|
|
--- |
|
|
language: |
|
|
- vi |
|
|
license: apache-2.0 |
|
|
tags: |
|
|
- sentence-transformers |
|
|
- sentence-similarity |
|
|
- feature-extraction |
|
|
- dense |
|
|
- generated_from_trainer |
|
|
- dataset_size:6066 |
|
|
- loss:MatryoshkaLoss |
|
|
- loss:MultipleNegativesRankingLoss |
|
|
base_model: splendor1811/BGE-base-banking-ONE-v0106 |
|
|
widget: |
|
|
- source_sentence: HUYNHDEANHKHOA COMPANY LIMITED |
|
|
sentences: |
|
|
- SHYH JIUH INDUSTRIAL CO.,LTD |
|
|
- KENG HIN ENGINEERING CO |
|
|
- CTTNHHTHIETKE MYTHUAT VA TINHOC HUYNHDEANHKHOA |
|
|
- source_sentence: YUEQING RONGSHENG ELECTRICAL APPLIANCES LTD. |
|
|
sentences: |
|
|
- RAUCH FRUCHTSÄFTE GMBH & CO OG |
|
|
- YUEQING RONGSHENG INTRODUCED ELECTRICAL APPLIANCES CO., LTD |
|
|
- BACH MY TRADING, SERVICES AND CONSTRUCTION COMPANY LIMITED |
|
|
- source_sentence: ZHENFA TEXTILE COMPANY, LIMITED |
|
|
sentences: |
|
|
- DATANI LOGISTICS COMPANY LIMITED |
|
|
- Quan Pham Electrical Equipment Co., Ltd. |
|
|
- ZHENFA TEXTILE CO., LIMITED |
|
|
- source_sentence: CONG TY TNHH KY THUAT VSI |
|
|
sentences: |
|
|
- CTCAD SERVICES TRADING COMPANY LIMITED |
|
|
- CHAKTOMUK RESOURCES SUPPLY IMPORT EXPORT CO.,LTD |
|
|
- VSI ENGINEERING COMPANY LIMITED |
|
|
- source_sentence: VIET ANH DUONG CO., LTD |
|
|
sentences: |
|
|
- ROCK GRANITES |
|
|
- CTY TNHH VIET ANH DUONG |
|
|
- SOVAN SEUNGDEN CO.,LTD |
|
|
pipeline_tag: sentence-similarity |
|
|
library_name: sentence-transformers |
|
|
metrics: |
|
|
- cosine_accuracy@1 |
|
|
- cosine_accuracy@3 |
|
|
- cosine_accuracy@5 |
|
|
- cosine_accuracy@10 |
|
|
- cosine_precision@1 |
|
|
- cosine_precision@3 |
|
|
- cosine_precision@5 |
|
|
- cosine_precision@10 |
|
|
- cosine_recall@1 |
|
|
- cosine_recall@3 |
|
|
- cosine_recall@5 |
|
|
- cosine_recall@10 |
|
|
- cosine_ndcg@10 |
|
|
- cosine_mrr@10 |
|
|
- cosine_map@100 |
|
|
model-index: |
|
|
- name: BGE-mapping-tool |
|
|
results: |
|
|
- task: |
|
|
type: information-retrieval |
|
|
name: Information Retrieval |
|
|
dataset: |
|
|
name: dim 1024 |
|
|
type: dim_1024 |
|
|
metrics: |
|
|
- type: cosine_accuracy@1 |
|
|
value: 0.844213649851632 |
|
|
name: Cosine Accuracy@1 |
|
|
- type: cosine_accuracy@3 |
|
|
value: 0.9169139465875371 |
|
|
name: Cosine Accuracy@3 |
|
|
- type: cosine_accuracy@5 |
|
|
value: 0.9540059347181009 |
|
|
name: Cosine Accuracy@5 |
|
|
- type: cosine_accuracy@10 |
|
|
value: 0.983679525222552 |
|
|
name: Cosine Accuracy@10 |
|
|
- type: cosine_precision@1 |
|
|
value: 0.844213649851632 |
|
|
name: Cosine Precision@1 |
|
|
- type: cosine_precision@3 |
|
|
value: 0.8209693372898119 |
|
|
name: Cosine Precision@3 |
|
|
- type: cosine_precision@5 |
|
|
value: 0.8172106824925816 |
|
|
name: Cosine Precision@5 |
|
|
- type: cosine_precision@10 |
