File size: 21,256 Bytes
2f79879 eaca108 fbcbf94 b9f142a ad5b346 b9f142a e08f161 eaca108 f237c31 eaca108 b9f142a eaca108 2f79879 eaca108 2f79879 eaca108 c4d7934 31c8268 ea89378 2f79879 465688a 2f79879 465688a b9f142a fbcbf94 2f79879 1fd95dc 2f79879 5849e07 a7d0aad c4d7934 ea89378 f237c31 19ede8f a6e10ac f237c31 a7d0aad b5eed77 ea89378 2f79879 eaca108 a7d0aad eaca108 ea89378 ef6fc50 5849e07 ea89378 205758b 9a2c640 ea89378 eaca108 ea89378 eaca108 ea89378 a6e10ac f237c31 e97f266 9a2c640 5b96cf3 0ad1012 9a2c640 5b96cf3 09ddc41 ea89378 2f79879 7b3e756 fbcbf94 9a2c640 ea89378 fbcbf94 7b3e756 ea89378 2f79879 eaca108 2f79879 f237c31 1fd95dc f237c31 2f79879 eaca108 f237c31 eaca108 2f79879 eaca108 50157f0 ea89378 b9f142a 9a2c640 b9f142a 50157f0 ea89378 b9f142a 50157f0 b9f142a 50157f0 bc86327 ad5b346 b9f142a 9a2c640 b9f142a ad5b346 b9f142a 9a2c640 ad5b346 9a2c640 ad5b346 9a2c640 b9f142a 9a2c640 ad5b346 bc86327 b9f142a 9a2c640 50157f0 b9f142a 9a2c640 b9f142a 9a2c640 b9f142a 50157f0 b9f142a 50157f0 31c8268 50157f0 b9f142a ad5b346 9a2c640 b9f142a 9a2c640 b9f142a 9a2c640 b9f142a 9a2c640 b9f142a 9a2c640 b9f142a 9a2c640 b9f142a 9a2c640 b9f142a 9a2c640 b9f142a 9a2c640 b9f142a 9a2c640 b9f142a 9a2c640 b9f142a 9a2c640 b9f142a 9a2c640 b9f142a 9a2c640 b9f142a 9a2c640 b9f142a 9a2c640 b9f142a 9a2c640 b9f142a 9a2c640 c4d7934 0ad1012 b9f142a bc86327 ea89378 b9f142a ad5b346 b9f142a ad5b346 b9f142a ad5b346 50157f0 31c8268 b2aba7d 205758b c4d7934 205758b c4d7934 205758b 2f79879 a6e10ac b9f142a c0ca604 d5baad4 a6e10ac f237c31 a122f1b 11020f4 b9f142a 19ede8f f1b994a b9f142a f1b994a b9f142a 5849e07 2f79879 b9f142a c4d7934 11020f4 eaca108 b9f142a 50157f0 b9f142a ad5b346 b9f142a 50157f0 b9f142a 9a2c640 50157f0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 |
"""
MedRAX Application Main Module
This module serves as the entry point for the MedRAX medical imaging AI assistant.
It provides functionality to initialize an AI agent with various medical imaging tools
and launch a web interface for interacting with the system.
The system uses OpenAI's language models for reasoning and can be configured
with different model weights, tools, and parameters.
"""
import warnings
import os
import argparse
from pyngrok import ngrok
import threading
import uvicorn
from typing import Dict, List, Optional, Any
from dotenv import load_dotenv
from transformers import logging
from langgraph.checkpoint.memory import MemorySaver
from medrax.models import ModelFactory
from interface import create_demo
from api import create_api
from medrax.agent import *
from medrax.tools import *
from medrax.utils import *
# Suppress unnecessary warnings and logging
warnings.filterwarnings("ignore")
logging.set_verbosity_error()
# Load environment variables from .env file
_ = load_dotenv()
def resolve_medgemma_api_url_from_value(value: Optional[str]) -> str:
"""Resolve the MedGemma API base URL using CLI value, env var, and SLURM-aware fallback.
