|
|
--- |
|
|
tags: |
|
|
- sentence-transformers |
|
|
- sentence-similarity |
|
|
- feature-extraction |
|
|
- generated_from_trainer |
|
|
- dataset_size:68828 |
|
|
- loss:MultipleNegativesRankingLoss |
|
|
base_model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 |
|
|
widget: |
|
|
- source_sentence: Men is de toegangssleutels verloren |
|
|
sentences: |
|
|
- De centrale verwarming |
|
|
- niet dringend |
|
|
- Weg |
|
|
- source_sentence: De bovenste constructie |
|
|
sentences: |
|
|
- Voldoende warm water in de hele woning |
|
|
- daklekkage |
|
|
- lek in kraan |
|
|
- source_sentence: De box in het souterrain |
|
|
sentences: |
|
|
- Vloer |
|
|
- lift niet |
|
|
- Nood uitgang |
|
|
- source_sentence: balkon |
|
|
sentences: |
|
|
- de brievenbus |
|
|
- uitgang garage dicht |
|
|
- afvoer de douche |
|
|
- source_sentence: De deur naar de kelderboxen is stuk |
|
|
sentences: |
|
|
- deur met dranger |
|
|
- De beugel om de plek vrij te houden |
|
|
- kelderboxen deur |
|
|
pipeline_tag: sentence-similarity |
|
|
library_name: sentence-transformers |
|
|
metrics: |
|
|
- cosine_accuracy |
|
|
- cosine_accuracy_threshold |
|
|
- cosine_f1 |
|
|
- cosine_f1_threshold |
|
|
- cosine_precision |
|
|
- cosine_recall |
|
|
- cosine_ap |
|
|
- cosine_mcc |
|
|
model-index: |
|
|
- name: SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 |
|
|
results: |
|
|
- task: |
|
|
type: binary-classification |
|
|
name: Binary Classification |
|
|
dataset: |
|
|
name: Unknown |
|
|
type: unknown |
|
|
metrics: |
|
|
- type: cosine_accuracy |
|
|
value: 0.982086820083682 |
|
|
name: Cosine Accuracy |
|
|
- type: cosine_accuracy_threshold |
|
|
value: 0.733125627040863 |
|
|
name: Cosine Accuracy Threshold |
|
|
- type: cosine_f1 |
|
|
value: 0.9821498371335505 |
|
|
name: Cosine F1 |
|
|
- type: cosine_f1_threshold |
|
|
value: 0.733125627040863 |
|
|
name: Cosine F1 Threshold |
|
|
- type: cosine_precision |
|
|
value: 0.9787068293949623 |
|
|
name: Cosine Precision |
|
|
- type: cosine_recall |
|
|
value: 0.9856171548117155 |
|
|
name: Cosine Recall |
|
|
- type: cosine_ap |
|
|
value: 0.9972864020390366 |
|
|
name: Cosine Ap |
|
|
- type: cosine_mcc |
|
|
value: 0.964197674565882 |
|
|
name: Cosine Mcc |
|
|
--- |
|
|
|
|
|
# SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 |
|
|
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
|
|
## Model Details |
|
|
|
|
|
### Model Description |
|
|
- **Model Type:** Sentence Transformer |
|
|
- **Base model:** [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) <!-- at revision 86741b4e3f5cb7765a600d3a3d55a0f6a6cb443d --> |
|
|
- **Maximum Sequence Length:** 64 tokens |
|
|
- **Output Dimensionality:** 384 dimensions |
|
|
- **Similarity Function:** Cosine Similarity |
|
|
<!-- - **Training Dataset:** Unknown --> |
|
|
<!-- - **Language:** Unknown --> |
|
|
<!-- - **License:** Unknown --> |
|
|
|
|
|
### Model Sources |
|
|
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
|
|
### Full Model Architecture |
|
|
|