|
|
value: 0.7956973293768547 |
|
|
name: Cosine Precision@10 |
|
|
- type: cosine_recall@1 |
|
|
value: 0.04068450507619647 |
|
|
name: Cosine Recall@1 |
|
|
- type: cosine_recall@3 |
|
|
value: 0.11841496782149599 |
|
|
name: Cosine Recall@3 |
|
|
- type: cosine_recall@5 |
|
|
value: 0.1962584728163363 |
|
|
name: Cosine Recall@5 |
|
|
- type: cosine_recall@10 |
|
|
value: 0.38186014447142047 |
|
|
name: Cosine Recall@10 |
|
|
- type: cosine_ndcg@10 |
|
|
value: 0.8055555734311861 |
|
|
name: Cosine Ndcg@10 |
|
|
- type: cosine_mrr@10 |
|
|
value: 0.8893975790118221 |
|
|
name: Cosine Mrr@10 |
|
|
- type: cosine_map@100 |
|
|
value: 0.8042214818897099 |
|
|
name: Cosine Map@100 |
|
|
- task: |
|
|
type: information-retrieval |
|
|
name: Information Retrieval |
|
|
dataset: |
|
|
name: dim 768 |
|
|
type: dim_768 |
|
|
metrics: |
|
|
- type: cosine_accuracy@1 |
|
|
value: 0.8501483679525222 |
|
|
name: Cosine Accuracy@1 |
|
|
- type: cosine_accuracy@3 |
|
|
value: 0.9124629080118695 |
|
|
name: Cosine Accuracy@3 |
|
|
- type: cosine_accuracy@5 |
|
|
value: 0.9525222551928784 |
|
|
name: Cosine Accuracy@5 |
|
|
- type: cosine_accuracy@10 |
|
|
value: 0.983679525222552 |
|
|
name: Cosine Accuracy@10 |
|
|
- type: cosine_precision@1 |
|
|
value: 0.8501483679525222 |
|
|
name: Cosine Precision@1 |
|
|
- type: cosine_precision@3 |
|
|
value: 0.8199802176063304 |
|
|
name: Cosine Precision@3 |
|
|
- type: cosine_precision@5 |
|
|
value: 0.8160237388724035 |
|
|
name: Cosine Precision@5 |
|
|
- type: cosine_precision@10 |
|
|
value: 0.7958456973293768 |
|
|
name: Cosine Precision@10 |
|
|
- type: cosine_recall@1 |
|
|
value: 0.040903524434681704 |
|
|
name: Cosine Recall@1 |
|
|
- type: cosine_recall@3 |
|
|
value: 0.1182842627204645 |
|
|
name: Cosine Recall@3 |
|
|
- type: cosine_recall@5 |
|
|
value: 0.1959109963561002 |
|
|
name: Cosine Recall@5 |
|
|
- type: cosine_recall@10 |
|
|
value: 0.38199438214275006 |
|
|
name: Cosine Recall@10 |
|
|
- type: cosine_ndcg@10 |
|
|
value: 0.8060214331494838 |
|
|
name: Cosine Ndcg@10 |
|
|
- type: cosine_mrr@10 |
|
|
value: 0.8915365503273512 |
|
|
name: Cosine Mrr@10 |
|
|
- type: cosine_map@100 |
|
|
value: 0.8045717264189338 |
|
|
name: Cosine Map@100 |
|
|
--- |
|
|
|
|
|
# BGE-mapping-tool |
|
|
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [splendor1811/BGE-base-banking-ONE-v0106](https://huggingface.co/splendor1811/BGE-base-banking-ONE-v0106) on the json dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
|
|
## Model Details |
|
|
|
|
|
### Model Description |
|
|
- **Model Type:** Sentence Transformer |
|
|
- **Base model:** [splendor1811/BGE-base-banking-ONE-v0106](https://huggingface.co/splendor1811/BGE-base-banking-ONE-v0106) <!-- at revision 9c233176fc7eb592572824ebb465bbe59997a308 --> |