Resolution order:
1) Explicit provided value (e.g., CLI flag)
2) MEDGEMMA_API_URL environment variable
3) If on SLURM, require explicit URL (raise)
4) Otherwise, default to localhost for single-box setups
"""
if value:
return value
env_url = os.getenv("MEDGEMMA_API_URL")
if env_url:
return env_url
if os.getenv("SLURM_JOB_ID") or os.getenv("SLURM_NODEID"):
raise RuntimeError(
"MEDGEMMA_API_URL not set and --medgemma-api-url not provided. "
"On SLURM, the client usually runs on a different node, "
"so you must point to the server’s reachable IP, e.g. http://<node-ip>:8002"
)
return "http://127.0.0.1:8002"
def resolve_medgemma_api_url(args) -> str:
"""Helper that reads from an argparse Namespace if available."""
return resolve_medgemma_api_url_from_value(getattr(args, "medgemma_api_url", None))
def resolve_auth_credentials(args) -> Optional[tuple]:
"""Resolve authentication credentials from CLI args or environment variables.
Resolution order:
1) Explicit --no-auth flag (returns None, no warnings)
2) Explicit --auth USERNAME PASSWORD (returns credentials tuple)
3) MEDRAX_AUTH_USERNAME and MEDRAX_AUTH_PASSWORD environment variables
4) Default to None with warning messages
Args:
args: Parsed command-line arguments
Returns:
Optional[tuple]: (username, password) tuple if auth is enabled, None otherwise
"""
if args.no_auth:
print("⚠️ Authentication disabled (public access)")
return None
if args.auth:
username, password = args.auth
print(f"✅ Authentication enabled for user: {username}")
return (username, password)
# Try to read from environment variables
auth_username = os.getenv("MEDRAX_AUTH_USERNAME")
auth_password = os.getenv("MEDRAX_AUTH_PASSWORD")
if auth_username and auth_password:
print(f"✅ Authentication enabled from environment for user: {auth_username}")
return (auth_username, auth_password)
# No auth specified anywhere - default to no auth with warning
print("⚠️ No authentication configured!")
print("⚠️ Running without authentication (public access)")
print("⚠️ To enable auth, either:")
print(" - Use --auth USERNAME PASSWORD")
print(" - Set MEDRAX_AUTH_USERNAME and MEDRAX_AUTH_PASSWORD in .env")
print(" - Or explicitly use --no-auth to suppress this warning")
return None
def initialize_agent(
prompt_file: str,
tools_to_use: Optional[List[str]] = None,
model_dir: str = "/model-weights",
temp_dir: str = "temp",
device: str = "cuda",
model: str = "gpt-4.1",
temperature: float = 1.0,
top_p: float = 0.95,
max_tokens: int = 5000,
rag_config: Optional[RAGConfig] = None,
model_kwargs: Dict[str, Any] = {},
system_prompt: str = "MEDICAL_ASSISTANT",
medgemma_api_url: Optional[str] = None,
):
"""Initialize the MedRAX agent with specified tools and configuration.
Args:
prompt_file (str): Path to file containing system prompts
tools_to_use (List[str], optional): List of tool names to initialize. If None, all tools are initialized.
model_dir (str, optional): Directory containing model weights. Defaults to "/model-weights".
temp_dir (str, optional): Directory for temporary files. Defaults to "temp".
device (str, optional): Device to run models on. Defaults to "cuda".
model (str, optional): Model to use. Defaults to "gpt-4o".
temperature (float, optional): Temperature for the model. Defaults to 0.7.
rag_config (RAGConfig, optional): Configuration for the RAG tool. Defaults to None.
model_kwargs (dict, optional): Additional keyword arguments for model.
system_prompt (str, optional): System prompt to use. Defaults to "MEDICAL_ASSISTANT".
debug (bool, optional): Whether to enable debug mode. Defaults to False.