|
|
``` |
|
|
SentenceTransformer( |
|
|
(0): Transformer({'max_seq_length': 64, 'do_lower_case': False}) with Transformer model: BertModel |
|
|
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
|
) |
|
|
``` |
|
|
|
|
|
## Usage |
|
|
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
|
|
First install the Sentence Transformers library: |
|
|
|
|
|
```bash |
|
|
pip install -U sentence-transformers |
|
|
``` |
|
|
|
|
|
Then you can load this model and run inference. |
|
|
```python |
|
|
from sentence_transformers import SentenceTransformer |
|
|
|
|
|
# Download from the 🤗 Hub |
|
|
model = SentenceTransformer("PrabalAryal/Sentence_Transformer_v0.0.4") |
|
|
# Run inference |
|
|
sentences = [ |
|
|
'De deur naar de kelderboxen is stuk', |
|
|
'kelderboxen deur', |
|
|
'deur met dranger', |
|
|
] |
|
|
embeddings = model.encode(sentences) |
|
|
print(embeddings.shape) |
|
|
# [3, 384] |
|
|
|
|
|
# Get the similarity scores for the embeddings |
|
|
similarities = model.similarity(embeddings, embeddings) |
|
|
print(similarities.shape) |
|
|
# [3, 3] |
|
|
``` |
|
|
|
|
|
<!-- |
|
|
### Direct Usage (Transformers) |
|
|
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
|
|
</details> |
|
|
--> |
|
|
|
|
|
<!-- |
|
|
### Downstream Usage (Sentence Transformers) |
|
|
|
|
|
You can finetune this model on your own dataset. |
|
|
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
|
|
</details> |
|
|
--> |
|
|
|
|
|
<!-- |
|
|
### Out-of-Scope Use |
|
|
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
|
--> |
|
|
|
|
|
## Evaluation |
|
|
|
|
|
### Metrics |
|
|
|
|
|
#### Binary Classification |
|
|
|
|
|
* Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator) |
|
|
|
|
|
| Metric | Value | |
|
|
|:--------------------------|:-----------| |
|
|
| cosine_accuracy | 0.9821 | |
|
|
| cosine_accuracy_threshold | 0.7331 | |
|
|
| cosine_f1 | 0.9821 | |
|
|
| cosine_f1_threshold | 0.7331 | |
|
|
| cosine_precision | 0.9787 | |
|
|
| cosine_recall | 0.9856 | |
|
|
| **cosine_ap** | **0.9973** | |
|
|
| cosine_mcc | 0.9642 | |
|
|
|
|
|
<!-- |
|
|
## Bias, Risks and Limitations |
|
|
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
|
--> |
|
|
|
|
|
<!-- |
|
|
### Recommendations |
|
|
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
|
--> |
|
|
|
|
|
## Training Details |
|
|
|
|
|
### Training Dataset |
|
|
|
|
|
#### Unnamed Dataset |
|
|
|
|
|
* Size: 68,828 training samples |
|
|
* Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code> |
|
|
* Approximate statistics based on the first 1000 samples: |
|
|
| | sentence_0 | sentence_1 | label | |
|
|
|:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------| |
|
|
| type | string | string | float | |
|
|
| details | <ul><li>min: 3 tokens</li><li>mean: 7.03 tokens</li><li>max: 21 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 6.41 tokens</li><li>max: 18 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.49</li><li>max: 1.0</li></ul> | |
|
|
* Samples: |
|
|
| sentence_0 | sentence_1 | label | |
