PrabalAryal's picture
Add new SentenceTransformer model
3734f29 verified
---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:68828
- loss:MultipleNegativesRankingLoss
base_model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
widget:
- source_sentence: Men is de toegangssleutels verloren
sentences:
- De centrale verwarming
- niet dringend
- Weg
- source_sentence: De bovenste constructie
sentences:
- Voldoende warm water in de hele woning
- daklekkage
- lek in kraan
- source_sentence: De box in het souterrain
sentences:
- Vloer
- lift niet
- Nood uitgang
- source_sentence: balkon
sentences:
- de brievenbus
- uitgang garage dicht
- afvoer de douche
- source_sentence: De deur naar de kelderboxen is stuk
sentences:
- deur met dranger
- De beugel om de plek vrij te houden
- kelderboxen deur
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy
- cosine_accuracy_threshold
- cosine_f1
- cosine_f1_threshold
- cosine_precision
- cosine_recall
- cosine_ap
- cosine_mcc
model-index:
- name: SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
results:
- task:
type: binary-classification
name: Binary Classification
dataset:
name: Unknown
type: unknown
metrics:
- type: cosine_accuracy
value: 0.982086820083682
name: Cosine Accuracy
- type: cosine_accuracy_threshold
value: 0.733125627040863
name: Cosine Accuracy Threshold
- type: cosine_f1
value: 0.9821498371335505
name: Cosine F1
- type: cosine_f1_threshold
value: 0.733125627040863
name: Cosine F1 Threshold
- type: cosine_precision
value: 0.9787068293949623
name: Cosine Precision
- type: cosine_recall
value: 0.9856171548117155
name: Cosine Recall
- type: cosine_ap
value: 0.9972864020390366
name: Cosine Ap
- type: cosine_mcc
value: 0.964197674565882
name: Cosine Mcc
---
# SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) <!-- at revision 86741b4e3f5cb7765a600d3a3d55a0f6a6cb443d -->
- **Maximum Sequence Length:** 64 tokens
- **Output Dimensionality:** 384 dimensions
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 64, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("PrabalAryal/Sentence_Transformer_v0.0.4")
# Run inference
sentences = [
'De deur naar de kelderboxen is stuk',
'kelderboxen deur',
'deur met dranger',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Binary Classification
* Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
| Metric | Value |
|:--------------------------|:-----------|
| cosine_accuracy | 0.9821 |
| cosine_accuracy_threshold | 0.7331 |
| cosine_f1 | 0.9821 |
| cosine_f1_threshold | 0.7331 |
| cosine_precision | 0.9787 |
| cosine_recall | 0.9856 |
| **cosine_ap** | **0.9973** |
| cosine_mcc | 0.9642 |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 68,828 training samples
* Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
| | sentence_0 | sentence_1 | label |
|:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------|
| type | string | string | float |
| details | <ul><li>min: 3 tokens</li><li>mean: 7.03 tokens</li><li>max: 21 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 6.41 tokens</li><li>max: 18 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.49</li><li>max: 1.0</li></ul> |
* Samples:
| sentence_0 | sentence_1 | label |
|:------------------------------------------------------|:-------------------------|:-----------------|
| <code>De sluiting van de toegangspoort is stuk</code> | <code>slot defect</code> | <code>1.0</code> |