|
|
- **Maximum Sequence Length:** 8192 tokens |
|
|
- **Output Dimensionality:** 1024 dimensions |
|
|
- **Similarity Function:** Cosine Similarity |
|
|
- **Training Dataset:** |
|
|
- json |
|
|
- **Language:** vi |
|
|
- **License:** apache-2.0 |
|
|
|
|
|
### Model Sources |
|
|
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
|
|
### Full Model Architecture |
|
|
|
|
|
``` |
|
|
SentenceTransformer( |
|
|
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False, 'architecture': 'XLMRobertaModel'}) |
|
|
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
|
(2): Normalize() |
|
|
) |
|
|
``` |
|
|
|
|
|
## Usage |
|
|
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
|
|
First install the Sentence Transformers library: |
|
|
|
|
|
```bash |
|
|
pip install -U sentence-transformers |
|
|
``` |
|
|
|
|
|
Then you can load this model and run inference. |
|
|
```python |
|
|
from sentence_transformers import SentenceTransformer |
|
|
|
|
|
# Download from the 🤗 Hub |
|
|
model = SentenceTransformer("splendor1811/BGE-mapping-tool_epoch3") |
|
|
# Run inference |
|
|
sentences = [ |
|
|
'VIET ANH DUONG CO., LTD', |
|
|
'CTY TNHH VIET ANH DUONG', |
|
|
'ROCK GRANITES', |
|
|
] |
|
|
embeddings = model.encode(sentences) |
|
|
print(embeddings.shape) |
|
|
# [3, 1024] |
|
|
|
|
|
# Get the similarity scores for the embeddings |
|
|
similarities = model.similarity(embeddings, embeddings) |
|
|
print(similarities) |
|
|
# tensor([[ 1.0000, 0.9738, -0.0072], |
|
|
# [ 0.9738, 1.0000, 0.0011], |
|
|
# [-0.0072, 0.0011, 1.0000]]) |
|
|
``` |
|
|
|
|
|
<!-- |
|
|
### Direct Usage (Transformers) |
|
|
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
|
|
</details> |
|
|
--> |
|
|
|
|
|
<!-- |
|
|
### Downstream Usage (Sentence Transformers) |
|
|
|
|
|
You can finetune this model on your own dataset. |
|
|
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
|
|
</details> |
|
|
--> |
|
|
|
|
|
<!-- |
|
|
### Out-of-Scope Use |
|
|
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
|
--> |
|
|
|
|
|
## Evaluation |
|
|
|
|
|
### Metrics |
|
|
|
|
|
#### Information Retrieval |
|
|
|
|
|
* Dataset: `dim_1024` |
|
|
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) with these parameters: |
|
|
```json |
|
|
{ |
|
|
"truncate_dim": 1024 |
|
|
} |
|
|
``` |
|
|
|
|
|
| Metric | Value | |
|
|
|:--------------------|:-----------| |
|
|
| cosine_accuracy@1 | 0.8442 | |
|
|
| cosine_accuracy@3 | 0.9169 | |
|
|
| cosine_accuracy@5 | 0.954 | |
|
|
| cosine_accuracy@10 | 0.9837 | |
|
|
| cosine_precision@1 | 0.8442 | |
|
|
| cosine_precision@3 | 0.821 | |
|
|
| cosine_precision@5 | 0.8172 | |
|
|
| cosine_precision@10 | 0.7957 | |
|
|
| cosine_recall@1 | 0.0407 | |
|
|