Returns:
Tuple[Agent, Dict[str, BaseTool]]: Initialized agent and dictionary of tool instances
"""
# Load system prompts from file
prompts = load_prompts_from_file(prompt_file)
prompt = prompts[system_prompt]
all_tools = {
"TorchXRayVisionClassifierTool": lambda: TorchXRayVisionClassifierTool(device=device),
"ArcPlusClassifierTool": lambda: ArcPlusClassifierTool(cache_dir=model_dir, device=device),
"ChestXRaySegmentationTool": lambda: ChestXRaySegmentationTool(device=device),
"LlavaMedTool": lambda: LlavaMedTool(cache_dir=model_dir, device=device, load_in_8bit=True),
"CheXagentXRayVQATool": lambda: CheXagentXRayVQATool(cache_dir=model_dir, device=device),
"ChestXRayReportGeneratorTool": lambda: ChestXRayReportGeneratorTool(cache_dir=model_dir, device=device),
"XRayPhraseGroundingTool": lambda: XRayPhraseGroundingTool(
cache_dir=model_dir, temp_dir=temp_dir, load_in_8bit=True, device=device
),
"ChestXRayGeneratorTool": lambda: ChestXRayGeneratorTool(
model_path=f"{model_dir}/roentgen", temp_dir=temp_dir, device=device
),
"ImageVisualizerTool": lambda: ImageVisualizerTool(),
"DicomProcessorTool": lambda: DicomProcessorTool(temp_dir=temp_dir),
"MedicalRAGTool": lambda: RAGTool(config=rag_config),
"WebBrowserTool": lambda: WebBrowserTool(),
"DuckDuckGoSearchTool": lambda: DuckDuckGoSearchTool(),
"MedSAM2Tool": lambda: MedSAM2Tool(device=device, cache_dir=model_dir, temp_dir=temp_dir),
"MedGemmaVQATool": lambda: MedGemmaAPIClientTool(
cache_dir=model_dir,
device=device,
load_in_8bit=True,
api_url=resolve_medgemma_api_url_from_value(medgemma_api_url),
),
}
# Initialize only selected tools or all if none specified
tools_dict: Dict[str, BaseTool] = {}
if tools_to_use is None:
tools_to_use = []
for tool_name in tools_to_use:
if tool_name == "PythonSandboxTool":
try:
tools_dict["PythonSandboxTool"] = create_python_sandbox()
except Exception as e:
print(f"Error creating PythonSandboxTool: {e}")
print("Skipping PythonSandboxTool")
if tool_name in all_tools:
tools_dict[tool_name] = all_tools[tool_name]()
# Set up checkpointing for conversation state
checkpointer = MemorySaver()
# Create the language model using the factory
try:
llm = ModelFactory.create_model(
model_name=model, temperature=temperature, top_p=top_p, max_tokens=max_tokens, **model_kwargs
)
except ValueError as e:
print(f"Error creating language model: {e}")
print(f"Available model providers: {list(ModelFactory._model_providers.keys())}")
raise
agent = Agent(
llm,
tools=list(tools_dict.values()),
system_prompt=prompt,
checkpointer=checkpointer,
)
print("Agent initialized")
return agent, tools_dict
def run_gradio_interface(agent, tools_dict, host="0.0.0.0", port=8686,
auth=None, share=False):
"""
Run the Gradio web interface.
Args:
agent: The initialized MedRAX agent
tools_dict: Dictionary of available tools
host (str): Host to bind the server to
port (int): Port to run the server on
auth: Authentication credentials (tuple)
share (bool): Whether to create a shareable public link
"""
print(f"Starting Gradio interface on {host}:{port}")
if auth:
print(f"🔐 Authentication enabled for user: {auth[0]}")
else:
print("⚠️ Running without authentication (public access)")
if share:
print("🌍 Creating shareable public link (expires in 1 week)...")
demo = create_demo(agent, tools_dict)
# Prepare launch parameters
launch_kwargs = {
"server_name": host,
"server_port": port,
"share": share
}
if auth:
launch_kwargs["auth"] = auth
demo.launch(**launch_kwargs)
def run_api_server(agent, tools_dict, host="0.0.0.0", port=8585, public=False):
"""
Run the FastAPI server.
Args:
agent: The initialized MedRAX agent
tools_dict: Dictionary of available tools
host (str): Host to bind the server to
port (int): Port to run the server on
public (bool): Whether to expose via ngrok tunnel
"""
print(f"Starting API server on {host}:{port}")
if public:
try:
public_tunnel = ngrok.connect(port)
public_url = public_tunnel.public_url
print(
f"🌍 Public URL: {public_url}\n🌍 API Documentation: {public_url}/docs\n🌍 Share this URL with your friend!\n{'=' * 60}"
)
except ImportError:
print("⚠️ pyngrok not installed. Install with: pip install pyngrok\nRunning locally only...")
public = False
except Exception as e:
print(f"⚠️ Failed to create public tunnel: {e}\nRunning locally only...")
public = False
app = create_api(agent, tools_dict)
try:
uvicorn.run(app, host=host, port=port)
finally:
if public:
try:
ngrok.disconnect(public_tunnel.public_url)
ngrok.kill()
except:
pass
def parse_arguments():
"""Parse command line arguments."""