|
|
|:------------------------------------------------------|:-------------------------|:-----------------| |
|
|
| <code>De sluiting van de toegangspoort is stuk</code> | <code>slot defect</code> | <code>1.0</code> | |
|
|
| <code>Woning</code> | <code>trapafgang</code> | <code>0.0</code> | |
|
|
| <code>De sleutels zijn kwijt</code> | <code>Nie</code> | <code>0.0</code> | |
|
|
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters: |
|
|
```json |
|
|
{ |
|
|
"scale": 20.0, |
|
|
"similarity_fct": "cos_sim" |
|
|
} |
|
|
``` |
|
|
|
|
|
### Training Hyperparameters |
|
|
#### Non-Default Hyperparameters |
|
|
|
|
|
- `eval_strategy`: steps |
|
|
- `per_device_train_batch_size`: 64 |
|
|
- `per_device_eval_batch_size`: 64 |
|
|
- `num_train_epochs`: 10 |
|
|
- `fp16`: True |
|
|
- `multi_dataset_batch_sampler`: round_robin |
|
|
|
|
|
#### All Hyperparameters |
|
|
<details><summary>Click to expand</summary> |
|
|
|
|
|
- `overwrite_output_dir`: False |
|
|
- `do_predict`: False |
|
|
- `eval_strategy`: steps |
|
|
- `prediction_loss_only`: True |
|
|
- `per_device_train_batch_size`: 64 |
|
|
- `per_device_eval_batch_size`: 64 |
|
|
- `per_gpu_train_batch_size`: None |
|
|
- `per_gpu_eval_batch_size`: None |
|
|
- `gradient_accumulation_steps`: 1 |
|
|
- `eval_accumulation_steps`: None |
|
|
- `torch_empty_cache_steps`: None |
|
|
- `learning_rate`: 5e-05 |
|
|
- `weight_decay`: 0.0 |
|
|
- `adam_beta1`: 0.9 |
|
|
- `adam_beta2`: 0.999 |
|
|
- `adam_epsilon`: 1e-08 |
|
|
- `max_grad_norm`: 1 |
|
|
- `num_train_epochs`: 10 |
|
|
- `max_steps`: -1 |
|
|
- `lr_scheduler_type`: linear |
|
|
- `lr_scheduler_kwargs`: {} |
|
|
- `warmup_ratio`: 0.0 |
|
|
- `warmup_steps`: 0 |
|
|
- `log_level`: passive |
|
|
- `log_level_replica`: warning |
|
|
- `log_on_each_node`: True |
|
|
- `logging_nan_inf_filter`: True |
|
|
- `save_safetensors`: True |
|
|
- `save_on_each_node`: False |
|
|
- `save_only_model`: False |
|
|
- `restore_callback_states_from_checkpoint`: False |
|
|
- `no_cuda`: False |
|
|
- `use_cpu`: False |
|
|
- `use_mps_device`: False |
|
|
- `seed`: 42 |
|
|
- `data_seed`: None |
|
|
- `jit_mode_eval`: False |
|
|
- `use_ipex`: False |
|
|
- `bf16`: False |
|
|
- `fp16`: True |
|
|
- `fp16_opt_level`: O1 |
|
|
- `half_precision_backend`: auto |
|
|
- `bf16_full_eval`: False |
|
|
- `fp16_full_eval`: False |
|
|
- `tf32`: None |
|
|
- `local_rank`: 0 |
|
|
- `ddp_backend`: None |
|
|
- `tpu_num_cores`: None |
|
|
- `tpu_metrics_debug`: False |
|
|
- `debug`: [] |
|
|
- `dataloader_drop_last`: False |
|
|
- `dataloader_num_workers`: 0 |
|
|
- `dataloader_prefetch_factor`: None |
|
|
- `past_index`: -1 |
|
|
- `disable_tqdm`: False |
|
|
- `remove_unused_columns`: True |
|
|
- `label_names`: None |
|
|
- `load_best_model_at_end`: False |
|
|
- `ignore_data_skip`: False |
|
|
- `fsdp`: [] |
|
|
- `fsdp_min_num_params`: 0 |
|
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
|
- `deepspeed`: None |
|
|
- `label_smoothing_factor`: 0.0 |
|
|
- `optim`: adamw_torch |