| cosine_recall@3 | 0.1184 | |
|
|
| cosine_recall@5 | 0.1963 | |
|
|
| cosine_recall@10 | 0.3819 | |
|
|
| **cosine_ndcg@10** | **0.8056** | |
|
|
| cosine_mrr@10 | 0.8894 | |
|
|
| cosine_map@100 | 0.8042 | |
|
|
|
|
|
#### Information Retrieval |
|
|
|
|
|
* Dataset: `dim_768` |
|
|
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) with these parameters: |
|
|
```json |
|
|
{ |
|
|
"truncate_dim": 768 |
|
|
} |
|
|
``` |
|
|
|
|
|
| Metric | Value | |
|
|
|:--------------------|:----------| |
|
|
| cosine_accuracy@1 | 0.8501 | |
|
|
| cosine_accuracy@3 | 0.9125 | |
|
|
| cosine_accuracy@5 | 0.9525 | |
|
|
| cosine_accuracy@10 | 0.9837 | |
|
|
| cosine_precision@1 | 0.8501 | |
|
|
| cosine_precision@3 | 0.82 | |
|
|
| cosine_precision@5 | 0.816 | |
|
|
| cosine_precision@10 | 0.7958 | |
|
|
| cosine_recall@1 | 0.0409 | |
|
|
| cosine_recall@3 | 0.1183 | |
|
|
| cosine_recall@5 | 0.1959 | |
|
|
| cosine_recall@10 | 0.382 | |
|
|
| **cosine_ndcg@10** | **0.806** | |
|
|
| cosine_mrr@10 | 0.8915 | |
|
|
| cosine_map@100 | 0.8046 | |
|
|
|
|
|
<!-- |
|
|
## Bias, Risks and Limitations |
|
|
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
|
--> |
|
|
|
|
|
<!-- |
|
|
### Recommendations |
|
|
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
|
--> |
|
|
|
|
|
## Training Details |
|
|
|
|
|
### Training Dataset |
|
|
|
|
|
#### json |
|
|
|
|
|
* Dataset: json |
|
|
* Size: 6,066 training samples |
|
|
* Columns: <code>anchor</code> and <code>positive</code> |
|
|
* Approximate statistics based on the first 1000 samples: |
|
|
| | anchor | positive | |
|
|
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------| |
|
|
| type | string | string | |
|
|
| details | <ul><li>min: 4 tokens</li><li>mean: 15.22 tokens</li><li>max: 35 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 15.46 tokens</li><li>max: 48 tokens</li></ul> | |
|
|
* Samples: |
|
|
| anchor | positive | |
|
|
|:-------------------------------------------------------------|:----------------------------------------------------------| |
|
|
| <code>ZHONGSHAN CHINHAO MOLD HARDWARE COMPANY LIMITED</code> | <code>ZHONGSHAN CHINHAO MOLD HARDWARE CO., LTD.</code> | |
|
|
| <code>Changshu Longte International Trade Co., Ltd</code> | <code>CHANGSHU LONGTE INTERNATIONAL TRADE CO., LTD</code> | |
|
|
| <code>ACT CHEMICAL AND THERAPEUTIC LABORATORIES SARL</code> | <code>MEDICAL SUPPLIES PHARMACEUTICALS & EQUIPMENT</code> | |
|
|
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters: |
|
|
```json |
|
|
{ |
|
|
"loss": "MultipleNegativesRankingLoss", |
|
|
"matryoshka_dims": [ |
|
|
1024, |
|
|
768 |
|
|
], |
|
|
"matryoshka_weights": [ |
|
|
1, |
|
|
1 |
|
|
], |
|
|
"n_dims_per_step": -1 |
|
|
} |
|
|
``` |
|
|
|
|
|
### Training Hyperparameters |
|
|
