metadata
base_model: sentence-transformers/all-mpnet-base-v2
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:60
- loss:CosineSimilarityLoss
widget:
- source_sentence: >-
#1# CLCLT00236B - VM not ready | Total Site IDs = 1|Market Affected:
CLCLT00236B
Reported by: Health check
Impact: UE's roam
Full Problem Description: CLCLT00236A - VM not ready
External Ticket: N/A
Bridge: https://meet.google.com/oab-hmxd-mqb
What groups are engaged: VMware
Next Action: Assigned the ticket to VMware
sentences:
- Precision Time Protocol (PTP) unlocked
- Samsung DU Nodes not healthy
- VMware VM issue
- source_sentence: >-
#1# - Nodes Not Healthy, Samsung DU pods count is same as 6 | Total Site
IDs = 1|Reported by & Contact: Samsung Hypercare Report
Impact: UE's will roam
Bridge:https://meet.google.com/oab-hmxd-mqb
What groups are engaged: Wireless - NOC VMware FIM, Wireless - NOCoE
Full issue description: Nodes Not Healthy, Samsung DU pods count is not 6
sentences:
- Site Sensor temperature alert
- PRACH zero
- Samsung DU Pods not count not 6
- source_sentence: |2-
- PTP Unlocked|Reported by & Contact # DU Health Check
Impact: UE's will roam
Bridge: https://meet.google.com/oab-hmxd-qsa
What groups are engaged: NOCoE
Full issue description: -PTP Unlocked
sentences:
- DU Health reported PTP unlocked
- DU PTP unlocked
- Physical Random access channel value is reported 0
model-index:
- name: SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts dev
type: sts-dev
metrics:
- type: pearson_cosine
value: 0.8503399836889165
name: Pearson Cosine
- type: spearman_cosine
value: 0.8646819693607537
name: Spearman Cosine
- type: pearson_manhattan
value: 0.8610822762797875
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.8632509605462457
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.8627648815882912
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.8646819693607537
name: Spearman Euclidean
- type: pearson_dot
value: 0.8503399881242814
name: Pearson Dot
- type: spearman_dot
value: 0.8646819693607537
name: Spearman Dot
- type: pearson_max
value: 0.8627648815882912
name: Pearson Max
- type: spearman_max
value: 0.8646819693607537
name: Spearman Max
SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
This is a sentence-transformers model finetuned from sentence-transformers/all-mpnet-base-v2 on the csv dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/all-mpnet-base-v2
- Maximum Sequence Length: 384 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Training Dataset:
- csv
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("yudude/all-mpnet-base-v2-sts")
# Run inference
sentences = [
" - PTP Unlocked|Reported by & Contact # DU Health Check\nImpact: UE's will roam\nBridge: https://meet.google.com/oab-hmxd-qsa\nWhat groups are engaged: NOCoE\nFull issue description: -PTP Unlocked",
'DU Health reported PTP unlocked',
'DU PTP unlocked',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Dataset:
sts-dev - Evaluated with
EmbeddingSimilarityEvaluator
| Metric | Value |
|---|---|
| pearson_cosine | 0.8503 |
| spearman_cosine | 0.8647 |
| pearson_manhattan | 0.8611 |
| spearman_manhattan | 0.8633 |
| pearson_euclidean | 0.8628 |
| spearman_euclidean | 0.8647 |
| pearson_dot | 0.8503 |
| spearman_dot | 0.8647 |
| pearson_max | 0.8628 |
| spearman_max | 0.8647 |
Training Details
Training Dataset
csv
- Dataset: csv
- Size: 60 training samples
- Columns:
description,search_key, andlabel - Approximate statistics based on the first 60 samples:
description search_key label type string string float details - min: 20 tokens
- mean: 143.83 tokens