parser = argparse.ArgumentParser(description="MedRAX - Medical Reasoning Agent for Chest X-ray")
# Run mode
parser.add_argument(
"--mode",
choices=["gradio", "api", "both"],
default="gradio",
help="Run mode: 'gradio' for web interface, 'api' for REST API, 'both' for both services",
)
# Gradio interface options
parser.add_argument("--gradio-host", default="0.0.0.0", help="Gradio host address")
parser.add_argument("--gradio-port", type=int, default=8686, help="Gradio port")
parser.add_argument("--auth", nargs=2, metavar=("USERNAME", "PASSWORD"),
default=None,
help="Enable password authentication with specified username and password")
parser.add_argument("--no-auth", action="store_true",
help="Disable authentication (public access)")
parser.add_argument("--share", action="store_true",
help="Create a temporary shareable link (expires in 1 week)")
# API server options
parser.add_argument("--api-host", default="0.0.0.0", help="API host address")
parser.add_argument("--api-port", type=int, default=8000, help="API port")
parser.add_argument("--public", action="store_true", help="Make API publicly accessible via ngrok tunnel")
# Model and system configuration
parser.add_argument(
"--model-dir",
default="/model-weights",
help="Directory containing model weights (default: uses MODEL_WEIGHTS_DIR env var or '/model-weights')",
)
parser.add_argument(
"--device", default="cuda", help="Device to run models on (default: uses MEDRAX_DEVICE env var or 'cuda:1')"
)
parser.add_argument(
"--model",
default="gpt-4.1",
help="Model to use (default: gpt-4.1). Examples: gpt-4.1-2025-04-14, gemini-2.5-pro, gpt-5",
)
parser.add_argument("--temperature", type=float, default=1.0, help="Temperature for the model (default: 1.0)")
parser.add_argument("--temp-dir", default="temp2", help="Directory for temporary files (default: temp2)")
parser.add_argument(
"--prompt-file",
default="medrax/docs/system_prompts.txt",
help="Path to file containing system prompts (default: medrax/docs/system_prompts.txt)",
)
parser.add_argument(
"--system-prompt", default="MEDICAL_ASSISTANT", help="System prompt to use (default: MEDICAL_ASSISTANT)"
)
# RAG configuration
parser.add_argument(
"--rag-model", default="command-a-03-2025", help="Chat model for RAG responses (default: command-a-03-2025)"
)
parser.add_argument(
"--rag-embedding-model", default="embed-v4.0", help="Embedding model for RAG system (default: embed-v4.0)"
)
parser.add_argument(
"--rag-rerank-model", default="rerank-v3.5", help="Reranking model for RAG system (default: rerank-v3.5)"
)
parser.add_argument("--rag-temperature", type=float, default=0.3, help="Temperature for RAG model (default: 0.3)")
parser.add_argument("--pinecone-index", default="medrax2", help="Pinecone index name (default: medrax2)")
parser.add_argument("--chunk-size", type=int, default=1500, help="RAG chunk size (default: 1500)")
parser.add_argument("--chunk-overlap", type=int, default=300, help="RAG chunk overlap (default: 300)")
parser.add_argument("--retriever-k", type=int, default=3, help="Number of documents to retrieve (default: 3)")
parser.add_argument("--rag-docs-dir", default="rag_docs", help="Directory for RAG documents (default: rag_docs)")
# Tools configuration
parser.add_argument(
"--tools",
nargs="*",
help="Specific tools to enable (if not provided, uses default set). Available tools: "
+ "ImageVisualizerTool, DicomProcessorTool, MedSAM2Tool, ChestXRaySegmentationTool, "
+ "ChestXRayGeneratorTool, TorchXRayVisionClassifierTool, ArcPlusClassifierTool, "
+ "ChestXRayReportGeneratorTool, XRayPhraseGroundingTool, MedGemmaVQATool, "
+ "XRayVQATool, LlavaMedTool, MedicalRAGTool, WebBrowserTool, DuckDuckGoSearchTool, "
+ "PythonSandboxTool",
)
# MedGemma API configuration
parser.add_argument(
"--medgemma-api-url",
default=None,
help="MedGemma API base URL, e.g. http://127.0.0.1:8002 or http://<node-ip>:8002"
)
return parser.parse_args()
if __name__ == "__main__":
"""
This is the main entry point for the MedRAX application.
It initializes the agent with the selected tools and creates the demo/API.
"""
args = parse_arguments()
print(f"Starting MedRAX in {args.mode} mode...")