#### Non-Default Hyperparameters |
|
|
|
|
|
- `eval_strategy`: epoch |
|
|
- `gradient_accumulation_steps`: 8 |
|
|
- `learning_rate`: 2e-05 |
|
|
- `num_train_epochs`: 5 |
|
|
- `lr_scheduler_type`: cosine |
|
|
- `warmup_ratio`: 0.1 |
|
|
- `bf16`: True |
|
|
- `tf32`: False |
|
|
- `load_best_model_at_end`: True |
|
|
- `optim`: adamw_torch_fused |
|
|
- `batch_sampler`: no_duplicates |
|
|
|
|
|
#### All Hyperparameters |
|
|
<details><summary>Click to expand</summary> |
|
|
|
|
|
- `overwrite_output_dir`: False |
|
|
- `do_predict`: False |
|
|
- `eval_strategy`: epoch |
|
|
- `prediction_loss_only`: True |
|
|
- `per_device_train_batch_size`: 8 |
|
|
- `per_device_eval_batch_size`: 8 |
|
|
- `per_gpu_train_batch_size`: None |
|
|
- `per_gpu_eval_batch_size`: None |
|
|
- `gradient_accumulation_steps`: 8 |
|
|
- `eval_accumulation_steps`: None |
|
|
- `torch_empty_cache_steps`: None |
|
|
- `learning_rate`: 2e-05 |
|
|
- `weight_decay`: 0.0 |
|
|
- `adam_beta1`: 0.9 |
|
|
- `adam_beta2`: 0.999 |
|
|
- `adam_epsilon`: 1e-08 |
|
|
- `max_grad_norm`: 1.0 |
|
|
- `num_train_epochs`: 5 |
|
|
- `max_steps`: -1 |
|
|
- `lr_scheduler_type`: cosine |
|
|
- `lr_scheduler_kwargs`: {} |
|
|
- `warmup_ratio`: 0.1 |
|
|
- `warmup_steps`: 0 |
|
|
- `log_level`: passive |
|
|
- `log_level_replica`: warning |
|
|
- `log_on_each_node`: True |
|
|
- `logging_nan_inf_filter`: True |
|
|
- `save_safetensors`: True |
|
|
- `save_on_each_node`: False |
|
|
- `save_only_model`: False |
|
|
- `restore_callback_states_from_checkpoint`: False |
|
|
- `no_cuda`: False |
|
|
- `use_cpu`: False |
|
|
- `use_mps_device`: False |
|
|
- `seed`: 42 |
|
|
- `data_seed`: None |
|
|
- `jit_mode_eval`: False |
|
|
- `use_ipex`: False |
|
|
- `bf16`: True |
|
|
- `fp16`: False |
|
|
- `fp16_opt_level`: O1 |
|
|
- `half_precision_backend`: auto |
|
|
- `bf16_full_eval`: False |
|
|
- `fp16_full_eval`: False |
|
|
- `tf32`: False |
|
|
- `local_rank`: 0 |
|
|
- `ddp_backend`: None |
|
|
- `tpu_num_cores`: None |
|
|
- `tpu_metrics_debug`: False |
|
|
- `debug`: [] |
|
|
- `dataloader_drop_last`: False |
|
|
- `dataloader_num_workers`: 0 |
|
|
- `dataloader_prefetch_factor`: None |
|
|
- `past_index`: -1 |
|
|
- `disable_tqdm`: False |
|
|
- `remove_unused_columns`: True |
|
|
- `label_names`: None |
|
|
- `load_best_model_at_end`: True |
|
|
- `ignore_data_skip`: False |
|
|
- `fsdp`: [] |
|
|
- `fsdp_min_num_params`: 0 |
|
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
|
- `parallelism_config`: None |
|
|
- `deepspeed`: None |
|
|
- `label_smoothing_factor`: 0.0 |
|
|
- `optim`: adamw_torch_fused |
|
|
- `optim_args`: None |
|
|
- `adafactor`: False |
|
|
- `group_by_length`: False |
|
|
- `length_column_name`: length |
|
|
- `ddp_find_unused_parameters`: None |