- max: 384 tokens
- min: 5 tokens
- mean: 8.75 tokens
- max: 13 tokens
- min: 0.9
- mean: 0.95
- max: 0.99
- Samples:
description search_key label UE can not camp on network (drive test)RU Healthcheck is okay Network drive test shows UE cannot attachSamsung Alert : UADPF: 513003017 (ATATL) - UADPF_513003017 - service-off at /ATATL/ATATL00725C-NRUADPF_513003017 - service-off at /ATATL/ATATL00725C-NR UADPF Service off issueSamsung Alert : UADPF: 513003017 (ATATL) - UADPF_513003017 - service-off at /ATATL/ATATL00725C-NRUADPF_513003017 - service-off at /ATATL/ATATL00725C-NR Samsung UADPF service off issue - Loss:
CosineSimilarityLosswith these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Evaluation Dataset
csv
- Dataset: csv
- Size: 12 evaluation samples
- Columns:
description,search_key, andlabel - Approximate statistics based on the first 12 samples:
description search_key label type string string float details - min: 32 tokens
- mean: 71.67 tokens
- max: 109 tokens
- min: 5 tokens
- mean: 7.92 tokens
- max: 11 tokens
- min: 0.9
- mean: 0.95
- max: 0.99
- Samples:
description search_key label Temperature Sensor Fault ALERTNJJER01462B NJJER01462B with Temperature: Max cell ST1 29.4 - PTP UnlockedReported by & Contact # DU Health Check
Impact: UE's will roam
Bridge: https://meet.google.com/oab-hmxd-qsa
What groups are engaged: NOCoE
Full issue description: -PTP UnlockedPrecision Time Protocol (PTP) unlocked- PTP UnlockedReported by & Contact # DU Health Check
Impact: UE's will roam
Bridge: https://meet.google.com/oab-hmxd-qsa
What groups are engaged: NOCoE
Full issue description: -PTP UnlockedDU PTP unlocked - Loss:
CosineSimilarityLosswith these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: stepsper_device_train_batch_size: 4per_device_eval_batch_size: 4learning_rate: 2e-05num_train_epochs: 5warmup_ratio: 0.1fp16: True
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 4per_device_eval_batch_size: 4per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 2e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 5max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.1warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Truefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Falsehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseeval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Nonedispatch_batches: Nonesplit_batches: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseeval_use_gather_object: Falsebatch_sampler: batch_samplermulti_dataset_batch_sampler: proportional
Training Logs
| Epoch | Step | Training Loss | Validation Loss | sts-dev_spearman_cosine |
|---|---|---|---|---|
| 0.2667 | 4 | 0.2285 | 0.1834 | 0.8813 |
| 0.5333 | 8 | 0.1028 | 0.0760 | 0.8815 |
| 0.8 | 12 | 0.0409 | 0.0240 | 0.8803 |
| 1.0667 | 16 | 0.0235 | 0.0080 | 0.8781 |
| 1.3333 | 20 | 0.0077 | 0.0023 | 0.8750 |
| 1.6 | 24 | 0.0031 | 0.0010 | 0.8721 |
| 1.8667 | 28 | 0.0009 | 0.0006 | 0.8697 |
| 2.1333 | 32 | 0.0006 | 0.0006 | 0.8678 |
| 2.4 | 36 | 0.0006 | 0.0006 | 0.8667 |
| 2.6667 | 40 | 0.0009 | 0.0006 | 0.8660 |
| 2.9333 | 44 | 0.0004 | 0.0006 | 0.8654 |
| 3.2 | 48 | 0.0007 | 0.0006 | 0.8651 |
| 3.4667 | 52 | 0.0006 | 0.0006 | 0.8649 |
| 3.7333 | 56 | 0.0005 | 0.0006 | 0.8648 |
| 4.0 | 60 | 0.0003 | 0.0006 | 0.8647 |
| 4.2667 | 64 | 0.0007 | 0.0006 | 0.8647 |
| 4.5333 | 68 | 0.0005 | 0.0006 | 0.8647 |
| 4.8 | 72 | 0.0006 | 0.0006 | 0.8647 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.2.1
- Transformers: 4.44.2
- PyTorch: 2.5.0+cu121
- Accelerate: 0.34.2
- Datasets: 3.1.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}