# Configure tools based on arguments
if args.tools is not None:
# Use tools specified via command line
selected_tools = args.tools
else:
# Use default tools selection
selected_tools = [
# Image Processing Tools
"ImageVisualizerTool", # For displaying images in the UI
# "DicomProcessorTool", # For processing DICOM medical image files
# Segmentation Tools
"MedSAM2Tool", # For advanced medical image segmentation using MedSAM2
"ChestXRaySegmentationTool", # For segmenting anatomical regions in chest X-rays
# Generation Tools
# "ChestXRayGeneratorTool", # For generating synthetic chest X-rays
# Classification Tools
"TorchXRayVisionClassifierTool", # For classifying chest X-ray images using TorchXRayVision
"ArcPlusClassifierTool", # For advanced chest X-ray classification using ArcPlus
# Report Generation Tools
"ChestXRayReportGeneratorTool", # For generating medical reports from X-rays
# Grounding Tools
"XRayPhraseGroundingTool", # For locating described features in X-rays
# VQA Tools
# "MedGemmaVQATool", # Google MedGemma VQA tool
"XRayVQATool", # For visual question answering on X-rays
# "LlavaMedTool", # For multimodal medical image understanding
# RAG Tools
"MedicalRAGTool", # For retrieval-augmented generation with medical knowledge
# Search Tools
# "WebBrowserTool", # For web browsing and search capabilities
"DuckDuckGoSearchTool", # For privacy-focused web search using DuckDuckGo
# Development Tools
# "PythonSandboxTool", # Add the Python sandbox tool
]
# Configure model directory and device
model_dir = args.model_dir or os.getenv("MODEL_WEIGHTS_DIR", "/model-weights")
device = args.device or os.getenv("MEDRAX_DEVICE", "cuda:0")
print(f"Using model directory: {model_dir}")
print(f"Using device: {device}")
print(f"Using model: {args.model}")
print(f"Selected tools: {selected_tools}")
print(f"Using system prompt: {args.system_prompt}")
# Set up authentication (reads from CLI, env vars, or requires explicit choice)
auth_credentials = resolve_auth_credentials(args)
# Setup the MedGemma environment if the MedGemmaVQATool is selected
medgemma_base_url_from_setup: Optional[str] = None
medgemma_api_url_effective: Optional[str] = args.medgemma_api_url
if "MedGemmaVQATool" in selected_tools:
# Launch server and capture its URL if no explicit URL/ENV provided
try:
if medgemma_api_url_effective is None and os.getenv("MEDGEMMA_API_URL") is None:
medgemma_base_url_from_setup = setup_medgemma_env(cache_dir=model_dir, device=device)
# If we auto-launched, use this URL unless overridden later
if medgemma_base_url_from_setup:
medgemma_api_url_effective = medgemma_base_url_from_setup
print(f"MedGemma API auto-launched at {medgemma_api_url_effective}")
else:
# Still ensure environment is set up; it will bind to provided host/port
setup_medgemma_env(cache_dir=model_dir, device=device)
except Exception as e:
print(f"Warning: Failed to launch MedGemma service automatically: {e}")
# Configure the Retrieval Augmented Generation (RAG) system
# This allows the agent to access and use medical knowledge documents
rag_config = RAGConfig(
model=args.rag_model,
embedding_model=args.rag_embedding_model,
rerank_model=args.rag_rerank_model,
temperature=args.rag_temperature,
pinecone_index_name=args.pinecone_index,
chunk_size=args.chunk_size,
chunk_overlap=args.chunk_overlap,
retriever_k=args.retriever_k,
local_docs_dir=args.rag_docs_dir,
huggingface_datasets=["VictorLJZ/medrax2"], # List of HuggingFace datasets to load
dataset_split="train", # Which split of the datasets to use
)
# Prepare any additional model-specific kwargs
model_kwargs = {}
agent, tools_dict = initialize_agent(
prompt_file=args.prompt_file,
tools_to_use=selected_tools,
model_dir=model_dir,
temp_dir=args.temp_dir,
device=device,
model=args.model,
temperature=args.temperature,
model_kwargs=model_kwargs,
rag_config=rag_config,
system_prompt=args.system_prompt,
medgemma_api_url=medgemma_api_url_effective,
)
# Launch based on selected mode
if args.mode == "gradio":
run_gradio_interface(
agent, tools_dict,
host=args.gradio_host,
port=args.gradio_port,
auth=auth_credentials,
share=args.share
)
elif args.mode == "api":
run_api_server(agent, tools_dict, args.api_host, args.api_port, args.public)
elif args.mode == "both":
# Run both services in separate threads
api_thread = threading.Thread(
target=run_api_server,
args=(agent, tools_dict, args.api_host, args.api_port, args.public)
)
api_thread.daemon = True
api_thread.start()
# Run Gradio in main thread with authentication and sharing
run_gradio_interface(
agent, tools_dict,
host=args.gradio_host,
port=args.gradio_port,
auth=auth_credentials,
share=args.share
)
|