|
|
- `ddp_bucket_cap_mb`: None |
|
|
- `ddp_broadcast_buffers`: False |
|
|
- `dataloader_pin_memory`: True |
|
|
- `dataloader_persistent_workers`: False |
|
|
- `skip_memory_metrics`: True |
|
|
- `use_legacy_prediction_loop`: False |
|
|
- `push_to_hub`: False |
|
|
- `resume_from_checkpoint`: None |
|
|
- `hub_model_id`: None |
|
|
- `hub_strategy`: every_save |
|
|
- `hub_private_repo`: None |
|
|
- `hub_always_push`: False |
|
|
- `hub_revision`: None |
|
|
- `gradient_checkpointing`: False |
|
|
- `gradient_checkpointing_kwargs`: None |
|
|
- `include_inputs_for_metrics`: False |
|
|
- `include_for_metrics`: [] |
|
|
- `eval_do_concat_batches`: True |
|
|
- `fp16_backend`: auto |
|
|
- `push_to_hub_model_id`: None |
|
|
- `push_to_hub_organization`: None |
|
|
- `mp_parameters`: |
|
|
- `auto_find_batch_size`: False |
|
|
- `full_determinism`: False |
|
|
- `torchdynamo`: None |
|
|
- `ray_scope`: last |
|
|
- `ddp_timeout`: 1800 |
|
|
- `torch_compile`: False |
|
|
- `torch_compile_backend`: None |
|
|
- `torch_compile_mode`: None |
|
|
- `include_tokens_per_second`: False |
|
|
- `include_num_input_tokens_seen`: False |
|
|
- `neftune_noise_alpha`: None |
|
|
- `optim_target_modules`: None |
|
|
- `batch_eval_metrics`: False |
|
|
- `eval_on_start`: False |
|
|
- `use_liger_kernel`: False |
|
|
- `liger_kernel_config`: None |
|
|
- `eval_use_gather_object`: False |
|
|
- `average_tokens_across_devices`: False |
|
|
- `prompts`: None |
|
|
- `batch_sampler`: no_duplicates |
|
|
- `multi_dataset_batch_sampler`: proportional |
|
|
- `router_mapping`: {} |
|
|
- `learning_rate_mapping`: {} |
|
|
|
|
|
</details> |
|
|
|
|
|
### Training Logs |
|
|
| Epoch | Step | Training Loss | dim_1024_cosine_ndcg@10 | dim_768_cosine_ndcg@10 | |
|
|
|:-------:|:-------:|:-------------:|:-----------------------:|:----------------------:| |
|
|
| 0.1054 | 10 | 0.4225 | - | - | |
|
|
| 0.2108 | 20 | 0.2415 | - | - | |
|
|
| 0.3162 | 30 | 0.1252 | - | - | |
|
|
| 0.4216 | 40 | 0.0765 | - | - | |
|
|
| 0.5270 | 50 | 0.0573 | - | - | |
|
|
| 0.6324 | 60 | 0.0345 | - | - | |
|
|
| 0.7378 | 70 | 0.0448 | - | - | |
|
|
| 0.8432 | 80 | 0.0355 | - | - | |
|
|
| 0.9486 | 90 | 0.0996 | - | - | |
|
|
| 1.0 | 95 | - | 0.7994 | 0.7994 | |
|
|
| 1.0527 | 100 | 0.0194 | - | - | |
|
|
| 1.1581 | 110 | 0.0418 | - | - | |
|
|
| 1.2635 | 120 | 0.0339 | - | - | |
|
|
| 1.3689 | 130 | 0.0427 | - | - | |
|
|
| 1.4743 | 140 | 0.0339 | - | - | |
|
|
| 1.5797 | 150 | 0.0333 | - | - | |
|
|
| 1.6851 | 160 | 0.0396 | - | - | |
|
|
| 1.7905 | 170 | 0.0877 | - | - | |
|
|
| 1.8959 | 180 | 0.0608 | - | - | |
|
|
| 2.0 | 190 | 0.0352 | 0.8037 | 0.8031 | |
|
|
| 2.1054 | 200 | 0.023 | - | - | |
|
|
| 2.2108 | 210 | 0.0638 | - | - | |
|
|
| 2.3162 | 220 | 0.0401 | - | - | |