|
|
- `optim_args`: None |
|
|
- `adafactor`: False |
|
|
- `group_by_length`: False |
|
|
- `length_column_name`: length |
|
|
- `ddp_find_unused_parameters`: None |
|
|
- `ddp_bucket_cap_mb`: None |
|
|
- `ddp_broadcast_buffers`: False |
|
|
- `dataloader_pin_memory`: True |
|
|
- `dataloader_persistent_workers`: False |
|
|
- `skip_memory_metrics`: True |
|
|
- `use_legacy_prediction_loop`: False |
|
|
- `push_to_hub`: False |
|
|
- `resume_from_checkpoint`: None |
|
|
- `hub_model_id`: None |
|
|
- `hub_strategy`: every_save |
|
|
- `hub_private_repo`: None |
|
|
- `hub_always_push`: False |
|
|
- `hub_revision`: None |
|
|
- `gradient_checkpointing`: False |
|
|
- `gradient_checkpointing_kwargs`: None |
|
|
- `include_inputs_for_metrics`: False |
|
|
- `include_for_metrics`: [] |
|
|
- `eval_do_concat_batches`: True |
|
|
- `fp16_backend`: auto |
|
|
- `push_to_hub_model_id`: None |
|
|
- `push_to_hub_organization`: None |
|
|
- `mp_parameters`: |
|
|
- `auto_find_batch_size`: False |
|
|
- `full_determinism`: False |
|
|
- `torchdynamo`: None |
|
|
- `ray_scope`: last |
|
|
- `ddp_timeout`: 1800 |
|
|
- `torch_compile`: False |
|
|
- `torch_compile_backend`: None |
|
|
- `torch_compile_mode`: None |
|
|
- `include_tokens_per_second`: False |
|
|
- `include_num_input_tokens_seen`: False |
|
|
- `neftune_noise_alpha`: None |
|
|
- `optim_target_modules`: None |
|
|
- `batch_eval_metrics`: False |
|
|
- `eval_on_start`: False |
|
|
- `use_liger_kernel`: False |
|
|
- `liger_kernel_config`: None |
|
|
- `eval_use_gather_object`: False |
|
|
- `average_tokens_across_devices`: False |
|
|
- `prompts`: None |
|
|
- `batch_sampler`: batch_sampler |
|
|
- `multi_dataset_batch_sampler`: round_robin |
|
|
|
|
|
</details> |
|
|
|
|
|
### Training Logs |
|
|
| Epoch | Step | Training Loss | cosine_ap | |
|
|
|:------:|:-----:|:-------------:|:---------:| |
|
|
| 0.1998 | 215 | - | 0.7638 | |
|
|
| 0.3996 | 430 | - | 0.8723 | |
|
|
| 0.4647 | 500 | 4.4585 | - | |
|
|
| 0.5994 | 645 | - | 0.9176 | |
|
|
| 0.7993 | 860 | - | 0.9475 | |
|
|
| 0.9294 | 1000 | 3.6015 | - | |
|
|
| 0.9991 | 1075 | - | 0.9595 | |
|
|
| 1.0 | 1076 | - | 0.9593 | |
|
|
| 1.1989 | 1290 | - | 0.9705 | |
|
|
| 1.3941 | 1500 | 3.3729 | - | |
|
|
| 1.3987 | 1505 | - | 0.9793 | |
|
|
| 1.5985 | 1720 | - | 0.9818 | |
|
|
| 1.7983 | 1935 | - | 0.9854 | |
|
|
| 1.8587 | 2000 | 3.2631 | - | |
|
|
| 1.9981 | 2150 | - | 0.9866 | |
|
|
| 2.0 | 2152 | - | 0.9866 | |
|
|
| 2.1980 | 2365 | - | 0.9890 | |
|
|
| 2.3234 | 2500 | 3.1295 | - | |
|
|
| 2.3978 | 2580 | - | 0.9884 | |
|
|
| 2.5976 | 2795 | - | 0.9916 | |
|
|
| 2.7881 | 3000 | 3.0907 | - | |
|
|
| 2.7974 | 3010 | - | 0.9916 | |
|
|
| 2.9972 | 3225 | - | 0.9922 | |
|
|
| 3.0 | 3228 | - | 0.9922 | |
|
|
| 3.1970 | 3440 | - | 0.9928 | |
|
|
| 3.2528 | 3500 | 3.0105 | - | |
|
|
| 3.3968 | 3655 | - | 0.9932 | |
|
|
| 3.5967 | 3870 | - | 0.9937 | |
|
|
| 3.7175 | 4000 | 2.977 | - | |
|
|
| 3.7965 | 4085 | - | 0.9939 | |
|
|
| 3.9963 | 4300 | - | 0.9944 | |
|
|
