(share=True)
|