|
|
| 2.4216 | 230 | 0.0274 | - | - | |
|
|
| 2.5270 | 240 | 0.0405 | - | - | |
|
|
| 2.6324 | 250 | 0.0305 | - | - | |
|
|
| 2.7378 | 260 | 0.0414 | - | - | |
|
|
| 2.8432 | 270 | 0.0178 | - | - | |
|
|
| 2.9486 | 280 | 0.0535 | - | - | |
|
|
| 3.0 | 285 | - | 0.8008 | 0.8012 | |
|
|
| 3.0527 | 290 | 0.0629 | - | - | |
|
|
| 3.1581 | 300 | 0.0283 | - | - | |
|
|
| 3.2635 | 310 | 0.0567 | - | - | |
|
|
| 3.3689 | 320 | 0.0167 | - | - | |
|
|
| 3.4743 | 330 | 0.0349 | - | - | |
|
|
| 3.5797 | 340 | 0.053 | - | - | |
|
|
| 3.6851 | 350 | 0.0517 | - | - | |
|
|
| 3.7905 | 360 | 0.0603 | - | - | |
|
|
| 3.8959 | 370 | 0.0323 | - | - | |
|
|
| 4.0 | 380 | 0.0229 | 0.8042 | 0.8055 | |
|
|
| 4.1054 | 390 | 0.0476 | - | - | |
|
|
| 4.2108 | 400 | 0.06 | - | - | |
|
|
| 4.3162 | 410 | 0.0412 | - | - | |
|
|
| 4.4216 | 420 | 0.0553 | - | - | |
|
|
| 4.5270 | 430 | 0.0446 | - | - | |
|
|
| 4.6324 | 440 | 0.016 | - | - | |
|
|
| 4.7378 | 450 | 0.0302 | - | - | |
|
|
| 4.8432 | 460 | 0.0223 | - | - | |
|
|
| 4.9486 | 470 | 0.0649 | - | - | |
|
|
| **5.0** | **475** | **-** | **0.8056** | **0.806** | |
|
|
|
|
|
* The bold row denotes the saved checkpoint. |
|
|
|
|
|
### Framework Versions |
|
|
- Python: 3.11.13 |
|
|
- Sentence Transformers: 5.1.0 |
|
|
- Transformers: 4.56.1 |
|
|
- PyTorch: 2.6.0+cu124 |
|
|
- Accelerate: 1.8.1 |
|
|
- Datasets: 3.6.0 |
|
|
- Tokenizers: 0.22.0 |
|
|
|
|
|
## Citation |
|
|
|
|
|
### BibTeX |
|
|
|
|
|
#### Sentence Transformers |
|
|
```bibtex |
|
|
@inproceedings{reimers-2019-sentence-bert, |
|
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
|
month = "11", |
|
|
year = "2019", |
|
|
publisher = "Association for Computational Linguistics", |
|
|
url = "https://arxiv.org/abs/1908.10084", |
|
|
} |
|
|
``` |
|
|
|
|
|
#### MatryoshkaLoss |
|
|
```bibtex |
|
|
@misc{kusupati2024matryoshka, |
|
|
title={Matryoshka Representation Learning}, |
|
|
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi}, |
|
|
year={2024}, |
|
|
eprint={2205.13147}, |
|
|
archivePrefix={arXiv}, |
|
|
primaryClass={cs.LG} |
|
|
} |
|
|
``` |
|
|
|
|
|
#### MultipleNegativesRankingLoss |
|
|
```bibtex |
|
|
@misc{henderson2017efficient, |
|
|
title={Efficient Natural Language Response Suggestion for Smart Reply}, |
|
|
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, |
|
|
year={2017}, |
|
|
eprint={1705.00652}, |
|
|
archivePrefix={arXiv}, |
|
|
primaryClass={cs.CL} |
|
|
} |
|
|
``` |
|
|
|
|
|
<!-- |
|
|
## Glossary |
|
|
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
|
--> |
|
|
|
|
|
<!-- |
|
|
## Model Card Authors |
|
|
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
|
--> |
|
|
|
|
|
<!-- |
|
|
## Model Card Contact |
|
|
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
|
--> |