| 4.0 | 4304 | - | 0.9945 | |
|
|
| 4.1822 | 4500 | 2.9488 | - | |
|
|
| 4.1961 | 4515 | - | 0.9947 | |
|
|
| 4.3959 | 4730 | - | 0.9950 | |
|
|
| 4.5957 | 4945 | - | 0.9952 | |
|
|
| 4.6468 | 5000 | 2.914 | - | |
|
|
| 4.7955 | 5160 | - | 0.9954 | |
|
|
| 4.9954 | 5375 | - | 0.9956 | |
|
|
| 5.0 | 5380 | - | 0.9956 | |
|
|
| 5.1115 | 5500 | 2.8927 | - | |
|
|
| 5.1952 | 5590 | - | 0.9960 | |
|
|
| 5.3950 | 5805 | - | 0.9959 | |
|
|
| 5.5762 | 6000 | 2.8505 | - | |
|
|
| 5.5948 | 6020 | - | 0.9963 | |
|
|
| 5.7946 | 6235 | - | 0.9961 | |
|
|
| 5.9944 | 6450 | - | 0.9962 | |
|
|
| 6.0 | 6456 | - | 0.9962 | |
|
|
| 6.0409 | 6500 | 2.8462 | - | |
|
|
| 6.1942 | 6665 | - | 0.9963 | |
|
|
| 6.3941 | 6880 | - | 0.9965 | |
|
|
| 6.5056 | 7000 | 2.8024 | - | |
|
|
| 6.5939 | 7095 | - | 0.9967 | |
|
|
| 6.7937 | 7310 | - | 0.9969 | |
|
|
| 6.9703 | 7500 | 2.8184 | - | |
|
|
| 6.9935 | 7525 | - | 0.9968 | |
|
|
| 7.0 | 7532 | - | 0.9967 | |
|
|
| 7.1933 | 7740 | - | 0.9967 | |
|
|
| 7.3931 | 7955 | - | 0.9967 | |
|
|
| 7.4349 | 8000 | 2.7761 | - | |
|
|
| 7.5929 | 8170 | - | 0.9968 | |
|
|
| 7.7928 | 8385 | - | 0.9969 | |
|
|
| 7.8996 | 8500 | 2.7736 | - | |
|
|
| 7.9926 | 8600 | - | 0.9970 | |
|
|
| 8.0 | 8608 | - | 0.9971 | |
|
|
| 8.1924 | 8815 | - | 0.9972 | |
|
|
| 8.3643 | 9000 | 2.7627 | - | |
|
|
| 8.3922 | 9030 | - | 0.9970 | |
|
|
| 8.5920 | 9245 | - | 0.9972 | |
|
|
| 8.7918 | 9460 | - | 0.9972 | |
|
|
| 8.8290 | 9500 | 2.7604 | - | |
|
|
| 8.9916 | 9675 | - | 0.9972 | |
|
|
| 9.0 | 9684 | - | 0.9972 | |
|
|
| 9.1914 | 9890 | - | 0.9971 | |
|
|
| 9.2937 | 10000 | 2.7467 | - | |
|
|
| 9.3913 | 10105 | - | 0.9972 | |
|
|
| 9.5911 | 10320 | - | 0.9973 | |
|
|
| 9.7584 | 10500 | 2.7441 | - | |
|
|
| 9.7909 | 10535 | - | 0.9973 | |
|
|
|
|
|
|
|
|
### Framework Versions |
|
|
- Python: 3.11.13 |
|
|
- Sentence Transformers: 4.1.0 |
|
|
- Transformers: 4.53.3 |
|
|
- PyTorch: 2.6.0+cu124 |
|
|
- Accelerate: 1.9.0 |
|
|
- Datasets: 4.4.1 |
|
|
- Tokenizers: 0.21.2 |
|
|
|
|
|
## Citation |
|
|
|
|
|
### BibTeX |
|
|
|
|
|
#### Sentence Transformers |
|
|
```bibtex |
|
|
@inproceedings{reimers-2019-sentence-bert, |
|
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
|
month = "11", |
|
|
year = "2019", |
|
|
publisher = "Association for Computational Linguistics", |
|
|
url = "https://arxiv.org/abs/1908.10084", |
|
|
} |
|
|
``` |
|
|
|
|
|
#### MultipleNegativesRankingLoss |
|
|
```bibtex |
|
|
@misc{henderson2017efficient, |
|
|
title={Efficient Natural Language Response Suggestion for Smart Reply}, |
|
|
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, |
|
|
year={2017}, |
|
|
eprint={1705.00652}, |
|
|
archivePrefix={arXiv}, |
|
|
primaryClass={cs.CL} |
|
|
} |
|
|
``` |
|
|
|
|
|
<!-- |
|
|
## Glossary |
|
|
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
|
--> |
|
|
|
|
|
<!-- |
|
|
## Model Card Authors |
|
|
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
|
--> |
|
|
|
|
|
<!-- |
|
|
## Model Card Contact |
|
|
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
|
--> |