| <code>Woning</code> | <code>trapafgang</code> | <code>0.0</code> |
| <code>De sleutels zijn kwijt</code> | <code>Nie</code> | <code>0.0</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 64
- `num_train_epochs`: 10
- `fp16`: True
- `multi_dataset_batch_sampler`: round_robin
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 64
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1
- `num_train_epochs`: 10
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.0
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `hub_revision`: None
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `liger_kernel_config`: None
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: round_robin
</details>
### Training Logs
| Epoch | Step | Training Loss | cosine_ap |
|:------:|:-----:|:-------------:|:---------:|
| 0.1998 | 215 | - | 0.7638 |
| 0.3996 | 430 | - | 0.8723 |
| 0.4647 | 500 | 4.4585 | - |
| 0.5994 | 645 | - | 0.9176 |
| 0.7993 | 860 | - | 0.9475 |
| 0.9294 | 1000 | 3.6015 | - |
| 0.9991 | 1075 | - | 0.9595 |
| 1.0 | 1076 | - | 0.9593 |
| 1.1989 | 1290 | - | 0.9705 |
| 1.3941 | 1500 | 3.3729 | - |
| 1.3987 | 1505 | - | 0.9793 |
| 1.5985 | 1720 | - | 0.9818 |
| 1.7983 | 1935 | - | 0.9854 |
| 1.8587 | 2000 | 3.2631 | - |
| 1.9981 | 2150 | - | 0.9866 |
| 2.0 | 2152 | - | 0.9866 |
| 2.1980 | 2365 | - | 0.9890 |
| 2.3234 | 2500 | 3.1295 | - |
| 2.3978 | 2580 | - | 0.9884 |
| 2.5976 | 2795 | - | 0.9916 |
| 2.7881 | 3000 | 3.0907 | - |
| 2.7974 | 3010 | - | 0.9916 |
| 2.9972 | 3225 | - | 0.9922 |
| 3.0 | 3228 | - | 0.9922 |
| 3.1970 | 3440 | - | 0.9928 |
| 3.2528 | 3500 | 3.0105 | - |
| 3.3968 | 3655 | - | 0.9932 |
| 3.5967 | 3870 | - | 0.9937 |
| 3.7175 | 4000 | 2.977 | - |
| 3.7965 | 4085 | - | 0.9939 |
| 3.9963 | 4300 | - | 0.9944 |
| 4.0 | 4304 | - | 0.9945 |
| 4.1822 | 4500 | 2.9488 | - |
| 4.1961 | 4515 | - | 0.9947 |
| 4.3959 | 4730 | - | 0.9950 |
| 4.5957 | 4945 | - | 0.9952 |
| 4.6468 | 5000 | 2.914 | - |
| 4.7955 | 5160 | - | 0.9954 |
| 4.9954 | 5375 | - | 0.9956 |
| 5.0 | 5380 | - | 0.9956 |
| 5.1115 | 5500 | 2.8927 | - |
| 5.1952 | 5590 | - | 0.9960 |
| 5.3950 | 5805 | - | 0.9959 |
| 5.5762 | 6000 | 2.8505 | - |
| 5.5948 | 6020 | - | 0.9963 |
| 5.7946 | 6235 | - | 0.9961 |
| 5.9944 | 6450 | - | 0.9962 |
| 6.0 | 6456 | - | 0.9962 |
| 6.0409 | 6500 | 2.8462 | - |
| 6.1942 | 6665 | - | 0.9963 |
| 6.3941 | 6880 | - | 0.9965 |
| 6.5056 | 7000 | 2.8024 | - |
| 6.5939 | 7095 | - | 0.9967 |
| 6.7937 | 7310 | - | 0.9969 |
| 6.9703 | 7500 | 2.8184 | - |
| 6.9935 | 7525 | - | 0.9968 |
| 7.0 | 7532 | - | 0.9967 |
| 7.1933 | 7740 | - | 0.9967 |
| 7.3931 | 7955 | - | 0.9967 |
| 7.4349 | 8000 | 2.7761 | - |
| 7.5929 | 8170 | - | 0.9968 |
| 7.7928 | 8385 | - | 0.9969 |
| 7.8996 | 8500 | 2.7736 | - |
| 7.9926 | 8600 | - | 0.9970 |
| 8.0 | 8608 | - | 0.9971 |
| 8.1924 | 8815 | - | 0.9972 |
| 8.3643 | 9000 | 2.7627 | - |
| 8.3922 | 9030 | - | 0.9970 |
| 8.5920 | 9245 | - | 0.9972 |
| 8.7918 | 9460 | - | 0.9972 |
| 8.8290 | 9500 | 2.7604 | - |
| 8.9916 | 9675 | - | 0.9972 |
| 9.0 | 9684 | - | 0.9972 |
| 9.1914 | 9890 | - | 0.9971 |
| 9.2937 | 10000 | 2.7467 | - |
| 9.3913 | 10105 | - | 0.9972 |
| 9.5911 | 10320 | - | 0.9973 |
| 9.7584 | 10500 | 2.7441 | - |
| 9.7909 | 10535 | - | 0.9973 |
### Framework Versions
- Python: 3.11.13
- Sentence Transformers: 4.1.0
- Transformers: 4.53.3
- PyTorch: 2.6.0+cu124
- Accelerate: 1.9.0
- Datasets: 4.4.1
- Tokenizers: 0.21.2
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->